对场效应管的测试
场效应管怎么测量好坏

场效应管怎么测量好坏
场效应管测量好坏有以下方法:
方法一将指针式万用表拨至“RX1K”档,并电调零。
场效应管带字的一面朝着自己,从左到右依次为:G(栅极),D(漏极),S (源极)。
将黑表笔接在D极,红表笔接在S极上,此时,万用表指针应不动;然后再对换表笔,再测,此时,万用表指针应向右摆动。
用指针万用表测,G极,与其余两个极之间,无论是两个表笔怎样对调测,万用表指针均应不动。
方法二将数字万用表拨至“二极管”档,也就是,蜂鸣器档。
黑表笔接D极,红表笔接S极,此时,应显示一个数值,一般情况下为400多Ω到500Ω多之间。
然后,再对换表笔,应无显示,为“1”。
然后,黑表笔接D极,红表笔先去触碰一下G极,然后红表笔再接到S极上,此时,会发现显示的数值与原来相比,变小了许多,一般为100多Ω到几十Ω之间。
这说明,此场效应管已被触发导通了。
在这个时候,黑表笔接S极,红表笔接D极,会发现,有数值显示了。
这说明,此场效应管是完好的。
如果所测的结果与上述两种方法均不符,则这个场效应管就是坏的。
一般情况下,D极和S极击穿的比较常见。
用数字万用表的“二极管”档测,会听到蜂鸣器的响声。
场效应管的主要参数意义及其测试方法

场效应管的主要参数意义及其测试方法场效应管(Field Effect Transistor,FET)是一种三端器件,常用于放大、开关和稳压等电路中。
场效应管的主要参数包括漏极-源极电流(IDSS)、漏极-源极截止电压(VGS(Off))、漏极电阻(RDS(On))和跨导(Transconductance),其测试方法主要包括IDSS测试、VGS截止测试、RDS测试和跨导测试。
1.漏极-源极电流(IDSS):IDSS是指在给定源极-栅极电压下,场效应管的漏极电流。
它反映了场效应管的导通能力,通常单位为毫安(mA)。
IDSS测试方法为:将场效应管的源极和栅极短接,连接好漏极回路,将源极-漏极电压保持为0V,测量漏极电流。
2. 漏极-源极截止电压(VGS(Off)):VGS(Off)是指在给定漏极电流下,场效应管的截止电压。
它反映了场效应管在关闭状态下的电压阈值,通常单位为伏特(V)。
VGS(Off)测试方法为:将场效应管的源极和栅极短接,连接好漏极回路,并将漏极电流维持在预定值,测量栅极-源极电压。
3.漏极电阻(RDS(On)):RDS(On)是指在给定栅极-源极电压下,场效应管的漏极电阻。
它反映了场效应管的导通状态下的电阻情况,通常单位为欧姆(Ω)。
RDS测试方法为:将场效应管的源极和栅极短接,连接好漏极回路,并将栅极-源极电压维持在预定值,测量漏极电阻。
4. 跨导(Transconductance):跨导是指在给定栅极-源极电压下,场效应管的斜率。
它反映了场效应管的输入导通能力,通常单位为毫安/伏特(mA/V)。
跨导测试方法为:将场效应管的源极和漏极短接,连接好栅极回路,并将栅极-源极电压维持在预定值,测量漏极电流对应的变化。
场效应管的测量方法

场效应管的测量方法
场效应管的测量方法一般包括以下几个步骤:
1. 确定引脚:首先要确认场效应管的引脚布置,一般有栅极(G)、源极(S)和漏极(D)三个引脚。
2. 确定测试电路:选择适当的测试电路来测量场效应管的性能。
常见的测试电路包括单端共源(Common Source)、单端共漏(Common Drain)和单端共栅(Common Gate)等。
3. 测量电流和电压:在选定的测试电路上,通过恰当的电压源和电流源,分别在引脚上施加适当的电压和电流进行测量。
常用的测量参数有栅极-源极电压(Vgs)、漏极-源极电压(Vds)和漏极电流(Ids)等。
4. 测量曲线:根据测量电流和电压的数据,绘制出I-V特性曲线。
常见的曲线有输入特性曲线和输出特性曲线等。
5. 性能分析:根据测得的曲线数据对场效应管进行性能分析,如确定场效应管的增益、截止频率以及最大功率等。
需要注意的是,在测量场效应管时,要特别注意避免超过场效应管的最大电压和电流规格,以防止损坏设备。
同时,在测量之前也需要对测量电路进行合理的连
接和参数设置。
场效应管检测方法

场效应管检测方法一、用指针式万用表对场效应管进行(1)用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。
具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。
当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。
因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。
也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。
当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。
若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。
若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。
(2)用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。
具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。
然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。
要注意,若两个栅极在管内断极,可用元件代换法进行检测。
(3)用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。
场效应管检验标准

定
项
目
检验内 容
判定标准
检验方法
CR
MA
MI
外
观
1、引脚无氧化、斑点(以上锡试验良好为允收)
√
手感
2、厂商标志与规格型号是否与样品相符
√
目视、试验
3、引脚垂直、不可变形影响插件作业
√
目视、实装
4、本体上的所有标识是否清晰
√
目 视
特
性
1、按相关的确认单参数测试耐压是否符合标准
√
测试
2、按相关的确认应管
检验标准
制定日期:
修改日期:
版本版次
页次
核准
审核
作成
制定部门
A0
1/1
一、目的:为了使场效应管材料达到本厂之品质要求而统一制定判定标准和缺点判定标准。
二、检验工具:1、游标卡尺2、HZ4832晶体管特性图示仪
三、抽样计划按MIL—STD—105E(II)正常抽样,CR=0 MA=0.4MI=1.0
√
测试
3、各尺寸规格(主体、脚径、散热片的孔径、脚长)是否符合样品确认单、脚径、脚长尺寸以实装为主)
√
卡尺、实装
五、检验作业指导(功能检测):
5.1、选用HZ4832晶体管特性图示仪。
5.2、功能检测:①导通电压(VGS);②耐压(BVDSS);
5.3、导通电压检测:
5.3.1、按材料确认单的要求调整:①峰值电压;②功耗电阻;③X轴;④Y轴;⑤阶梯信号;⑥输入档位;⑦电流一电压/级;⑧调零、级/簇旋扭。
5.3.2、将待测试的场效应管插入测试夹的B、C、E孔内。
5.3.3、用手旋转旋扭:测VGS在2-4V时晶体管触发导通,每1格为1V
用万用表测量场效应管

用万用表测量场效应管用万用表测量(试)vmos功率场效应管1、判断引脚极性(电极)万用表复置r×1k档,分别测试三个电极间的阻值,如果其中—脚与另两脚间的电阻为无穷大,且互换表笔测试仍—样.表明这—脚为栅极g。
由图1(b)可以窥见,源、漏极之间相等于一个pn结,测量其正、逆向电阻,以阻值较小(约几千欧)的那次为依据,白表笔接的是源极(p型)s,白表笔直奔的就是漏极(n型)d,对n导线vmos管推论恰好相反。
通常vmos管曲面极d与外壳(或散热片)就是连在一起的,这就是更容易区分凿、源两电极了。
图1vmos功率场效应管外形及内部结构示意图①万Weinreb复置r×1k档,先短路一下栅-源极,泄压下栅极上感应器的电荷,然后用黑表笔接s,白表笔接d,例如测到的阻值在几千欧,再短接—之下g、s后互换表笔测得阻值为无穷大,表明管子凿、源极间pn结是不好的。
②用导线将g、s短路起来,万用表置r×1档,黑表笔接s,红表笔接d,如测得的阻值在几欧姆,说明管子是好的,并且阻值越小,还说明管子的放大能力越强。
其判断理由是:将g、s极短路并用黑表笔接源极s时,就相当于给栅极加上了正偏压,这个正电压产生的电场会把源极n+型和p沟道区内的电子吸附到氧化膜的表面,从而分离出大量的空穴参予导电,使电流剧增,电阻减小。
③万用表复置r×10档,分别测量g-s、g-d极间的两极向电阻,如果都为无穷大,表明管于是不好的,否则表明栅极与漏、源极间存有漏电或者打穿损毁。
对于n导线管互换表笔测试即可。
3、放大能力(跨导)的测量vmos管及的压缩能力(跨导)的测量可以参照《绝缘栅场效应管的测量》一文中关于mos管压缩能力的测试方法。
rdson测试方法

rdson测试方法RDSon测试方法指的是对场效应管(Field Effect Transistor, FET)的导通电阻进行测试的方法。
导通电阻是场效应管的重要性能指标之一,直接影响到其在电子电路中的功耗和热耗散等方面。
场效应管的导通电阻一般分为两个部分:静态导通电阻(RDSon)和动态导通电阻。
静态导通电阻指的是在场效应管处于稳态工作状态下,开关极(Gate)施加一定的电压,从漏极(Drain)到源极(Source)的电流与漏极到源极之间的电压之比。
动态导通电阻则考虑了开关过程中的导通电阻变化。
以下是一种常用的RDSon测试方法:1.实验器材准备:-场效应管样品:要测试的场效应管样品;-直流电源:用于给场效应管样品供电;-示波器:用于观测场效应管的电流和电压波形;-电阻箱:用于搭建负载电路。
2.实验步骤:(1)搭建实验电路:将示波器的探头分别连接到场效应管的漏极和源极上,接地电极连接到场效应管的源极。
连接好后,连接示波器的电流波形和电压波形分别对应的信号线。
(2)给场效应管供电:通过直流电源给场效应管施加一定的电压,确保场效应管处于工作状态。
(3)调整负载电阻:在负载电路中选择适当的电阻,使得场效应管的电流在合适的工作范围内。
(4)观测波形:使用示波器观测场效应管的电流和电压波形,并记录数据。
(5)计算RDSon:根据实测的电流和电压波形数据,可以通过计算得到RDSon的数值。
3.实验注意事项:(1)实验时,应注意选择适当的工作电压和负载情况,以确保场效应管工作在正常范围内。
(2)示波器的选择应具有足够的带宽和采样率,以准确观测场效应管的电流和电压波形。
(3)实验时,应注意对电路进行保护,防止短路故障等情况导致设备损坏。
通过以上测试方法,可以准确测量出场效应管的导通电阻(RDSon),为其在实际电路中的应用提供参考。
在实际应用中,选型时应注意选择合适的场效应管,以满足电路的功耗和性能要求。
场效应管好坏测量方法

场效应管好坏测量方法场效应管是一种常用的半导体器件,广泛应用于放大、开关、滤波等电路中。
场效应管的好坏直接影响到整个电路的性能,因此对场效应管进行准确的测量和评估是非常重要的。
本文将介绍几种常用的场效应管好坏测量方法,希望能为大家提供一些参考。
首先,我们可以通过静态参数来评估场效应管的好坏。
静态参数包括漏极电流、饱和电流、开启电压等。
通过测量这些参数,我们可以初步了解场效应管的基本性能。
漏极电流是指在一定的栅极电压下,场效应管的漏极-源极间的电流,它反映了场效应管的导通能力。
饱和电流是指在一定的栅极电压下,场效应管的漏极-源极间的最大电流,它反映了场效应管的最大导通能力。
开启电压是指在一定的漏极电流下,场效应管的栅极电压,它反映了场效应管的导通起始点。
通过测量这些参数,我们可以初步判断场效应管的好坏。
其次,我们可以通过动态参数来评估场效应管的好坏。
动态参数包括开关时间、导通电阻、截止频率等。
开关时间是指场效应管从截止到导通或者从导通到截止所需要的时间,它反映了场效应管的开关速度。
导通电阻是指场效应管在导通状态下的电阻大小,它反映了场效应管的导通能力。
截止频率是指场效应管在高频条件下的截止频率,它反映了场效应管在高频条件下的性能。
通过测量这些参数,我们可以更全面地评估场效应管的好坏。
最后,我们可以通过温度特性来评估场效应管的好坏。
温度特性是指场效应管在不同温度下的性能表现。
由于场效应管在实际应用中会受到温度的影响,因此了解场效应管在不同温度下的性能表现对于评估其好坏非常重要。
通过测量场效应管在不同温度下的静态和动态参数,我们可以更准确地评估场效应管的好坏。
综上所述,对场效应管进行好坏测量是非常重要的。
我们可以通过静态参数、动态参数和温度特性来评估场效应管的好坏。
通过准确的测量和评估,我们可以更好地选择和应用场效应管,从而提高电路的性能和稳定性。
希望本文介绍的方法能够帮助大家更好地了解和应用场效应管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。
将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。
当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。
对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。
2、 判定栅极(红表笔接表内电池的负极,黑表笔接表内电池的正极)
用万用表黑表笔碰触管子的栅极,红表笔分别碰触另外两个电极。
若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管。
制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。
若要区分,则可根据在源—漏之间有一个PN结,通过测量PN结正、反向电阻存在差异,识别S极与D极。
将万用表拨到R×100档,用交换表笔法测两次电阻,相当于给场效应管加上1.5V的电源电压,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻。
此时黑表笔的是S极,红表笔接D极。
注意不能用此法判定绝缘栅型场效应管的栅极。
因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。
3、 估测场效应管的放大能力
将万用表拨到R×100档,相当于给场效应管加上1.5V的电源电压。
这时表针指示出的是D-S极间电阻值。
然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。
由于管子的放大作用,UDS和ID 都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。
如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。
由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。
少数的管子RDS减小,使表针向右摆动,多数管子的RDS 增大,表针向左摆动。
无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。
本方法也适用于测MOS管。
为了保护MOS场效应管,必须用手握住金属杆,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。
MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。