算法分析复习
算法分析复习题目及答案.

一、选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是( C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是( C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
电大计算机本科_算法设计与分析(期末考试复习题含答案)

1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A ).A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9。
实现循环赛日程表利用的算法是( A ).A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D ).A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B ).A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A ).A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。
《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。
A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。
《算法分析与设计》期末测验复习题纲(完整版)

《算法分析与设计》期末测验复习题纲(完整版)————————————————————————————————作者:————————————————————————————————日期:《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
算法分析设计期末复习

通过解递归方程
logm n1
T (n) nlogm k k j f (n / m j ) j0
学习要点: 理解递归的概念。 掌握设计有效算法的分治策略。 通过下面的范例学习分治策略设计技巧。 (1)二分搜索技术; (2)大整数乘法; (3)Strassen矩阵乘法; (4)棋盘覆盖; (5)合并排序和快速排序; (6)线性时间选择; (7)最接近点对问题; (8)循环赛日程表。
基本运算Oi的执行次数ei分别进行统计分析。 – T(N,I)还需进一步简化,只在某些有代表性的合法输
入中去统计相应的ei来评价其复杂性。 – 一般只考虑三种情况下的时间性:最坏情况、最好
情况和平均情况下的复杂性,分别记为Tmax(N)、 Tmin(N)和Tavg(N)
四种渐近意义下的符号
• 四种渐近意义下的符号 –O –Ω –θ –o
}
----------------------------------------------------------------------------------------
CheckNum( T , p , q , element): ▹计算T[p..q]中element出现的次数
{ cnt ← 0
• 思路二:直接统计各 元素出现的次数,用 某一线性数据结构 存储统计结果(例如 用一个辅助数组存 储统计结果,统计时 用数组下标对应相 应元素)
第三章:动态规划
动态规划算法的基本思想
• 动态规划算法的基本思想
– 其基本思想与分治算法的思想类似——分而治之 – 与分治法的不同之处
• 分解后的子问题往往不互相独立; • 采用记录表的方法来保存所有已解决问题的答案
考虑时间 资源
算法设计与分析期末复习题

算法设计与分析期末考试复习题1.算法有哪些特点?为什么说一个具备了所有特征的算法,不一定就是使用的算法?2.证明下面的关系成立:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)3.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i<n-1;i++)5. for(j=i+1;j<n;j++)6. if(A[j]<A[i]) {7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执行的元素赋值的次数最少?最少多少次?(2)什么时候算法所执行的元素赋值的次数最多?最多多少次?4.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i<n-1 && !sorted) {6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]<A[j-1]) {9. temp=A[j];10. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执行的元素比较次数最少是多少次?什么时候达到最少?(2)算法所执行的元素比较次数最多是多少次?什么时候达到最多?(3)算法所执行的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执行的元素赋值次数最多是多少次?什么时候达到最多?(5)用О、和Ω记号表示算法的运行时间。
算法设计与分析复习题目及答案

分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
算法分析与设计复习题及参考答案

《算法分析与设计》课程复习资料一、名词解释:1.算法2.程序3.递归函数4.子问题的重叠性质5.队列式分支限界法6.多机调度问题7.最小生成树 二、简答题:1.备忘录方法和动态规划算法相比有何异同?简述之。
2.简述回溯法解题的主要步骤。
3.简述动态规划算法求解的基本要素。
4.简述回溯法的基本思想。
5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
6.简要分析分支限界法与回溯法的异同。
7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面? 8.贪心算法求解的问题主要具有哪些性质?简述之。
9.分治法的基本思想是什么?合并排序的基本思想是什么?请分别简述之。
10.简述分析贪心算法与动态规划算法的异同。
三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。
2.按要求完成以下关于排序和查找的问题。
①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。
②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。
③给出上述算法的递归算法。
④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。
3.已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。
4.根据分枝限界算法基本过程,求解0-1背包问题。
已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法的定义和特征?算法:是解某一特定问题的一组有穷规则的集合。
什么是算法?算法的特征有哪些?1)算法是解决某类问题的一系列运算的集合。
具有有穷行、可行性、确定性、0个或者多个输入、1个或者多个输出。
什么是P类问题?什么是NP类问题?请描述集合覆盖问题的近似算法的基本思想?用确定的图灵机可以在多项式实间内可解的判定问题称为P类问题。
用不确定的图灵机在多项式实间内可解的判定问题称为NP类问题。
算法的特征:输入:有零个或多个外部量作为算法的输入。
输出:算法产生至少一个量作为输出。
确定性:组成算法的每条指令清晰、无歧义。
有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
能行性:算法中有待实现的运算,都是基本的运算。
原则上可以由人们用纸和笔,在有限的时间里精确地完成。
用计算机解决一个现实问题的步骤?①问题分析②数学模型建立③算法设计与选择④算法表示⑤算法分析⑥算法实现⑦程序调试⑧结果整理文档编制0-1背包问题用动态规划与回溯法求解的比较动态规划算法求解问题,可依据其递归式以自底向上的方式进行计算。
在计算过程中,保存已解决的子问题的答案。
每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量重复计算,最终得到多项式时间算法。
回溯法在包含问题的所有解的解空间树中, 按照深度优先的策略, 从根结点出发搜索解空间树。
回溯算法搜索至解空间树的任一结点时, 总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含, 则跳过对以该结点为根的子树的系统搜索, 逐层向其祖先结点回溯。
否则, 进入该子树, 继续按深度优先的策略进行搜索。
分支限界法与回溯法的不同(1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
(2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。
分支限界法基本思想1、在结点估算沿着它的各儿子结点搜索时,目标函数可能取得的“界”;2、把儿子结点和目标函数可能取得的“界”,保存在优先队列或堆中;3、从队列或堆中选取“界”最大或最小的结点向下搜索,直到叶子结点;4、若叶子结点的目标函数的值,是结点表中的最大值或最小值,则沿叶子结点到根结点的路径所确定的解,就是问题的最优解,由该叶子结点所确定的目标函数的值,就是解这个问题所得到的最大值或最小值。
分支限界算法可解问题:0-1背包问题;货郎担问题;作业分配问题分治法的基本思想求解一个输入规模为n,且n的取值非常大的问题时,直接求解非常困难。
分治法是把问题划分成多个子问题来进行处理。
这些子问题在结构上与原来的问题一样,但在规模上比原来的小。
如果得到的子问题相对来说还是太大,可以反复地使用分治策略,把这些问题划分成更小的、结构相同的子问题。
这样,就可以使用递归的方法,分别求解这些子问题,并把这些子问题的解结合起来,从而获得原来问题的解。
分治法所能解决的问题一般具有以下几个特征:•该问题的规模缩小到一定的程度就可以容易地解决;•该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质•利用该问题分解出的子问题的解可以合并为该问题的解;•该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
分治法的应用•二分搜索法•大整数的乘法•Strassen矩阵乘法•棋盘覆盖•合并排序•快速排序•最接近点对问题•循环赛日程表递归的概念•递归算法:直接或间接地调用自身的算法•递归函数:用函数自身给出定义的函数。
•特点:把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量写出的程序十分简洁易懂。
贪心算法顾名思义,贪心算法总是作出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
贪心算法的基本要素:贪心选择性质、最优子结构性质所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。
这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。
问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。
贪心算法与动态规划算法的差异?贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。
2个经典的组合优化问题:0-1背包问题和背包问题。
这2类问题都具有最优子结构性质,极为相似,但背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解贪心算法可解的问题:活动安排问题;最优装载问题;哈夫曼编码;单源最短路径;最小生成树;多机调度问题;最小生成树.Prim算法:最小生成树Kruskal算法:动态规划算法思想?•动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
•与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是独立的。
子问题中存在大量的公共子问题,在分治求解过程中被多次重复计算,保存计算结果,为后面的计算直接引用,减少重复计算次数这就是动态规划的基本思想•用动态规划算法求解问题,可依据其递归式以自底向上的方式进行计算。
在计算过程中,保存已解决的子问题的答案。
每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量重复计算,最终得到多项式时间算法。
在动态规划算法中,很多问题的求解过程是滚动的,即解决k层问题,不仅只涉及k-1层,可能会涉及k-1以下各层的计算结果,因此其求解的其基本思想表示如下。
最优子结构是问题能用动态规划算法求解的前提。
动态规划基本步骤1.找出最优解的性质,并刻划其结构特征。
2.递归地定义最优值。
3.以自底向上的方式计算出最优值。
4.根据计算最优值时得到的信息,构造最优解。
动态规划算法可求解问题:货郎担问题;多段图问题;矩阵连乘问题;图像压缩;电路布线;流水作业调度;0-1背包问题;动态规划算法与分治算法?动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,动态规划法用一个表来记录所有已解决的子问题的答案。
不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。
需要时从表中找出已求得的答案,避免大量重复计算从而得到多项式时间算法。
动态规划算法适用于解最优化问题。
快速排序采用的思想是分治思想。
快速排序是找出一个元素(理论上可以随便找一个)作为基准(pivot),然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值都不小于基准值,如此作为基准的元素调整到排序后的正确位置。
递归快速排序,将其他n-1个元素也调整到排序后的正确位置。
最后每个元素都是在排序后的正确位置,排序完成。
所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。
举例说明一下吧,这个可能不是太好理解。
假设要排序的序列为2 2 4 93 6 7 1 5首先用2当作基准,使用i j两个指针分别从两边进行扫描,把比2小的元素和比2大的元素分开。
首先比较2和5,5比2大,j左移2 2 4 93 6 7 1 5 比较2和1,1小于2,所以把1放在2的位置2 1 4 93 6 7 1 5 比较2和4,4大于2,因此将4移动到后面2 1 4 93 6 745 比较2和7,2和6,2和3,2和9,全部大于2,满足条件,因此不变经过第一轮的快速排序,元素变为下面的样子[1] 2 [4 9 3 6 7 5]之后,在把2左边的元素进行快排,由于只有一个元素,因此快排结束。
右边进行快排,递归进行,最终生成最后的结果。
尽管快速排序的最坏时间为O(n2),它的平均时间复杂度为O(nlgn)。
int quicksort(vector<int> &v, int left, int right){if(left < right){int key = v[left];int low = left;int high = right;while(low < high){while(low < high && v[high] > key){high--;}v[low] = v[high];while(low < high && v[low] < key){low++;}v[high] = v[low];}v[low] = key;quicksort(v,left,low-1);quicksort(v,low+1,right);}}一、设数组A有n个元素,需要找出其中的最大最小值。
(20分)(1)请给出一个解决方法,并分析其复杂性。
(2)把n个元素等分为两组A1和A2,分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。
如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。
直至子集中元素至多两个元素为止。
这是什么方法的思想?请给出该方法的算法描述,并分析其复杂性。
一、(1)基本思想:从头到尾逐个扫描,纪录最大和最小元素。
【2分】输入:具有n个元素的数组【1分】输出:最大值和最小值【1分】步骤:【4分】void FindMaxMin(int A[], int n, int max, int min){max=min=A[0];for (i=1;i<n;i++){if (A[i]>max) max=A[i];if (A[i]<min) min=A[i];}}复杂性分析:由于是从头到尾扫描各个元素,而每个元素都要与max和min比较一遍,从而时间复杂性为:O(n)。
【2分】(2)【10分】void FindMaxMin(int left,int right, int max, int min) {if (left==right) max=min=A[left];else if (left=right-1) {max=(A[left]<A[right]?A[right]:A[left]);min=( A[left]<A[right]?A[left]:A[right]);}else{mid=(left+right)/2;FindMaxMin(left,mid,gmax,gmin);FindMaxMin(mid+1,right,hmax,hmin);max=(gmax<hmax?hmax:gmax);min=(gmin<hmin?gmin:hmin]);}}合并排序基本思想:将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。