算法设计与分析考试题目及复习资料

合集下载

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)
B. f (n) O(g(n)), g(n) O(h(n)) h(n) O(f (n)) C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D. f (n) O(g(n)) g(n) O(f (n))
6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质
3. 所谓贪心选择性质是指(所求问题的整体最优解可以通过一系列局部最 优的选择,即贪心选择来达到)。
4. 所谓最优子结构性质是指(问题的最优解包含了其子问题的最优解)。 5. 回溯法是指(具有限界函数的深度优先生成法)。 6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。在任 何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树 中 从根结点到叶结点的最长路径的长度为 h(n),则回溯法所需的计算空间通 常为(O(h(n)))。 7. 回溯法的算法框架按照问题的解空间一般分为(子集树)算法框架与
12. 用回溯法解图} 的 m 着色问题时,使用下面的函数 OK 检查当前扩展结点的
每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)(O(mn))。
Bool Color::OK(int k) {//
for(int j=1;j<=n;j++) if((a[k][j]= =1)&&(x[j]= =x[k])) return false;
f(n)个单位时间。用 T(n)表示该分治法解规模为|P|=n 的问题所需的计算时
间,则有:T (n)

kT (n
O(1) / m)
f
(n)
n 1 n 1

算法设计与分析复习题目及答案 (3)

算法设计与分析复习题目及答案 (3)

分治法1、二分搜索算法是利用(分治策略)实现的算法。

9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

计算机算法设计与分析期末复习资料

计算机算法设计与分析期末复习资料

计算机算法设计与分析期末复习资料一填空题(20x1=20分)1.当有多个算法来解决集合问题时,选择算法的主要原则是选择复杂度最低的算法。

2.函数本身定义的函数是递归函数。

该算法适用于求解动态规划问题。

4.贪心算法的两个基本要素是最优子结构性质、贪心选择性质。

5.在搜索解空间树时,回溯方法通常使用深度优先的方法来提高搜索效率,以避免无效搜索。

6.根据不同的求解目标,分枝定界法和回溯法分别通过广度优先遍历或最小代价优先和深度优先搜索解空间树。

7.分支界限法和回溯法主要区别在于求解目标和搜索方式不同。

8.在执行分支定界法时,通常使用该方法来实现最大优先级队列。

9.依据求解所花费的时间和所得到的结果不同,随机化算法大致分为数值随机化算法、蒙特卡罗算法、拉斯维加斯算法和舍伍德算法四类。

10.产生伪随机数最常用的方法是线性同余法。

11.线性规划算法中旋转轴变化的目的是调整基准内变量和基准外变量的位置。

12.在最大网络流问题中,增广路径是剩余网络中容量大于0的路径。

13.应用于动态规划的待解决问题的两个基本要素是:。

14.算法必须满足的四个特征是输入、输出、确定性和有限性。

15.算法复杂性依赖于、、三个方面的复杂因素。

16.实现递归调用的关键是17.动态规划算法解决问题的重要线索是问题的性质。

18.最优子结构性质是贪婪算法的关键特征。

19.分支界限法的求解目标是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

20.有两种常见的解空间树:子集树和置换树。

21.分支界限算法依据其从和节点表中选择获得下一扩展节点的不同方式被分为22.对于任何约束标准线性规划问题,只要基本变量设置为0,就可以得到一个解。

三概念题(6x2=12分)1.算法复杂度:指算法运行所需的计算机资源量。

需要时间资源的量称为时间复杂度,需要空间资源源的量称为空间复杂性。

2.递归算法:直接或间接调用自身的算法称为递归算法。

《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。

A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。

在某台计算机上实现并完成概算法的时间为t秒。

现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。

A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。

A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。

A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。

A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。

A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。

A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。

A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。

A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。

《算法设计与分析》复习题参考答案

《算法设计与分析》复习题参考答案

《算法设计与分析》复习题参考答案一、概念题:请解释下列术语。

1.数据元素的集合。

2.队列是一个线性表,限制为只能在固定的一端进行插入,在固定的另一端进行删除。

3.对于算法a,如果存在一多项式p(),使得对a的每个大小为n的输入,a的计算时间为o(p(n)),则称a具有多项式复杂度4.二叉树的层数i与该层上的结点数n的关系为:n(i)=i2。

5.如果可满足性约化为一个问题L,则称该问题为NP-难度的。

6.算法就是一组有穷的规则,它规定了解决某一特定类型问题的一系列运算。

7.多数据单指令流8.若图的任意两个节点间均存在路径可达,则称该图为连通图。

9. 是指一个数学模型以及定义在该模型上的一组操作。

10.算法的复杂度只能用指数函数对其限界。

11.函数或过程直接或间接调用它自己。

12.和高度相同的满二叉树的每个对应的顶点编号相同的树13.由所有可行状态所构成的树。

14.如果L时NP难度的且L∈NP,则称问题L是NP-完全的。

15.算法是一个步骤的序列,满足:有穷性、可行性、确定性、输入、输出;过程不需要满足由穷性。

16.有向图的每条边有起点与终点之分,且用箭头指向边的终点。

无向图的边无起点和终点之分,边无箭头。

17.树(tree)是一个或多个结点的有限集合,,它使得:①有一个特别指定的称作根(root)的结点;②剩下的结点被分成m≥0个不相交的集合tl,…,tm,这些集合的每一个都是一棵树,并称t1,…,tm为这根的子树(subtree)。

18.P是所有可在多项式时间内用确定算法求解的判定问题的集合。

19.运算结果是唯一确定的算法20. nP是所有可在多项式时间内用不确定算法求解的判定问题的集合二、填空题1.n2.O ( n )3.最优化问题4.宽度优先搜索5.结点的最大级数6.互异7.内结点和外结点8.方形9.内部路径长度、外部路径长度10.一次11.归并分类算法12.贪心选择性质13.最优子结构14.二元归并15.最小成本生成树16.最优性17.最优决策18.可容许最大成本c19.最小成本三、程序填空题。

(完整版)算法设计与分析考试题及答案

(完整版)算法设计与分析考试题及答案

一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。

2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。

3.某一问题可用动态规划算法求解的显著特征是____________________________________。

4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。

5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。

6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。

7.以深度优先方式系统搜索问题解的算法称为_____________。

8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。

9.动态规划算法的两个基本要素是___________和___________。

10.二分搜索算法是利用_______________实现的算法。

二、综合题(50分)1.写出设计动态规划算法的主要步骤。

2.流水作业调度问题的johnson算法的思想。

3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。

4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。

(完整版)算法设计与分析考试题及答案,推荐文档

(完整版)算法设计与分析考试题及答案,推荐文档
法好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是
____________________________________。 4.若序列 X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列
X 和 Y 的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至

之分。
5、 f(n)= 6×2n+n2,f(n)的渐进性态 f(n)= O(
)
6、 贪心算法总是做出在当前看来
的选择。也就是说贪心算法并不从整体最优考
虑,它所做出的选择只是在某种意义上的

7、 许多可以用贪心算法求解的问题一般具有 2 个重要的性质:
性质和
性质。
二、简答题(本题 25 分,每小题 5 分)
五、算法理解题(本题 5 分) 设有 n=2k 个运动员要进行循环赛,
现设计一个满足以下要求的比赛日程表:
①每个选手必须与其他 n-1 名选手比赛各一次; ②每个选手一天至多只能赛一次;
③循环赛要在最短时间内完成。
我去(人1)如也果 就n=2k有,循人环赛!最少为需要U进R行扼几天腕; 入站内信不存在向你偶同意调剖沙 (2)当 n=23=8 时,请画出循环赛日程表。
六、算法设计题(本题 15 分) 分别用贪心算法、动态规划法、回溯法设计 0-1 背包问题。要求:说明所使用的算法
策略;写出算法实现的主要步骤;分析算法的时间。 七、算法设计题(本题 10 分)
建议收藏下载本文,以便随时学习! 通过键盘输入一个高精度的正整数 n(n 的有效位数≤240),去掉其中任意 s 个数字后, 剩下的数字按原左右次序将组成一个新的正整数。编程对给定的 n 和 s,寻找一种方案, 使得剩下的数字组成的新数最小。 【样例输入】 178543 S=4 【样例输出】 13

算法设计与分析复习题目及答案.docx

算法设计与分析复习题目及答案.docx

算法设计与分析复习题目及答案.docx一。

选择题1、二分搜索算法是利用(A)实现的算法。

A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是(B)。

A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是(A)的一搜索方式。

A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是(B)。

A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是(B)。

A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法常以自底向上的方式求解最优解的是(B)。

A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是( C )。

A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是( D )。

A 棋盘覆盖问题B 选择问题C 归并排序D 0/1 背包问题9. 实现循环赛日程表利用的算法是(A)。

A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是( C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是(DA、广度优先B、最小耗费优先C、最大效益优先12.下列算法常以深度优先方式系统搜索问题解的是(A、备忘录法B、动态规划法C、贪心法13.备忘录方法是那种算法的变形。

( B )A、分治法B、动态规划法C、贪心法14.哈弗曼编码的贪心算法所需的计算时间为(BnB、 O(nlogn )n )A、O( n2 )C、O(215.分支限界法解最大团问题时,活结点表的组织形式是(A、最小堆B、最大堆C、栈组)。

D、深度优先D)。

D、回溯法D、回溯法)。

D、 O( n)B)。

D 、数16.最长公共子序列算法利用的算法是(B)。

A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《算法分析与设计》期末复习题一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。

现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi 塔问题的移动规则。

由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。

A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。

A.B.C.D.10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。

F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。

B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。

C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。

D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数。

13. N P类语言在图灵机下的定义为(D)A.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是(A)。

A.O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ f(n) ≤cg(n) };B.O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ cg(n) ≤f(n) };>0使得对所有n≥n0 C.O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n有:0 ≤f(n)<cg(n) };>0使得对所有D.O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和nn≥n0有:0 ≤cg(n) < f(n) };15. 记号Ω的定义正确的是(B)。

A.O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ f(n) ≤cg(n) };B.O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ cg(n) ≤f(n) };C.(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n>0使得对所有n≥n0有:0 ≤f(n)<cg(n) };D.(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0>0使得对所有n≥n0有:0 ≤cg(n) < f(n) };二、填空题1.下面程序段的所需要的计算时间为(2O(n))。

Array2.有11个待安排的活动,它们具有下表所示的开始时间与结束时间,如果以贪心算法求解这些活动的最优安排(即为活动安排问题:在所给的活动集合中选出最大的相容活动子集合),得到的最大相容活动子集合为活动( {1,4,8,11} )。

3. 所谓贪心选择性质是指(所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到)。

4. 所谓最优子结构性质是指(问题的最优解包含了其子问题的最优解)。

5. 回溯法是指(具有限界函数的深度优先生成法)。

6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。

在任何时刻,算法只保存从根结点到当前扩展结点的路径。

如果解空间树 中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为(O(h(n)))。

7. 回溯法的算法框架按照问题的解空间一般分为(子集树)算法框架与(排列树)算法框架。

8. 用回溯法解0/1背包问题时,该问题的解空间结构为(子集树)结构。

9.用回溯法解批处理作业调度问题时,该问题的解空间结构为(排列树)结构。

10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:1413121110987654f[i]12 2 8 8 6 5 3 5 0 3 1 S[i] 11 10 9 8 7 6 5 4 3 2 1 i11. 用回溯法解布线问题时,求最优解的主要程序段如下。

如果布线区域划分为n m 的方格阵列,扩展每个结点需O(1)的时间,L 为最短布线路径的长度,则算法共耗时 ( O(mn) ),构造相应的最短距离需要(O(L))时间。

12. 用回溯法解图的m 着色问题时,使用下面的函数OK 检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)(O (mn ))。

13. 旅行售货员问题的解空间树是(排列树)。

三、证明题1. 一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。

设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。

再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。

用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得T(n)的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明T(n)的显式表达式的正确性。

2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解(此题说明0/1背包问题与背包问题的不同)。

证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7。

而此实例的最大的收益应该是8,取第2,3 个。

3. 求证:O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 。

证明:对于任意f1(n)∈O(f(n)) ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1(n)≤c1f(n) 。

类似地,对于任意g1(n) ∈O(g(n)) ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1(n) ≤c2g(n) 。

令c3=max{c1, c2},n3 =max{n1, n2},h(n)= max{f(n),g(n)} 。

则对所有的n ≥n3,有f1(n) +g1(n) ≤c1f(n) + c2g(n)≤c3f(n) + c3g(n)= c3(f(n) + g(n))≤c32 max{f(n),g(n)}= 2c3h(n) = O(max{f(n),g(n)}) .4. 求证最优装载问题具有贪心选择性质。

(最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船。

其中集装箱i 的重量为Wi 。

最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。

设集装箱已依其重量从小到大排序,(x 1,x 2,…,x n )是最优装载问题的一个最优解。

又设1min{|1}i i nk i x ≤≤== 。

如果给定的最优装载问题有解,则有1k n ≤≤。

)证明: 四、解答题1. 机器调度问题。

问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理。

每件任务的开始时间为s i ,完成时间为f i ,s i <f i 。

[s i ,f i ]为处理任务i 的时间范围。

两个任务i ,j 重叠指两个任务的时间范围区间有重叠,而并非指i ,j 的起点或终点重合。

例如:区间[1,4]与区间[2,4]重叠,而与[4,7]不重叠。

一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器。

因此,在可行的分配中每台机器在任何时刻最多只处理一个任务。

最优分配是指使用的机器最少的可行分配方案。

问题实例:若任务占用的时间范围是{[1,4],[2,5],[4,5],[2,6],[4,7]},则按时完成所有任务最少需要几台机器?(提示:使用贪心算法)画出工作在对应的机器上的分配情况。

相关文档
最新文档