对策论_运筹学
运筹学-第15章--对策论

1 8 5 8 5 5*
2 2 3 2 1 1
3 4
9 0
5 2
6 3
5 5*
3
0
max 9 5* 8 5*
可知 ai* j* =5,i*=1,3,j*=2,4.故(α1,β2)(α1,β4)(α2,
β2)(α2,β4)为对策的纳管 什理均运衡,筹 V学G=5.
15
• 最优纯策略求解步骤:
• 1、行中取小,小中取大得最大化最小收益 值;
• 2、列中取大,大中取小得最小化最大支付 值;
• 3、比较两值是否相等。若相等便存在最优 纯策略。若不等,则不存在最优纯策略。
管理运筹学
16
§3 矩阵对策的混合策略
设矩阵对策 G = { S1, S2, A }。当
max
i
min
j
aij
min
j
max
i
aij
时,不存在最优纯策略。
例:设一个赢得矩阵如下:
一个局势,一个局势决定了各局中人的对策结果(量化) 称为该局势对策的益损值。
管理运筹学
3
§1 对策论的基本概念
出赛的次序是一个策略 “齐王赛马”齐王在各局势中的益损值表(单位:千金)
管理运筹学
4
§1 对策论的基本概念
其中:齐王的策略集: S1={ 1, 2, 3, 4, 5, 6 }, 田忌的策略集:S2={ 1, 2, 3, 4, 5, 6 }。
A=[aij]m×n i 行代表甲方策略 i=1, 2, …, m;j 列代表乙方策略 j=1, 2, …, n;aij 代表甲方取策略 i,乙方取策略 j,这一局势下甲方的 益损值。此时乙方的益损值为 -aij(零和性质)。
《管理运筹学-对策论》

博弈与均衡
04
对策分析方法
CHAPTER
VS
静态分析法是一种不考虑时间因素的分析方法,主要适用于解决一次性决策问题。
详细描述
静态分析法将问题视为一个静态系统,不考虑时间变化和过程发展,只关注决策变量的当前状态和最优解。这种方法适用于确定性和静态的环境,如线性规划、整数规划等。
总结词
静态分析法
总结词
《管理运筹学-对策论》
目录
对策论概述 对策模型 对策论的基本概念 对策分析方法 对策论的应用实例 对策论的未来发展
CONTENTS
01
对策论概述
CHAPTER
对策论,也称为博弈论,是研究决策主体在相互竞争、相互依存的环境中如何进行策略选择和行动的学科。
对策论强调理性、优化和均衡,通过数学模型和逻辑推理来描述和分析竞争行为,尤其关注在不确定性和信息不对称情况下的决策问题。
对策论的定义与特点
特点
定义
竞争策略分析
对策论可以用于分析企业或组织在市场竞争中的策略选择,例如定价策略、产品差异化、市场份额争夺等。
合作协议
在某些情况下,企业间可能通过对策论的方法找到合作的可能性,例如供应链协调、合作研发等。
人力资源决策
在招聘、晋升、激励设计等方面,对策论可以帮助理解个体和团队的行为反应,优化人力资源决策。
03
对策论的基本概念
CHAPTER
策略与行动
策略
在对策中,参与者为达到目标所采取的行动方案。策略是完整的、具体的行动计划,它规定了参与者在所有可能情况下应采取的行动。
行动
在对策中,参与者实际采取的行动。行动是实现策略的具体行为或决策。
在对策中,如果一个参与者的某个策略能够使其获得比其他参与者更好的结果,则称该策略为优势策略。优势策略是相对于其他参与者的策略而言的。
运筹学第9章 对策论

3. 赢得函数(支付函数)(payoff function)
一个对策中,每一个局中人所出策略形成的策略 组称为一个局势。 即设 s i 是第 i 个局中人的一个策略, 则n个局中人的策略形成的策略组 s ( s1 , s2 ,, sn )
s 就是一个局势。
在“齐王VS田忌赛马”中,
齐王有6个策略: 2 ( 上,下,中)、 1 (上,中,下)、 4 (中,下,上)、 5 ( 下,上,中)、
1 2
设局中人I采用纯策略 1和 2的概率 分别为 x1 和 x2 ,x1 x2 1, x1,2 0 设局中人II采用纯策略 1和 2的概率 分别为 y1 和 y2 ,y1 y2 1, y1,2 0
SI 1 , 2 设局中人I的策略集原来为: 那么在没找到纯策略的前提下,局中人I的策略集变为: 局中人I的策略 SI X ( x1, x2 )T x1 x2 1, x12 0 有无穷多个 S II 1 , 2 设局中人I的策略集原来为: 那么在没找到纯策略的前提下,局中人II的策略集变为:
当一个局势 s 出现后,每一局中人就会面对
一个赢得值或损失值,记作 Hi (s)。
Hi (s) 是定义在局势上的函数,
所以称为局中人 i 的赢得函数。
通常的分类方式有: (1) 根据局中人的个数,分为二人对策和多人对策; (2) 根据各局中人的赢得函数的代数和是否为零,分 为零和对策与非零和对策; (3) 根据各局中人间是否允许合作,分为合作对策和 非合作对策; (4) 根据局中人的策略集中的策略个数,分为有限对 策和无限对策等等。
max VG X 1 E ( X 1 , 1 ) E ( X 1 , 2 ) X 2 E ( X 2 , 1 ) E ( X 2 , 2 ) 5 x1 8 x2 VG E s . t . X 3 E ( X 3 , 1 ) E ( X 3 , 2 ) 9 x1 6 x2 VG x x 1 , x , x 0 1 2 1 2
《运筹学教学资料》ch14对策论

寡头垄断市场上的价格竞争案例中,存在几 家大型企业,它们通过价格策略来争夺市场 份额。如果企业都选择降价,将导致价格战; 如果都选择维持高价,将获得更多利润。但 企业往往会选择降价来争夺市场,最终导致 双方受损。
THANK YOU
感谢聆听
纯策略均衡
在纳什均衡中,每个参与者都采用单 一策略。如果所有参与者的纯策略组 合构成纳什均衡,则称为纯策略均衡。
混合与者以一定的概率分布随机选择不同的策略,使得对手无法通过预测获 得优势。在混合策略均衡中,每个参与者的预期收益达到相对稳定的状态。
混合策略纳什均衡
在经济学中,帕累托前沿表示在所有可能的资源配置中,能够使得所有
玩家的利益都得到最大化的配置集合。帕累托前沿用于衡量资源配置的
效率和公平性。
03
应用
纳什均衡和帕累托前沿是评价博弈结果和资源配置的重要工具,可以帮
助理解在竞争和合作中的最优选择和资源配置问题。
04
多人对策
合作博弈与非合作博弈
合作博弈
参与者通过合作达成协议,以最 大化共同利益。合作博弈强调联 盟和集体行动,通常使用夏普里 值来分配收益。
运筹学教学资料
目
CONTENCT
录
• 对策论简介 • 二人有限零和对策 • 二人有限非零和对策 • 多人对策 • 对策论案例分析
01
对策论简介
对策论的定义与特点
定义
对策论,也称为博弈论,是研究决策主体在相互竞争、对抗或合 作中的行为和决策的数学分支。
特点
对策论强调理性个体之间的策略互动,通过数学模型描述和预测 主体之间的行为和结果,为决策者提供最优策略和解决方案。
对策论的应用领域
01
02
运筹学_对策论

混合策略
• 混合扩充
矩阵对策扩充 N人有限对策
• 混合平衡解
矩阵对策 N人有限对策
• 均衡解的存在性
第18页
混 合 扩 充—矩阵对策
策略集
m
S * 1
{X
( x1 , x2 ,..., xm )
xi 1, xi 0, i 1,2,..., m}
i 1
nS* 2{Y( y1 ,y2 ,...,
yn )
y j 1, y j 0, j 1,2,..., n}
j 1
支付函数
mn
E( X ,Y )
aij xi y j
i1 j1
混合扩充: *
{
S1*
,
S
* 2
,
E
(
x
,
y),
x
S1* ,
y
S
* 2
}
第19页
混 合 扩 充—N人有限对策
N 人有限对策 I {1,2,..., N }, Si , i I , H i (s), i I
• 定理1 N人有限对策的混合扩充存在平衡局势. • 定理2 矩阵对策的混合扩充存在平衡局势.
第23页
矩阵对策的解法
• 问题的简化
优超 算例
• 线性规划方法
基本思想 算例
第24页
优超
给定矩阵对策 {S1 , S2 , A} , A 是 m n 的矩阵,如果
akj alj , j 1,2,..., n
则称局中人 1 的策略 k 优超于策略 l。如果
aik ail , i 1,2,..., m
则称局中人 2 的策略 k 优超于策略 l。
注:局中人 1 的策略 k 优超于策略 l 则说明对局中人 1
运筹学-第六讲对策论

引言
对策论 game theory
对策的结构和分类
按对策方式非 合合 作作 对对 策策有 完限 全理 理性 性
对策分类按对策人数二人对策二 二人 人非 零零 和和 对对 策策
多人对策
按对策状态动 静态 态对 对策 策不 完 不 完完 全 完 全全 信 全 信信 息 信 息息 动 息 静动 态 静 态态 对 态 对对 策 对 策策 策
Nash对对策论的贡献有: (i) 合作对策中的讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策的均衡分析。
(6) 目前,博弈论在定价、招投标、谈判、拍卖、委托—代理以及很多的经营 决策中得到应用,它已成为现代经济学的重要基础。现代对策论总体上是一门 新兴的发展中的学科。
对策论 game theory
数服从(0-1)分布.
【定义】 如果一个策略G={S1, …, Sn; h1, … , hn}中,参予者i 的策略集为
Si={Si1, … , Sik},如果由各个对策方的策略组成策略集合G*={S1*, S2*, …, Sn*},
其中
Si*
xi
E mi
| xi
0,i 1,2,, mi ,
纳什均衡
Nash Equilibrium
对于对策中的每一个局中人,真正成功的措施应该是针对于其他局中 人所采取的每次行动,相应地采取有利于自己地反应策略,于是每一 个局中人应采取的必定是他对其他局中人策略的预测的最佳反应。
纳什均衡
对策论 game theory
纳什均衡定义
用G 表示一个对策,若一个对策中有 n 个局中人,则每个局中人可选策略的 集合称为策略集,分别用 S1,S2,…,Sn 表示;Sij 表示局中人i 的第 j 个策 略,其中 j 可取有限个值(有限策略对策),也可取无限个值(无限策略对策); 对策方 i 的得益则用 hi 表示;hi 是各对策方策略的多元函数,n个局中人的
运筹学-对策论
3.矩阵对策的混合策略
例:设一个赢得矩阵如下:
5 A = 8 max 8 6 9 6 min
j
9
min 5 max
i
6 策略α2
8 策略β1
• 思路:对甲(乙)给出一个选取不同策 略的概率分布,以使甲(乙)在各种情 况下的平均赢得(损失)最多(最少)。 -----即混合策略
重要定理
定理 任一矩阵对策G {S1,S2;A}, 任一矩阵对策G={S1,S2;A},一定存在混 合策略意义下的解。 合策略意义下的解。 • 定理 设有两个矩阵对策 • G1= G2= G1={S1,S2;A1} G2={S1,S2;A2} • 其中A1=(aij),A2=(aij+L),L为任一常数。 A1= 其中A1 (aij),A2=(aij+L), 为任一常数。 则 • (1)G1 G2同解 G1与 同解; (1)G1与G2同解; • (2)VG2 VG2= (2)VG2=VG1+L
7.4 矩阵对策的解法
• (1) 2×2矩阵对策的线性方程组法 2× • 所谓2 所谓2×2矩阵对策是指局中人Ⅰ的赢得矩阵为2×2阶的,即 矩阵对策是指局中人Ⅰ的赢得矩阵为2 是指局中人 阶的, A = a11 a12 • a21 a22 • 如果此对策有纯策略意义下的解,则很容易求解; 如果此对策有纯策略意义下的解,则很容易求解;如果没有 纯策略意义下的解, 纯策略意义下的解,则为求出各局中人的最优混合策略可求解下 列方程组: 列方程组: • a11x1+a21x2= a11y1+a12y2= a11x1+a21x2=v a11y1+a12y2=v • a12x1+a22x2= a21y1+a22y2= a12x1+a22x2=v a21y1+a22y2=v • y1+y2= x1+x2= y1+y2=1 x1+x2=1 • 当没有纯策略意义下的解时,方程组一定有严格非负解 x*= 当没有纯策略意义下的解时, x1* x2* y*=(y1*,y2*), (x1*,x2*)和y*=(y1*,y2*), 即为各局中人的最优混合策 略。
运筹学对策论全解
赢 A
B
石头
剪子
布
石头 0 1 -1
剪子 -1 0 1
布
1 -1
0
分析:无确定最优解,可用“混合策略”求解。
4.齐王赛马
战国时期,齐国国王有一天提出要与大将军田忌赛马。 田忌答应后,双方约定: 1)每人从上中下三个等级中各出一匹马,共出三匹; 2) 一共比赛三次,每一次比赛各出一匹马; 3) 每匹被选中的马都得参加比赛,而且只能参加一次; 4) 每次比赛后输者要付给胜者一千金。
例:囚犯困境中,每个囚犯均有2个策略:
{坦白,抵赖}
(3)局势
坦白 抵赖
坦白 抵赖 -9,-9 0,-10 -10,0 -1,-1
当每个局中人从各自策略集合中选择一策略而组 成的策略组成为一个局势,用 (si , d j )来表示。
(4)赢得(支付)
局中人采用某局势时的收益值。
例:当局中人甲选择策略si ,局中人乙选策略 dj 时,局中人甲的赢得值可用 R甲(si , d j )表示。
九十年代以来博弈理论在金融、管理和经济领域中 得到广泛应用
• 九十年代以来对策理论在金融、管理和经济领域 中得到广泛应用
• 博弈论和诺贝尔经济奖
1994:非合作博弈:纳什(Nash)、泽尔腾(Selten) 、海萨尼 (Harsanyi) 1996:不对称信息激励理论:莫里斯(Mirrlees)和维克瑞(Vickrey) 2001:不完全信息市场博弈:阿克罗夫(Akerlof)(商品市场)、斯潘 塞(Spence)(教育市场)、斯蒂格里兹(Stiglitze)(保险市场) 2005: 授予罗伯特·奥曼与托马斯·谢林,以表彰他们通过博弈理论的分析 增强世人对合作与冲突的理解。 2007年,授予赫维茨(Leonid Hurwicz)、马斯金(Eric S. Maskin)以及 迈尔森(Roger B. Myerson)。三者的研究为机制设计理论奠定了基础。 2012年,授予罗斯(Alvin E. Roth)与沙普利(Lloyd S. Shapley)。他 们创建“稳定分配”的理论,并进行“市场设计”的实践。
运筹学--对策论
max min E(X,Y)= min max E(X,Y)
X S1* Y S2*
Y S2* X S1*
则称这个公共值为对策G在混合意义 下的值,记为V*G,而达到V*G 的混 合局势(X*,Y*)称为对策G在混合 策略意义下的解,而X*和Y*分别称 为局中人I,II的最优混合策略。
定理14-2:矩阵对策 G = S1,S2;A
0 2 3 0
赢得矩阵为 A 2 0 3 0
0
3
0 4
0
3
4
0
14.2 矩阵对策的混合策略
定义:对给定的矩阵对策
G = Ⅰ,Ⅱ;S1,S2;A
其中 S1= 1, 2…m
S2= 1 , 2… n
A=(aij)mn
把纯策略集合对应的概率向量
X=(x1, x2 … xm) 其中 xi 0 xi=1 和 Y=(y1 , y2 … yn ) 其中 yj 0 yj=1
分别称为局中人I和局中人II的混合策略。
如果局中人I选取的策略为
X=(x1, x2 … xm) 局中人II选取的策略为
Y=(y1 , y2 … yn ),则期望值 E(X,Y)= xi aij yj=XAYT 称为局中人I期望赢得,而局势(X,Y) 称为“混合局势”,局中人I,II的混合 策略集合记为S1*, S2*。
S1= 1、 2…… m
同样,局中人II有n个策略:1、 2。。。 n ;用S2表示这些策略的集合: S2= 1、 2… n 局中人I的赢得矩阵是:
a11 a12 …… a1n a21 a22 …… a2n A= …… …… …… a m1 a m2 … a mn
局中人II的赢得矩阵是 -A 把一个对策记为G: G= S1,S2;A
运筹学-第六讲对策论
【定义 】 在对策G={S1,S2…,Sn;h1,h2…hn}中,假如由各个对策方旳各 选用一种策略构成旳某个策略组合(S1*,S2*…,Sn*)中,任一对策方i 旳策略 Si*,都是对其他策略方策略旳组合 (S1*,…,S*i-1,S*i+1…,Sn*)旳最佳策略, 即h i(S1*, … , S*i-1, Si*, S*i+1,…Sn*)≥hi(S1*, …, S*i-1, Sij, S*i+1 , …, Sn*)对任意 Sij∈Si 都成立,则称(S1*,…,Sn*)为G旳一种纯策略意义下旳“纳什均 衡”(Nash Equilibrium).
(2,0)
(4,0)
反应函数法
对策论 game theory
【例4】 考虑上述模型旳另一种情况即各厂商所选择旳是价格而不是产量,假 设产量与价格旳函数关系为:
q1 ( p2 ) a1 b1 p1 d1 p2
q2 ( p1 ) a2 b2 p2 d 2 p1
其他条件不变,边际成本为C1、C2,试求解其纳什均衡。
P2
R2 ( p1 )
1 2b2
(a2
b2 c2
d 2 p1 )
p1*
p2*
1 2b1 1 2b2
(a1b1c1ຫໍສະໝຸດ d1p* 2
)
(a2 b2c2 d 2 p1* )
P1*
d1 4b1b2 d1d 2
(a2
b2c2 )
2b2 4b1b2 d1d 2
(a1
b1c1 )
P2*
d2 4b1b2 d1d 2
Nash对对策论旳贡献有: (i) 合作对策中旳讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策旳均衡分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题解答1. 已知矩阵博弈局中人I 的赢得矩阵如下,求最优纯策略及博弈值。
(1) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8354667565443494 (2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------21221405126331222210 解: (1) ()8695 35438354667565443494⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ 所以),(13βα,V=5(2) 2- 3 2- 2 2 2562)2(1)2(214051263312)2(2)2(10----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------所以 ),(31βα,),(51βα,),(33βα,),(53βα,V=-22. 甲乙两国进行乒乓球团体赛,每国由三个人组成一个队参加比赛。
甲国的人员根据不同的组合可组成4个队,乙国的人员可组成3个队,根据以往的比赛记解:62828276128184)2(3715---⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------ 所以),(22βα,V=2 答: 双方应均派第2队出场3. 对任意一个m 行n 列的实数矩阵A=(a ij ),试证有下式成立ij mi n j ij nj m i a a ≤≤≤≤≤≤≤≤≤1111max min min max证:ijmi n j ij nj m i ijmi ij nj m i ijij nj a a a a j a a n j m i j i ≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤∴≤∀∴≤≤≤≤≤∀11111111max min min max max min max ,min : 1,1,,有有4. 某城区有A 、B 、C 三个居民小区,分别居住着40%,30%,30%的居民,有两个公司甲和乙都计划在区内建造超市,公司甲计划建两个,公司乙计划建一个,每个公司都知道,如果在某个小区内设有两个超市,那么这两个超市将平分该区的消费,如果在某个小区只有一个超市,则该超市将独揽这个小区的消费。
如果在一个小区没有超市,则该小区的消费将平分给三个超市。
每个公司都想使自己的营业额尽可能地多.试把这个问题表示成一个矩阵博弈,写出公司甲的赢得矩阵,井求两个公司的最优策略以及各占有多大的市场份额。
解: 甲公司的策略集为{(A,B), (A,C), (B,C)}乙公司的策略集为{A,B,C}甲的赢得矩阵为: 75.075.07.06.07.07.0717.0717.06.075.07.0)7.0(7.075.0)7.0(),(),(),(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡C B C A B A CB A 所以甲选(A,B)或(A,C),占70%份额。
乙选A,占30%份额.5. 一个病人的症状说明他可能患a ,b ,c 三种病中的一种,有两种药C ,D 可解: 8.04.07.01.04.08.01.07.06.0)4.0(5.0⎥⎦⎤⎢⎣⎡ 最优策略为),(21βα答:应开C 药较为稳妥.6.设矩阵博弈局中人I 的赢得为A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--203233(1) 当局中人I 采用策略x=(0.2,0.5,0.3)时,Ⅱ应采用什么策略? (2) 当局中人Ⅱ采用策略y=(5/7,2/7)时,I 应采用什么策略?(2) x 和y 是否是最优策略?为什么?若是,试给出另一个局中人的最优策略和博弈值。
解: (1)设II 的策略为Y=(y 1,y 2),则3.023.0)3(5.033.04.003.025.0)3(2.0-=⨯+-⨯+⨯=⨯+⨯+-⨯1y y s.t.0.3y -0.4y min 2121=+得:y 1=0,y 2=1,V 1=-0.3,所以最优解为(0,1),V=-0.3 (2) 设II 的策略为X=(x 1,x 2,x 3),则74275074)3(7227579372)3(75=⨯+=-⨯+⨯-=⨯+-⨯ 1x s.t.x 74x 74x 79- max 321321=++++x x 所以13211],1,0[,0x x x x -=∈=,即I 的最优策略为7/4],1,0[),1,,0(=∈-V ααα (3) 对于(x 1,x 2,x 3)=(0.2,0.5,0.3),因为∑∑==-=≠==≠31231133),1,0(*,0i j j i j j i y a y a Y x 但所以(0.2,0.5,0.3)不是最优解.对于(y 1,y 2)=(5/7,2/7),因为)1,,0(*,0αα-=≠X y i 满足:72,52252)1(2)3()3(02)1(02)3(0=-=-=-⨯+⨯-+⨯=-⨯+⨯+-⨯ααααααααα得令 所以(5/7,2/7)是II 的最优解,对应I 的最优策略为(0,2/7,5/7),V=4/77.给定矩阵博弈局中人I 的赢得为A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-113331135试验证x*=(1/2,1/2,0)和y*=(1/4,0,3/4)分别是局中人I 和Ⅱ的最优混合策略,井求博弈值。
解:可验证满足:(1)若;,01**V ya x nj jij i=≠∑=则(2)若V x a y mi i ij j=≠∑=1**,0则(3)若;0,*1*=<∑=i nj j ij x V ya 则(4)若0,*1*=>∑=j mi i ij y V xa 则且V=28. 已知矩阵博弈的赢得矩阵如下,试用线性方程组法求最优混合策略及博弈值。
(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2282102622 (2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021102210 解: (1)将矩阵中各元素减2得:A- 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡006080400 ⎪⎪⎩⎪⎪⎨⎧=++===1486321123x x x v x vx vx ⎪⎪⎩⎪⎪⎨⎧=++===1684321123y y y v y v y v y 解得: X *=(6/13,3/13,4/13),Y *=(4/13,3/13,6/13),V=50/13(2)⎪⎪⎩⎪⎪⎨⎧=++=+=+=+1222321213132x x x v x x vx x vx x ⎪⎪⎩⎪⎪⎨⎧=++=+=+=+1222321213132y y y v y y v y y v y y 解得: X *=(1/3,1/3,1/3),Y *=(1/3,1/3,1/3),V=19.用简便方法(降阶或化零元)求给定矩阵博弈的解与值,赢得矩阵如下(1) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0311221020430231 (2) ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0683874768375990559243300解: (1) 用优超法简化矩阵得:⎪⎪⎭⎫ ⎝⎛03204243ααββ ⎪⎩⎪⎨⎧=+==1234224x x v x v x ⎪⎩⎪⎨⎧=+==1234343y y v y v y 解方程组得: X *=(0,3/5,0,2/5),Y *=(0,0,2/5,3/5),V=6/5 (2) 用优超法则简化矩阵得:⎪⎪⎭⎫ ⎝⎛74374354ααββ 各元素减7得: ⎪⎪⎭⎫ ⎝⎛--03404354ααββ 则 ⎪⎩⎪⎨⎧=+=-=-1434334x x v x v x ⎪⎩⎪⎨⎧=+=-=-1435454y y v y vy 解方程组得: 7/3,7/4,7/12,7/3,7/45434==-===y y v x x所以得X *=(0,0,3/7,4/7,0),Y *=(0,0,0,4/7,3/7),V=37/710.用线性规划求下述矩阵博弈的混合策略解及博弈值,已知其赢得矩阵为(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡112103220 (2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--622241423 解: (1) 线性规划:x ,x ,x 1x x x v x x 2x v x 2x v 2x 3x s.t.max v3213213213132≥=++≥++≥+≥+y ,y ,y 1y y y v y y 2y v y 3y v 2y 2y s.t.min v3213213213132≥=++≤++≤+≤+解得: X *=(1/3,0,2/3),Y *=(1/3,1/3,1/3),V=4/3(2) 矩阵各元素加2得:A+2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡844461605 线性规划为:x ,x ,x 1x x x v x 8x 46x v x 46x v 4x x 5x s.t.max v 32132132132321≥=++≥++≥+≥++y ,y ,y 1y y y v y 8y 44y v y 46y v 6y 5y s.t.min v32132132132131≥=++≤++≤++≤+y解得: X *=(0,0,1),Y *=(2/5,3/5,0),V=4-2=211. 甲、乙两方交战。
乙方用三个师守城,有两条公路通入该城,甲方用两个师攻城,可能两个师各走一条公路,也可能从一条公路进攻。
乙方可用三个师防守某一条公路,也可用两个师防守一条公路,用第三个师防守另一条公路.哪方军队在一条公路上数量多,哪方军队就控制住这条公路.如果双方在同一条公路上的数量相同,则乙方控制住公路和甲方攻入城的机会各半,试把这个问题构成一个博弈模型。
并求甲、乙双方的最优策略以及甲方攻入城的可能性。
解: 设两条路为A,B甲方攻城的策略集为:{2A,AB,2B}乙方宁城的策略集为:{3A,2AB,A2B,3B}, 甲方赢得矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=00.51110.50.51110.50A线性方程组为: ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++=++=+15.05.05.05.03212132132132x x x vx x v x x x vx x x v x x ⎪⎪⎩⎪⎪⎨⎧=+++=++=+++=++15.05.05.05.043213214321432y y y y v y y y v y y y y v y y y 解得:x*=(1/3,1/3,1/3), v=2/3, y*=(1/6,1/3,1/3,1/6)即甲均以1/3的概率取两个师同走第一条路、各走一条路及同走第二条路。
攻入城的机会为2/3。
乙分别以1/6,1/3,1/3,1/6的概率取三个师同守第一条路、两师守第一条路和另一师守第二条路、一师守第一条路和两师守第二条路、以及三个师同守第二条路。
12.设矩阵博弈G l =(S 1,S 2,A)和G 2=(S 1,S 2,B),其中A=(a ij )m ╳n , B=(b ij )m ╳n 。
如果b ij =k a ij i =1,2,…,m j =1,2,…,n其中k>0,试证明G l 和G 2具有相同的最优策略且它们的博弈值V 1和V 2之间有关系:V 2= kV 1证: 设G *1=(X,Y ,E 1), G *2=(X,Y ,E 2)为G 1,G 2的混合扩充,则对X 和Y 中任意的x,y,有:y)(x,E min max y)(x,E min max y)(x,E y)(x,E 1y Xx 2y Xx 11111112YYm i n j m i nj j i ij j i ij m i n j j i ij k k y x a k y x ka y x b ∈∈∈∈=======∴====∑∑∑∑∑∑因此(x *,y *)是G 1的最优策略当且仅当(x *,y *)是G 2的最优策略,且V 2=kV 113.甲、乙二人游戏,每人出一个或两个手指,同时又把猜测对方所出的指数叫出来.如果只有一个人猜测正确,则他所赢得的数目为二人所出指数之和,如果两个人都猜对或都猜错,则算平局,都不得分。