小结与思考1

合集下载

八年级第三章 小结与思考(第1课时)(王东)

八年级第三章 小结与思考(第1课时)(王东)

第三章 中心对称图形(一)小结与思考(第1课时)审核人:赵友忠、夏建平【目标导航】1. 回顾、思考本章所学的知识及思想方法,并能用自己喜欢的方式进行梳理,使所学知识系统化.2. 进一步丰富对平面图形相关知识的认识,能有条理的、清晰地阐述自己的观点.3. 通过“小结与思考”的教学,培养学生归纳、反思的意识.【要点梳理】1. 图形的旋转:在平面内,___________________________________,这样的图形运动称为图形的旋转,这个定点称为_____________,旋转的角度称为_____________. ①旋转前、后的图形全等.②对应点到旋转中心的距离相等.③每一对对应点与旋转中心的连线所成的角彼此相等. 2. 中心对称.把一个图形绕着某一个点旋转180°,_____________________,那么称这两个图形关于这一点对称.也称这两个图形成中心对称,这个点叫做_____________,两个图形中的对应点叫做_____________.注意:①中心对称是旋转的一种特例,因此,成中心对称的两个图形具有旋转图形的一切性质.②成中心对称的2个图形,对称点的连线都经过对称中心,并且被对称中心平分.3. 中心对称图形.把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心.中心对称图形上的每一对对应点所连成的线段都被对称中心______________. 4..1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形.(2)成中心对称的两个.【问题探究】知识点1.图形旋转的画法(重点,掌握)例1.已知线段AB 和点O 按下面的方法画出线段AB 绕点O 按逆时针方向旋转100°后的图形 解:知识点2.成中心对称图形的画法(重点,运用)例2.△ABC 和一点O ,画△ABC 关于点O 成中心对称的三角形;(1)点O 在△ABC 外;(2)点O 与△ABC 的一个顶点重合 (3)点O 是△ABC 的一边 BC 的中点【变式】等边三角形ABC 的3个顶点都在圆上,请把这个图形补成一个中心对称图形. 知识点3.寻找旋转图形(重点,运用)例3.如图:△ABC 和△ADE 都是顶点为45°的等腰三角形,BC 、DE 分别是两个三角形的底边.图中的△ACE可以看成是哪个三角形通过怎样的旋转得到的? 解:【变式】如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C •顺时针方向旋转90°得到△DCF ,连接EF .若∠BEC =60°,则∠EFD 的度数为( )(A )10° (B )15° (C )20° (D )25° 知识点4.寻找中心对称图形(重点,运用)例4.如图:ABCD 的对角线相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F 图中关于点O 成中心对称的三角形、四边形有多少对?请将它们分别表示出来. 解:知识点5.旋转图形中的计算(重点,掌握)例5.已知:如图,在△ABC 中,∠BAC =120°,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D按顺时针方向旋转60°后得到△ECD ,若AB =3,AC =2,求∠BAD 的度数与AD 的长. 解:【课堂操练】1. 在线段、等边三角形、等腰梯形、矩形、平行四边形、菱形、正方形、圆这些图形中,既是中心对称又是轴对称的有 ( ) A 、3个 B 、4个 C 、5个 D 、6个 2. 下列图形中,是中心..对称图形的是( )3. 如图,以左边图案的中心为旋转中心,将图案按 时针方向旋转 度即可得到右边图案.4. 如图,在正方形ABCD 中,点E 是AD 的中点,点F 是BA 延长线上一点,AF =21AB ,△ABE 可以通过绕A 点逆时针旋转到△ADF 的位置,则旋转的最小角度为 .A5. 如图是一个平行四边形土地ABCD ,后来在其边缘挖了一个小平行四边形水塘EFGH,现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线(保留作图痕迹),A EB简要说明理由.6. 画图题:已知□ABCD ,试用三种方法将□ABCD 分成面积相等的四部分.7. 如图,四边形ABCD 中,AD ∥BC ,DF=CF ,连结AF 并延长交BC 延长线于点E.(1)图中哪两个三角形可以通过怎样的旋转而相互得到?(2)四边形ABCD 的面积与图中哪个三角形的面积相等? (3)若AB=AD +BC ,∠B=70°,试求∠DAF 的度数.8. (2010·浙江台州市)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”). ②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.B CB CB C图1图2图3EEEB图4 A【参考答案】【要点梳理】1. 将一个图形绕一个定点旋转一定的角度 旋转中心 旋转角2. 如果它能够与另一个图形重合 对称中心 对称点3. 平分【问题探究】例1.略 例2.略 【变式】略例3.△ABD 绕点A 逆时针方向旋转45° 【变式】B 例4.略 例5.60°, 5【课堂操练】1. C2. C3. 顺,904. 90°5. 经过四边形ABCD 和四边形EFGH 对角线的交点6.7. △ADF 和△ECF , △ABE ,55° 8. (1)① =② > (2)>证明:作点C 关于FD 的对称点G , 连接GK ,GM ,GD ,则CD =GD ,GK = CK ,∠GDK =∠CDK , ∵D 是AB 的中点,∴AD =CD =GD . ∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°, ∠ADM +∠CDK =60°. ∴∠ADM =∠GDM , ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM . ∵GM +GK >MK ,∴AM +CK >MK . (3)∠CDF =15°,23=AMMK .。

苏教版七下第八章小结与思考1

苏教版七下第八章小结与思考1

8.3小结与思考(1)班级 姓名 成绩1:计算:(1)23x x x ⋅⋅ (2)23)()(x x x -⋅⋅-(3))()()(102a b b a b a -⋅-⋅- (4)4523122---⋅-⋅+⋅n n n y y y y y ya) 计算:(1)31)(-m a (2)54])[(y x +(3)325)21(b a - (4)7233323)5()3()(2x x x x x ⋅+-⋅3、 典型例题:例1、下面的计算,对不对,如不对,请改正?(1)22)(a a -=- (2) 44)()(x y y x -=-(3) 22)()(a b b a --=- (4) 332)2(x x =-例2、已知m 10=4,n 10=5,求n m 2310+的值.解:例3、若x =m 2+1,y =3+ m 4,则用x 的代数式表示y .解:例4、比较332、223和114的大小解:例5、一个正方体的棱长为mm 2103⨯.求这个正方体的表面积和体积解:4、随堂练习(1)123-⋅m m a a (m 是正整数) (2)842a a a ⋅⋅(3)4235)2(a a a +⋅ (4)23)()()2(a a a ⋅---(5)若107a a a m =⋅,则=m ______(6)若n x =3, n y =7,则n xy )(的值是多少? n y x )(32呢?归纳总结:在运用幂的运算性质,首先应确定运算顺序和运算步骤;其次正确地运用性质、法则进行计算,在计算时,应注意符号和指数的变化。

【课后作业】1.填空题(1) 52y y ⋅-=______; (2) 322])2([a ---=______;(3) 200820074)25.0(⨯-=______.2.选择题(1)计算31)](2[---n x 等于 [ ]A .332--n xB .16--nC .338-n xD .338--n x(2)下述各式中计算正确的是 [ ]A .824)(ab ab =B .1052632y y y =⋅C .642)()(x x x -=-⋅-D .322233)()(b a b a =(3)计算)23()1()2(221999223y x y x -⋅-⋅--的结果应该等于 [ ] A .10103y x B .10103y x - C .10109y x D .10109y x -(4) 7x 等于 [ ]A .52)()(x x -⋅-B .)()(52x x ⋅-C .)()(43x x -⋅-D .5)()(x x ⋅-(5)在下面各式中的括号内填入3a 的是 [ ]A .12a =( 2)B .12a =( 5)C .12a =( 4)D .12a =( 6)(6)下列计算结果正确的是 [ ]A .15356)2(x x =B .734)(x x -=-C .6232)2(x x =D .1234])[(x x =-(7)计算323)4()5.2(a a -⋅-的结果应等于 [ ]A .9400a -B .9400aC .940a -D .940a(8)计算22)(x x -⋅-等于 [ ]A .4422)()(x x x =-=-+B .42222x x x x -=-=⋅-+C .42222)(x x x x -=-=-⋅-+D .42222x x x x -=-=⋅-⨯3.计算题(1) 999100100)1(5.02-⨯⨯-; (2) ])[(2)(2)(333323232a a a a a a a ⋅---+⋅;(3) )()(x y y x y x y x x y --+-+--232)(2)()(.4、比较22221111与11112222大小5、已知32=m ,52=n ,求n m 24+的值。

第6章小结与思考(1)

第6章小结与思考(1)
第6章 小结与思考(1)
盐城市大纵湖初级中学
一、知识要点:
1、什么是常量?什么是变量?什么是函数? kx +b 2、一次函数的概念:函数y=_______(k、b为常 ≠0 数,k______)叫做一次函数。当b_____时,函数 =0 kx ≠0 y=____(k____)叫做正比例函数。 ★理解一次函数概念应注意下面两点: 1 ⑴解析式中自变量x的次数是___次,⑵比例系数 K≠0 _____。 3、正比例函数y=kx(k≠0)的图象是过点(_____), 0,0 1,k (______)的_________。 一条直线 b 4、一次函数y=kx+b(k≠0)的图象是过点(0,___), b 一条直线 (____,0)的__________。 k
4、正比例函数y=kx(k≠0)的性质:
增大 一、三 ⑴当k>0时,图象过______象限;y随x的增大而____。 二、四 减小 ⑵当k<0时,图象过______象限;y随x的增大而____。 5、一次函数y=kx+b(k ≠ 0)的性质: 增大 ⑴当k>0时,y随x的增大而_________。
y A
0
x
B
例题讲解:
1 例3、已知直线y=3x与y=- x+4,求: 2 (1)这两条直线的交点; (2)这两条直线与y轴围成的三角形面积.
大家一起来y随x的增大而_________。
⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图 中k、b的符号:
> > k___0,b___0
> < k___0,b___0
< > k___0,b___0
< < k___0,b___0

二次函数小结与思考1课件

二次函数小结与思考1课件
变式1: 若C(2, y1),D(6,y2)也是抛物线上的两点 ,则y1 ___ y2
变式2:若E(-2, y1),F(4,y2)也是抛物线上的两点 ,则y1 ___ y2 (填 ,题3:设该函数的图像与x轴交点为A,B,顶点
为C,求△ABC的面积(A在B的左边)
求这个二次函数的解析式.” 题目中的矩形框部分是一段被墨水污染了无法 辨认的文字.根据现有信息,你能否求出题目中 二次函数的解析式? 若能,写出求解过程,若不能请你根据已有信 息,在原题目的矩形框内,填上适当的条件,把 题目补充完整。
五. 延问精练,课后固学
1.交流展示课前练习中的1,3两题
2.课堂小结 请大家谈谈本节课的收获 从知识、方法、思想等方面进行反思.
3.布置作业 必做题:课本P35页 复习题1-4题. 选做题:见学案
二.精问生发,自主探学
如图是二次函数y=ax2+bx+c的函数图象, 你能从图中得到哪些结论?
三.追问互助,合作深学
问题1:若将刚才的函数图象向上平移2个 单位,再向右平移3个单位得到的新图像的 函数解析式是____________.
三.追问互助,合作深学
问题2:
若A(-3, y1),B( 2,y2)是上图所示抛物线上 的两点,则 y1 ___ y2;
欢迎光临,敬请指导
初中数学 七年级(下册)
二次函数复习 (1)
兴化市昭阳湖初级中学 徐焱
目标引领
1.会通过配方法确定抛物线的开口方向、 对称轴、顶点坐标和最值; 2.会用二次函数的性质解决简单的数学问 题; 3.能运用待定系数法求二次函数的解析式; 4.能用二次函数的图像和性质解决简单的 综合性问题。
三.追问互助,合作深学
问题3:

4.4小结与思考(1)

4.4小结与思考(1)

(2)每件服装的成本是多少?
(3)为保证不亏本,最多能打几折?
6. 旅游者游览某风景区,乘坐摩托艇顺水 而下,然后返回至登听处,已知水流速度为 2km/h,摩托艇在静水中的速度为18km/h, 为了使游览时间不超过3h,摩托艇驶出多 远就应掉头。
7、某同学在A、B两家超市发现他看中的随身听 的单价相同,书包单价也相同,随身听和书包单 价值和是452元,且随身听的单价比书包单价的 4倍少8元。 (1)求该同学看中的随身听和书包单价各是多 少元? (2)某一天该同学上街,恰好赶上商家促销, 超市A所有商品八折销售,超市B全场购物券满 100元返还购物券30元销售(不足100元不返还 券,购物券全场通用),但他只带了400元钱, 如果他只在一家购买看中的这两样商品,你能说 明他可以选择哪一家购买?若两家都可以,在哪 一家购买更省钱?
初中数学七年级上册 (苏科版)
4.4小结与思考(1)
(2)如果方程(m-1)x|m| + 2 =0是表示关于 x的一元一次方程,那么m= 。
例3 解下列方程
1. 学生问老师多少岁,老师说我像 你这么大 时你才2岁,你长到我这么大时,我就35岁了, 你算算老师、学生各多少岁? 2.用绳子量井深,把绳三折来量, 井外余绳 四尺,把绳四折来量,井外余绳一尺.求井深 及绳长.
8.一张长方形桌子可坐6人,按下图方式讲 桌子拼在一起。
。。。。。。
(1)一家餐厅有40张这样的长方形桌子,按照 上图方式拼成1张大桌子,共可坐多少人? (2)该家餐厅有n张这样的长方形桌子,按照 上图方式拼成1张大桌子,共可坐多少人?你有 哪些好的思考问题的方法?
3. 某商店以90元的相同价格卖出2件不同的 2件衬衫盈利了,还是亏损 了?

第七章小结与思考(1)教学案

第七章小结与思考(1)教学案
学习过程
旁注与纠错
一、课前预习与导学得分
1、解不等式,并把不等式的解集在数轴上表示出来:
≤-
2、若不等式组无解,确定a的取值范围。
3、不等式组解为x>y>0,化简︱a︱+︱3-a︱思路是什
么?
二、新课
(一)、复习与巩固
1、不等式6x-2≥3x+4的解集是_______;
2、不等式2<-3x<4的解集是_________;
7、若不等式组的整数解是关于x的方程 的根,求a的值
教学后记:
八年级数学教学案
姓名学号班级教者
课题
第七章小结与思考(1)
课型
新授
时间
第七章第10课时
备课组成员
陈、周、章、朱、史
主备
吕坤林
审核
教学目标
1、会列不等式;2、掌握不等式的两个性质并运用不等式的两个性质解一元一次不等式;3、会解一元一次不等式组,并会用数轴确定解集。
重难点
正确解出一元一次不等式(组),不等式两边都乘以(除以)同一个负数时不等号改变方向。
3、不等式1<2x-1<3的解集是_________;
4、设a<b,(1)的解集为_____(口诀是:___________)(2)的解集是______(口诀是:___________);
(3)的解集是_______(口诀是____________________);
(4)的解集ห้องสมุดไป่ตู้_____(口诀是________________)。
三、随堂演练
1、不等式组的解集是.
2、函数y=中,自变量 的取值范围是.
3、解下列不等式,并把它的解集在数轴上表示出来。
(1)2(x+1)-3(x+2)<0(2)<-2

第二章 有理数小结与思考(1)教学设计

第二章 有理数小结与思考(1)教学设计

第二章 《有理数》 小结与思考(1)六合区励志学校 孙德萍教学目标:1.经历梳理有理数的概念及有理数的运算的过程,使本章所学知识系统化.2.进一步理解有理数的基本概念、基本运算法则和运算律,矫正在概念理解及运用过程中的典型错误,并能综合运用本章知识解决问题.3.感悟分类、转化等数学思想方法,体会数学思想方法在学习活动中的作用.学情分析:学生已具备初步的计算能力、抽象能力和归纳能力,本节课关注学生在有理数运算中出现错误的原因,帮助他们明晰算理,并通过一定量的训练纠正问题,巩固知识技能,优化方法,提高认识.教学重点:进一步理解有理数的相关概念,掌握有理数的加减运算法则和运算律的使用 教学难点:能运用基础知识、基本技能解决有关现实情境的问题教学过程:一、复习引入1.《导学稿》预习作业典型错误讲评2.展示本章知识的框架结构图二、常见错误辨析1——相关概念1.有理数相关概念2.数轴3.绝对值、相反数4.有理数的大小比较:将下列各数按从小到大的顺序用“<”号连接起来:三、常见错误辨析2——加减计算1.法则2.运算律3.当堂训练212,(2),0, 3.2-----计算:四、实际应用蚂蚁从点O 出发,在一条直线上来回爬行。

假定向右爬行的路程记为正数,向左爬行的路程记为负数,则爬过的各段路程依次记为(单位:cm ):+3,-1,+5,-6,-4,+7,-5(1)你能描述蚂蚁最后的位置吗?(2)在爬行过程中,如果每爬行1cm 奖励一粒糖,那么蚂蚁一共得到多少糖?五、课堂小结通过以上辨析,谈谈你在学习本章时需注意的问题,与同学交流一下.六、布置作业1、《评价手册》小结与思考(1)2、《导学稿》小结与思考(2)预习1(1)1(2)4----(2)22(4)(2)4+-+-+1913(3)( 3.85)()( 3.15)44+---+-。

中心对称图形(小结与思考1)

中心对称图形(小结与思考1)
安宜初中课时设计活页纸
总 课 题 课 题
中心对称图形 小结与思考 1
总 课 时
课型
Hale Waihona Puke 教学目标1、 回顾、思考本章所学的知识及思想方法,并能用自己喜欢的方式进行 梳理,使所学知识系统化。 2、 进一步丰富对平面图形相关知识的认识,能有条理的、清晰地阐述自 己的观点。 3、 通过“小结与思考”的教学,培养学生归纳、反思的意识。 以学生活动为主,让学生在反思与交流的过程中回顾本章知识,梳理所学 内容,体会数学思想方法。 引导学生用自己喜欢的方式梳理本章的知识,使所学内容系统化
例 3 是课 本例题, 本 认真观察图形, 题 可 以 示 思考:需要得出什 范 怎 样 说 么,才能说明一个 明 一 个 图 图形是中心对称 形 是 中 心 图形的理由。 对称图形 的方法, 具 有典型性。
课时设计__费亚军__
审核_____
_
师先帮助学生复习回顾把一个图形绕一点旋转的 基本画法。然后让学生动手画图,并指导。 例 2、知:△ABC 和一点 O,画△ABC 关于点 O 成中 心对称的三角形; (1)点 O 在△ABC 外; (2)点 O 与△ABC 的一个顶点重合 (3)点 O 是△ABC 的一边 BC 的中点 师引导学生分析,区别这三个小题的不同,然后让三个 学生板演,师作指导,并订正。 三位同学同时板 演这三小题
教学重点 教学难点 教具准备 教学过程
教 教师活动内容、方式


容 学生活动方式
设计意图
一、知识点复习 (一)中心对称与中心对称图形 1、图形的旋转。 在平面内,将一个图形绕一个定点旋转一定的角 学生温习概念 度,这样的图形运动称为图形的旋转,这个定点称为旋 转中心,旋转的角度称为旋转角。 师提问,学生回答 ①旋转前、后的图形全等。 ②对应点到旋转中心的距离相等。 ③每一对对应点与旋转中心的连线所成的角彼此相等。 2、中心对称。 把一个图形绕着某一个点旋转 180°,如果它能够与另 一个图形重合,那么称这两个图形关于这一点对称。也 称这两个图形成中心 对称, 这个点叫做对称 中心, 两个图形中的对 应点叫做对称点。 注意: ①中心对称是旋转的一种特例,因此,成中心对称的两 个图形具有旋转图形的一切性质。 ②成中心对称的 2 个图形,对称点的连线都经过对称中 心,并且被对称中心平分。 3、中心对称图形。 把一个平面图形绕着某一点旋转 180°,如果旋转
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
B
C
A
B
5.如图在梯形ABCD中 5.如图在梯形ABCD中, ∠DCB=900; 如图在梯形ABCD AB∥CD,AB=25,BC=24.将该梯形折叠 将该梯形折叠, AB∥CD,AB=25,BC=24.将该梯形折叠,点A恰 好与点D重合,BE为折痕,那么CD的长度为 好与点D重合,BE为折痕,那么CD的长度为 ,BE为折痕 CD 7 _________.
(1)成轴对称的 个图形全等 成轴对称的2个图形全等 成轴对称的 个图形全等.
(2)如果 个图形成轴对称 那么对称轴是对 如果2 个图形成轴对称,那么对称轴是对
称点连线的垂直平分线. 称点连线的垂边三角形、等 腰梯形的对称性;
1.线段的轴对称性 1.线段的轴对称性
3.如图,AD是△ABC的角平分线,DE和DF 如图, 是 的角平分线, 和 如图 的角平分线 分别是△ 的高, 分别是△ABD 和△ACD的高,问AD垂直平分 的高 垂直平分 EF吗?请说明理由 吗 请说明理由. A E 1 2 F D C
B
操作题 1.如图,找一点P,使点 到AB、BC两边的距离 如图,找一点 ,使点P到 、 两边的距离 如图 相等,且到B、 两点的距离也相等 两点的距离也相等, 相等,且到 、A两点的距离也相等, 试用直尺和圆规作图,并保留作图痕迹) (试用直尺和圆规作图,并保留作图痕迹) A 如图点P就是要作的点 如图点 就是要作的点. 就是要作的点 B
小结与思考
轴对称与轴对称图形的特征、 一.轴对称与轴对称图形的特征、区别 轴对称与轴对称图形的特征 和联系
1.轴对称 1.轴对称
沿某直线折叠 与另一个图形重合 与另一个图形重合 一个图形
2.轴对称图形 2.轴对称图形
一个图形 沿某直线折叠 直线两旁的部分重合 直线两旁的部分重合
3.轴对称图形的性质 3.轴对称图形的性质
(1)等腰三角形是轴对称图形,顶角平分线所 等腰三角形是轴对称图形, 等腰三角形是轴对称图形 在的直线是它的对称轴. 在的直线是它的对称轴 (2)等腰三角形的 个底角相等 等腰三角形的2个底角相等 等腰三角形的 (简称“等边对等角”) 简称“ 简称 等边对等角” (3)等腰三角形的顶角平分线、底边上的中线、 等腰三角形的顶角平分线、 等腰三角形的顶角平分线 底边上的中线、 底边上的高互相重合.(简称“三线合一” 底边上的高互相重合 (简称“三线合一”)
C1 C2
B
用45页纸 页纸
3. 桌面上有 、B两球,若要将 球射向桌面 桌面上有A、 两球 若要将B球射向桌面 两球, 任意一边,使一次反弹后击中A球 任意一边,使一次反弹后击中 球, 则如图所示8个点中 可以瞄准的点有( 个点中, 则如图所示 个点中,可以瞄准的点有( )个. (A)1 ) (B)2 ) (C)4 ) (D)6 )
解答题 1. 如图,在△MNP中,MN=MP,点Q在MP上, 如图, 中 = , 在 上 且NP=NQ=MQ. = = (1)找出图中相等的角,并说明理由; )找出图中相等的角,并说明理由; M (2)求∠M的度数 ) 的度数 x
Q
N
x x
2x 2x
P
2.如图,在直角三角形ABC的斜边 上取 如图,在直角三角形 的斜边AB上取 如图 的斜边 两点D、 , 两点 、E,使AD=AC,BE=BC. , 当∠B的度数变化时,试讨论∠DCE如何变化? 的度数变化时,试讨论∠ 如何变化? 的度数变化时 如何变化 说明你的根据. 说明你的根据 ∠DCE=45°,不变 不变. ° 不变 y x
4.等腰梯形的轴对称性 4.等腰梯形的轴对称性
(1)等腰梯形是轴对称图形, (1)等腰梯形是轴对称图形, 等腰梯形是轴对称图形 过两底中点的直线是它的对称轴. 过两底中点的直线是它的对称轴.
(2)等腰梯形在同一底上的2个角相等. (2)等腰梯形在同一底上的2个角相等. 等腰梯形在同一底上的 (3)等腰梯形的对角线相等. (3)等腰梯形的对角线相等. 等腰梯形的对角线相等 (4)在同一底上的2个角相等的梯形是等腰梯形. (4)在同一底上的2个角相等的梯形是等腰梯形. 在同一底上的
P
C
2.如图所示, 2.如图所示,A、B是4×5 如图所示 网络中的格点, 网络中的格点,网格中的 每个小正方形的边长为1 每个小正方形的边长为1, C3 请在图中清晰标出使以A、 请在图中清晰标出使以A、 B、C为顶点的三角形是 B、C为顶点的三角形是 A 等腰三角形的所有格点C 等腰三角形的所有格点C 的位置. 的位置.
试一试
3.如图,以正方形ABCD的一边 为边 .如图,以正方形 的一边CD为边 的一边 ° 向形外作等边三角形CDE,则∠AEB= 30° . 向形外作等边三角形 ,
4. 在△ABC中,AB=AC,∠A=70°, 中 = , = ° 125 ∠OBC=∠OCA,则∠BOC=_____ ° . = , A D C E
如果一个三角形有2个角相等,那么这2 (4) 如果一个三角形有2个角相等,那么这2个角所 对的边也相等(简称“等角对等边” 对的边也相等(简称“等角对等边”).
等边三角形是特殊的等腰三角形,特有的性质是: 等腰三角形, 性质是:
(1)等边三角形是轴对称图形,并且有3条对称轴; (1)等边三角形是轴对称图形,并且有3条对称轴; 等边三角形是轴对称图形 对称轴是各边的垂直平分线. 对称轴是各边的垂直平分线. (2)等边三角形的每个角都等于60° 等边三角形的每个角都等于60 (2)等边三角形的每个角都等于60°. (3)等边三角形的各边上的高是各边上的中 (3)等边三角形的各边上的高是各边上的中 也是各角的平分线. 线,也是各角的平分线. A
B
C
等边三角形的判定方法: 等边三角形的判定方法:
1.三个角都相等的三角形是等边三角形; 1.三个角都相等的三角形是等边三角形; 三个角都相等的三角形是等边三角形 2.有两个角等于60°的三角形是等边三角形; 2.有两个角等于60°的三角形是等边三角形; 有两个角等于60 3.有一个角等于60°的等腰三角形是等边三角形. 3.有一个角等于60° 等腰三角形是等边三角形. 有一个角等于60 三角形是等边三角形
E
A
D
B
F
C
填空题
1.在我们已经学到的图形中举出三个不同类的 . 轴对称图形如下: . 轴对称图形如下: 已知AB垂直平分CD AC=6cm,BD=4cm, AB垂直平分CD, 2.已知AB垂直平分CD,AC=6cm,BD=4cm, 则四边形ADBC ADBC的周长是 则四边形ADBC的周长是 20cm .
2.角的轴对称性 2.角的轴对称性
(1)角是轴对称图形, (1)角是轴对称图形,对称轴是角平分线所在的 角是轴对称图形 直线. 直线. (2)角平分线是到角的两边距离相等的点的集合 角平分线是到角的两边距离相等的点的集合. (2)角平分线是到角的两边距离相等的点的集合.
3.等腰三角形的轴对称性 3.等腰三角形的轴对称性 等腰三角形
(1)线段是轴对称图形.它有两条对称轴, (1)线段是轴对称图形.它有两条对称轴,分别 线段是轴对称图形 两条对称轴 线段的中垂线,线段本身所在的直线. 为:线段的中垂线,线段本身所在的直线. (2)线段的垂直平分线是到线段两端距离相等的点 (2)线段的垂直平分线是到线段两端距离相等的点 的集合. 的集合.
小结: 小结 1.举出实例说明轴对称在生活和生产中的应用, 举出实例说明轴对称在生活和生产中的应用, 举出实例说明轴对称在生活和生产中的应用 体会数学与生活的密切联系。 体会数学与生活的密切联系。 2.在本章的学习中,用到了哪些重要的数学思想 在本章的学习中, 在本章的学习中 和方法?举例来说明。 和方法?举例来说明。
相关文档
最新文档