化工原理课程设计——换热器的设计
化工原理课程设计换热器

化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。
下面将为您介绍步骤和注意事项。
一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。
2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。
3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。
4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。
5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。
6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。
二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。
2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。
3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。
4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。
5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。
同时,必须符合国家有关规定。
化工原理课程设计换热器

化工原理课程设计换热器本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。
换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。
因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。
换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。
常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。
在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。
接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。
在化工原理课程设计中,换热器的设计重点之一是热力学计算。
为了实现对流体的热量传递,需要考虑流体的传热系数。
传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。
通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。
另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。
尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。
材料选择需要考虑到流体的化学性质,以避免流体与材料发生反应和腐蚀。
结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。
总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。
只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。
同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。
化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
化工原理课程设计模板-换热器

化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。
本文将介绍化工原理课程设计中换热器的设计过程和要点。
2. 设计目标在进行换热器设计之前,首先要确定设计的目标。
设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。
3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。
这些参数可以通过实验测定或者查阅相关文献获得。
3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。
传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。
3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。
传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。
3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。
常见的换热器类型包括管壳式换热器、板式换热器等。
3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。
3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。
性能评价主要包括换热器的传热效率、压降以及经济性等方面。
4. 实例分析下面通过一个实例来说明换热器的设计过程。
实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。
根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。
化工原理课程设计——换热器设计

化工原理课程设计——换热器设计本课题研究的目的要紧是针对给定的固定管板式换热器设计要求,通过查阅资料、分析设计条件,以及换热器的传热运算、壁厚设计和强度校核等设计,差不多确定固定管板式换热器的结构。
通过分析固定管板式换热器的设计条件,确定设计步骤。
对固定管板式换热器筒体、封头、管板等部件的材料选择、壁厚运算和强度校核。
对固定管板式换热器前端管箱、后端管箱、传热管和管板等结构进行设计,对换热器进行开孔补强校核。
绘制符合设计要求的固定管板式换热器的图纸,给出有关的技术要求;在固定管板换热器的结构设计过程中,要参考有关的标准进行设计,例如GB-150、GB151……,使设计能够符合有关标准。
同时要是设计的结构满足生产的需要,达到安全生产的要求。
通过设计过程达到熟悉了解换热器各部分结构特点及工作原理的目的。
关键词:换热器;固定管板;设计;强度名目摘要错误!未定义书签。
1 绪论11.2 固定管板换热器介绍21.3 本课题的研究目的和意义31.4 换热器的进展历史42 产品冷却器结构设计的总体运算6 2.1 产品冷却器设计条件62.2 前端管箱运算82.2.1 前端管箱筒体运算82.2.2 前端管箱封头运算102.3 后端管箱运算112.3.1 后端管箱筒体运算112.3.2 后端管箱封头运算132.4 壳程圆筒运算143 各部分强度校核153.1 开孔补强运算163.2 壳程圆筒校核213.3 管箱圆筒校核214 换热管及法兰的设计224.1 换热管设计224.2 管板设计234.3 管箱法兰设计254.4 壳体法兰设计274.5 各项系数运算295 产品冷却器制造过程简介36 5.1 总则365.2 零部件的制造37结论45参考文献: 46致谢471 绪论1.1 换热器的作用及分类在工业生产中,换热设备的要紧作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满足工艺过程上的需要。
化工原理课程设计 换热器

一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。
本次设计条件满足第②种情况。
另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。
采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。
本设计中的固定管板式换热器采用的材料为钢管(20R钢)。
2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。
热空气和冷却水逆向流动换热。
根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。
(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。
查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。
本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。
2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。
三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:体积流量进口温度出口温度操作压力设计压力注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。
3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。
换热器化工原理课程设计

换热器化工原理课程设计一、教学目标本课程旨在让学生掌握换热器的基本原理、类型及计算方法,能够运用化工原理分析解决实际工程问题。
通过本课程的学习,学生应达到以下目标:1.知识目标:(1)理解换热器的基本概念及其在化工工艺中的应用;(2)掌握换热器的传热原理,包括对流传热、热传导和热辐射;(3)熟悉不同类型的换热器结构及其特点;(4)学会换热器面积计算、热负荷计算和效率评价。
2.技能目标:(1)能够运用换热器的基本原理分析实际工程问题;(2)熟练运用相关软件进行换热器设计和模拟;(3)具备换热器操作和维护的基本技能。
3.情感态度价值观目标:(1)培养学生的工程意识,提高解决实际问题的能力;(2)培养学生对化工行业的兴趣,树立正确的职业观;(3)培养学生团队协作、创新思维和持续学习的意识。
二、教学内容本课程的教学内容主要包括换热器的基本原理、类型、计算方法和实际应用。
具体安排如下:1.换热器的基本原理:介绍换热器的工作原理,对流传热、热传导和热辐射的基本概念。
2.换热器的类型:讲解不同类型的换热器,如平板式换热器、壳管式换热器、空气冷却器等,及其特点和应用。
3.换热器计算方法:教授换热器面积计算、热负荷计算和效率评价的方法。
4.换热器实际应用:分析换热器在化工工艺中的应用案例,讲解换热器操作和维护的基本知识。
三、教学方法为了提高教学效果,本课程将采用多种教学方法,如讲授法、案例分析法、实验法等。
1.讲授法:通过讲解换热器的基本原理、类型和计算方法,使学生掌握相关理论知识。
2.案例分析法:分析实际工程中的换热器应用案例,提高学生解决实际问题的能力。
3.实验法:学生进行换热器实验,培养学生的动手能力和实验技能。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的换热器教材,为学生提供系统、科学的理论知识。
2.参考书:提供相关的化工原理、热力学等参考书籍,丰富学生的知识体系。
化工原理课程设计__换热器

化⼯原理课程设计__换热器⼀、设计任务书⼆、确定设计⽅案2.1 选择换热器的类型本设计中空⽓压缩机的后冷却器选⽤带有折流挡板的固定管板式换热器,这种换热器适⽤于下列情况:①温差不⼤;②温差较⼤但是壳程压⼒较⼩;③壳程不易结构或能化学清洗。
本次设计条件满⾜第②种情况。
另外,固定管板式换热器具有单位体积传热⾯积⼤,结构紧凑、坚固,传热效果好,⽽且能⽤多种材料制造,适⽤性较强,操作弹性⼤,结构简单,造价低廉,且适⽤于⾼温、⾼压的⼤型装置中。
采⽤折流挡板,可使作为冷却剂的⽔容易形成湍流,可以提⾼对流表⾯传热系数,提⾼传热效率。
本设计中的固定管板式换热器采⽤的材料为钢管(20R 钢)。
2.2 流动⽅向及流速的确定本冷却器的管程⾛压缩后的热空⽓,壳程⾛冷却⽔。
热空⽓和冷却⽔逆向流动换热。
根据的原则有:(1)因为热空⽓的操作压⼒达到1.1Mpa ,⽽冷却⽔的操作压⼒取0.3Mpa ,如果热空⽓⾛管内可以避免壳体受压,可节省壳程⾦属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较⼤,对流传热系数较⼤者宜⾛管间,因壁⾯温度与对流表⾯传热系数⼤的流体温度相近,可以减少热应⼒,防⽌把管⼦压弯或把管⼦从管板处拉脱。
(3)热空⽓⾛管内,可以提⾼热空⽓流速增⼤其对流传热系数,因为管内截⾯积通常⽐管间⼩,⽽且管束易于采⽤多管程以增⼤流速。
查阅《化⼯原理(上)》P201表4-9 可得到,热空⽓的流速范围为5~30 m ·s -1;冷却⽔的流速范围为0.2~1.5 m ·s -1。
本设计中,假设热空⽓的流速为8 m ·s -1,然后进⾏计算校核。
2.3 安装⽅式冷却器是⼩型冷却器,采⽤卧式较适宜。
空⽓⽔⽔空⽓三、设计条件及主要物性参数3.1设计条件注:要求设计的冷却器在规定压⼒下操作安全,必须使设计压⼒⽐最⼤操作压⼒略⼤,本设计的设计压⼒⽐最⼤操作压⼒⼤0.1MPa 。
3.2确定主要物性数据3.2.1定性温度的确定可取流体进出⼝温度的平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南大学《化工原理》课程设计说明书题目:煤油冷却器的设计学院:化学化工学院班级:化工0802学号: **********姓名: ******指导教师:***时间:2010年9月目录§一.任务书 (2)1.1.题目1.2.任务及操作条件1.3.列管式换热器的选择与核算§二.概述 (3)2.1.换热器概述2.2.固定管板式换热器2.3.设计背景及设计要求§三.热量设计 (5)3.1.初选换热器的类型3.2.管程安排(流动空间的选择)及流速确定3.3.确定物性数据3.4.计算总传热系数3.5.计算传热面积§四. 机械结构设计 (9)4.1.管径和管内流速4.2.管程数和传热管数4.3.平均传热温差校正及壳程数4.4.壳程内径及换热管选型汇总4.4.折流板4.6.接管4.7.壁厚的确定、封头4.8.管板4.9.换热管4.10.分程隔板4.11拉杆4.12.换热管与管板的连接4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型)4.14.膨胀节的设定讨论§五.换热器核算 (21)5.1.热量核算5.2.压力降核算§六.管束振动 (25)6.1.换热器的振动6.2.流体诱发换热器管束振动机理6.3.换热器管束振动的计算6.4.振动的防止与有效利用§七. 设计结果表汇 (28)§八.参考文献 (29)§附:化工原理课程设计之心得体会 (30)§一.化工原理课程设计任务书1.1.题目煤油冷却器的设计1.2.任务及操作条件1.2.1处理能力:40t/h 煤油1.2.2.设备形式:列管式换热器1.2.3.操作条件(1).煤油:入口温度160℃,出口温度60℃(2).冷却介质:循环水,入口温度17℃,出口温度30℃(3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa(4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃)1.3.列管式换热器的选择与核算1.3.1.传热计算1.3.2.管、壳程流体阻力计算1.3.3.管板厚度计算1.3.4.膨胀节计算1.3.5.管束振动1.3.6.管壳式换热器零部件结构§二.概述2.1.换热器概述换热器是化工、炼油工业中普遍应用的典型的工艺设备。
在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。
换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。
因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。
在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。
换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。
其中间壁式换热器应用最广泛,如表2-1所示。
表2-1 传热器的结构分类式釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面积较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用做回收低温热能伞板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合2.2.固定管板式因设计需要,下面简单介绍一下固定管板式换热器。
固定管板式即两端管板和壳体连结成一体,因此它具有结构简单造价低廉的优点。
但是由于壳程不易检修和清洗,因此壳方流体应是较为洁净且不易结垢的物料。
当两流体的温度差较大时,应考虑热补偿。
有具有补偿圈(或称膨胀节)的固定板式换热器,即在外壳的适当部位焊上一个补偿圈,当外壳和管束的热膨胀程度不同时,补偿圈发生弹性变形(拉伸或压缩),以适应外壳和管束的不同的热膨胀程度。
这种热补偿方法简单,但不宜用于两流体温度差太大(不大于70℃)和壳方流体压强过高(一般不高于600kPa)的场合。
1-挡板 2-补偿圈 3-放气嘴图2.2.1.固定管板式换热器的示意图2.3.设计要求完善的换热器在设计和选型时应满足以下各项基本要求:(1)合理地实现所规定的工艺条件:可以从:①增大传热系数②提高平均温差③妥善布置传热面等三个方面具体着手。
(2)安全可靠换热器是压力容器,在进行强度、刚度、温差应力以及疲劳寿命计算时,应遵循我国《钢制石油化工压力容器设计规定》和《钢制管壳式换热器设计规定》等有关规定与标准。
(3)有利于安装操作与维修直立设备的安装费往往低于水平或倾斜的设备。
设备与部件应便于运输与拆卸,在厂房移动时不会受到楼梯、梁、柱的妨碍,根据需要可添置气、液排放口,检查孔与敷设保温层。
(4)经济合理评价换热器的最终指标是:在一定时间内(通常1年内的)固定费用(设备的购置费、安装费等)与操作费(动力费、清洗费、维修费)等的总和为最小。
在设计或选型时,如果有几种换热器都能完成生产任务的需要,这一标准就尤为重要了。
§三.热量设计3.4.计算总传热系数 3.4.2.热流量以热介质煤油为计算标准算它所需要被提走的热量:Q=m s1c p1(T 1-T 2)=40000x2.2x(160-60)=8800kJ/h=2444.4kw3.4.3.平均传热温差计算两流体的平均传热温差 暂时按单壳程、多管程计算。
逆流时,我们有煤油:160℃→60℃ 水: 30℃←17℃ 从而,130-43ln(130/43)=78.6'm t =而此时,我们有:30-17160-17t 2-t 1T 1-T 2==13143=0.091P=t 2-t 1==R=T 1-T 2160-6030-1710013=7.69式中:21,T T ——热流体(煤油)的进出口温度,℃; 21t t ,——冷流体(自来水)的进出口温度,℃;R 2+1R-1ln1-PR1-P ln2-P(1+R-2-P(1+R+R 2+1R 2+1))ψ=7.692+17.69-11-0.0911-0.091x7.692-0.091X(1+7.69-2-0.091X(1+7.69+7.692+1lnln7.692+1=0.961ψ>0.9符合要求则平均传热推动力:△t m=△t m,逆×ψ=0.961x78.6=75.5℃3.4.4.冷却水用量由以上的计算结果以及已知条件,很容易算得:Qc=)(12t t C Qpc =8800000/[4.185x(30-17) ]=161750㎏/h3.1.初选换热器的类型两流体的温度变化情况如下:(1)煤油:入口温度160℃,出口温度60℃;(2)冷却介质:自来水,入口温度17℃,出口温度30℃;该换热器用循环冷却自来水进行冷却,冬季操作时,其进口温度会降低,考略到这一因素,估计所需换热器的管壁温度和壳体温度之差较大,需考虑热膨胀的影响,故从安全方便考虑可以采用带有膨胀节的管板式换热器 3.3.确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。
壳程流体(煤油)的定性温度为:T= (160+60)/2=110℃ 管程流体(水)的定性温度为:t=(30+17)/2=23.5℃在定性温度下,分别查取管程和壳程流体(冷却水和煤油)的物性参数,见下表:3.2.管程安排(流动空间的选择)及流速确定已知两流体允许压强降分别不大于0.1MPa,40kPa ;两流体分别为煤油和水。
与煤油相比,水的对流传热系数一般较大。
由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,考虑到散热降温方面的因素,应使循环自来水走管程,而使煤油走壳程。
由上表,我们初步选用Φ25×2.5的碳钢管,则管内径d i =25-2.5×2=20mm 管内流速取u i =1.6m/s,从管内体积流量为:νi =n (π/4) ×0.02²×1.6×36300=161750/997.3=162.6m ³/h解得n=90传热面积:A=n πd 。
L=24444.4×10³/(350×75.5)=92.5㎡ 可以求得单程管长L=92.5/3.14×0.025)=13.09m若选用4.5m 长的管,需要4管程,则一台换热器的总管数为4×90=360根.查化学工业出版社第三版谭天恩主编的«化工原理»附录十九,可以初步确定换热对表中的数据进行核算:①每程的管数n 1 =n/Np=422÷4=110.5,管程流通面积s i =(π/4) ×0.02²×110.5=0.03471㎡与表中的数据0.0347㎡相符的很好②传热面积 A=πd 0 Ln=3.14×0.025×4.5×442=156.2㎡稍大于表中152.7㎡,这是由于管长的一部分需用于在管板上固定管子,应以表中的值为准 ③由于换热管是组合式排列,除在分程板两侧采用正方形排列外,大部分地方采用的是正三角形排列,故中心排管数可以按照正三角形排列的形式计算: 中心排管数 n c ≈1.1n =1.1×442=24>23 阻力的计算 ⒈管程① 流速 u i =sivi3600=0347.036002.162x =1.3m/s② 雷诺数 Re i =μρi i d u i =202.03.9973.1⨯⨯=28032﹥2000流动形式为湍流由ε/d=0.005 Re i =28032 带入经验公式λ=0.1(ε/d+ 68/Re ) 可得λi =0.03238③管内的阻力损失 △P i =λi id l(u i ²i ρ)/2=0.03238×4.5×1.3²×997.3÷0.02÷2=6139.6Pa回弯阻力损失 △Pr=3×(u i ²i ρ) /2=3×1.3 ²×997.3÷2=2528.2Pa则管程内总压降为:Pt=(△P i +△Pr)FtNsNp=(6139.6+2528.2) ×1.4×4=48539.7Pa =48.54KPa <0.1MPa故壳程的压降满足题目中的要求 ⒉壳程 取折流挡板间距为 h=0.2m①计算截面积 S 0 =h(D-n c d 0 =0.2(0.8-24×0.025)=0.04㎡②计算流速 u 0 =82504.0360040000⨯⨯=0.34m/s③雷诺数的计算 Re 0 = μρ000d u =0.025×0.34×825÷(3×310-)=2338Re 0>500④摩擦系数f 0 = 5.0/( Re 0228.0)=5.0÷2338228.0=0.85⑤则折流挡板数 N B =hl-1=4.5÷0.2-1=22⑥管束的损失△P 1=Ff 0n c (N B +1) (u 0²0ρ)=0.5×0.85×24×(22+1)×825×0.34 ²÷2= 11187Pa⑦缺口损失△P 2=N B (3.5-D h 2)(u 0²0ρ)/2=22×(3.5-8.02.02⨯)﹙825×0.34 ²)/2=3147Pa则壳程损失△Ps=△P 1+△P 2=11187+3147=14334=14.3KPa <40KPa 即壳程的压降也满足题意综上核算初步认为所选的换热器适用3.4.5.总传热系数K总传热系数的经验值见表3-4,有关手册中也列有其他情况下的总传热系数经验值,可供设计时参考。