卷积及其性质

合集下载

2-5 新版卷积的性质

2-5 新版卷积的性质
δ(t) f(t)
(1)
结论1:
f(t)
f (t ) (t ) f (t )
f(t)
*
=
δ(t-t0)
f ( t ) (t t 0) f ( t t 0)
f(t-t1)
*
(1)
=
t0
f ( t t 1) ( t t 2 ) f ( t t 1 t 2 )
第五节 卷积积分的性质
•运算规律
•微积分性质
•与冲激函数卷积(重现性)
一.运算规律(代数运算)
1.交换律
f1 ( t ) f 2 ( t ) f 2 ( t ) f1 ( t )
2.分配律
f1 (t ) [ f 2 (t ) f 3 (t )] f1 (t ) f 2 (t ) f1 (t ) f 3 (t )
( 1) 2
直接
1
O
sgn(t )
t 1
O
(t )
(1)
t
是有始信号
正确f (t ) sgn( t ) (t ) sgn( t )
错误原因:
t
用微积分性质
sgn( t )

O
t
dsgn( t ) dt dt sgn( t ) 1 sgn( t ) ( 1) (1)
Sgnt g2 (t )
(t 2) g2 (t )
例题2-5-5
已知线性时不变系统对激励f1(t)与响应波形 y1(t)如图示,求该系统的冲激响应和在以下激励的 零状态响应.
f (t ) sin t (t ) (t 1)
f1(t) 1 0 2 t 1 0 1 y1(t)

函数的卷积及其公式的应用

函数的卷积及其公式的应用

函数卷积及其应用摘要 卷积是一个很重要的数学概念.它描述了对两个〔或多个〕函数之积进展变换的运算法则,是频率分析的最有效的工具之一。

本文通过对卷积的概念,性质,具体应用以及对卷积公式,卷积定理等方面进展较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。

关键词 卷积 卷积公式 性质 应用1引言卷积是在信号与线性系统的根底上或背景中出现的。

狄拉克为了解决一些瞬间作用的物理现象而提出了"冲击函数〞这一符号,而卷积的诞生正是为了研究"冲击函数〞效劳的;卷积是一种数学积分变换的方法,也是分析数学中一种重要的运算。

卷积在物理学,统计学,地震预测,油田勘察等许多方面有十分重要的应用。

本文通过对卷积的概念,性质,应用等方面进展较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。

2卷积的定义和性质 2.1卷积的定义〔根本内涵〕设:)(),(x g x f 是1R 上的两个可积函数,作积分:()()τττd x g f -⎰+∞∞- 随着*的不同取值,这个积分就定义了一个新函数)(x h ,称为函数()x f 与)(x g 的卷积,记为)(x h =)()(x g x f *(或者()()x g f *) .注(1)如果卷积的变量是序列()()n h n x 和,则卷积的结果:∑+∞-∞=*=-=i n h n x i n h i x n y )()()()()(,其中星号*表示卷积。

当时序n=0时,序列h(-i)是)(i h 的时序i 取反的结果;时序取反使得)(i h 以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积.另外,n 是使)(i h -位移的量,不同的n 对应不同的卷积结果. 〔2〕如果卷积的变量是函数)(t x 和)(t h ,则卷积的计算变为:)()()()()(t h t x dp p t h p x t y *=-=⎰+∞∞-,其中p 是积分变量,积分也是求和,t 是使函数)(p h -位移的量,星号*表示卷积.〔3〕由卷积得到的函数g f *一般要比g f 和都光滑.特别当g 为具有紧致集的光滑函数,f 为局部可积时,它们的卷积g f *也是光滑函数. 2.2卷积的性质性质〔交换律〕设)(x f ,)(x g 是1R 上的两个可积函数,则)()()()(x f x g x g x f *=*. 证=*)()(x g x f ()()τττd x g f -⎰+∞∞-令τ-=x u ,则u x -=τ,τd du -= 所以=*)()(x g x f ()()τττd x g f -⎰+∞∞-=()()du u g u x f ⎰-∞∞+--=()()du u x f u g ⎰+∞∞--=)()(x f x g *性质〔分配律〕设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]x h x g x f +*)()()()()(x h x f x g x f *+*=.证 根据卷积定义()()[]x h x g x f +*)(=()()()[]ττττd x h x g f -+-⎰+∞∞-=()()τττd x g f -⎰+∞∞-+()()τττd x h f -⎰+∞∞-性质〔结合律〕设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]()x h x g x f **()()()[]x h x g x f **=.证 令()()=*=x g x f x m )(()()τττd x g f -⎰+∞∞-,()()()()()dv x h v x g x h x g x s ⎰+∞∞--=*=,则()()[]()x h x g x f **=()()x h x m *=()()du u x h u m -⎰+∞∞-=()()()du u t h d u g f -⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞-+∞∞-τττ=()()τττd du u t h u g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)(令v x u u x v -=-=则,,上式=()()τττd dv v h v x g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)( =()()du u x s f -⎰+∞∞-τ=()()x s x f *性质()()x g x f x g x f *≤*)()(. 证明 =*)()(x g x f ()()τττd x g f -⎰+∞∞-≤()()τττd x g f -⋅⎰+∞∞-=()()x g x f *.性质〔微分性〕设)(),(x g x f 是1R 上的两个可积函数,则())()()()()()(x g x f x g x f x g x f dxd'*=*'=*. 证明 ()()()()()τττττd h dxx df d dx x dg x f x g x f dx d ⎰⎰∞+∞-∞+∞-=-=*-)()( 即意义 卷积后求导和先对其任一求导再卷积的结果一样. 性质〔积分性〕设()()()x h x g x f *=,则()()()()()()()x h x g x h x g x f11)1(---*=*=.意义 卷积后积分和先对其任一积分再卷积的结果一样. 推广 ()()()()()()()()x h x g x h x g x fn n n *=*=.性质〔微积分等效性〕设)(x f ,)(x g 是1R 上的两个可积函数,则()()ττd g x f x g x f x⎰∞-*'=*)()(.例2.1设()0010≥<⎩⎨⎧=x x x f ,()000≥<⎩⎨⎧=-x x e x g x ,求()x g x f *)(.解 由卷积定义知()x g x f *)(=()()τττd x g f -⎰+∞∞-=()()t t t tx e e e d e-----=-=⋅⎰1110ττ例2.2 设函数试计算其卷积()()()t f t f t y 21*=. 解 由卷积定义知所以()()()t f t f t y 21*==()()τττd t f f -⎰+∞∞2-1显然这个积分值与函数()ttt ><⎩⎨⎧=-τττμ01,所取非零值有关,即与参数t 的取值有关.()1当t 0<时,因30<<<τt ,所以()0=-τμt ,此时()()()t f t f t y 21*==003)(=⋅⎰--ττd e t()2当30<<t 时,只有t <<τ0时,有()1=-τμt ,此时()()()t f t f t y 21*==t tt e d e ----=⎰10)(ττ()3当3>t 时,因为t <<<30τ,所以()1=-τμt ,此时()()()t f t f t y 21*==()t t e e d e ----=⎰1330)(ττ综上所述,有()()()t f t f t y 21*==()33001-103><<<⎪⎩⎪⎨⎧⋅---t t t e e e tt3.卷积定理3.1 时域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω[],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()()()(2121~ωωF F t f t f s ⋅=*上式称为时域卷积定理,它说明两信号在时域的卷积积分对应于在频域中该两信号的傅立叶变换的乘积.证明 []=*)()(21~t f t f s ()()dt e d t f f t j ωτττ-+∞∞-+∞∞-⎰⎰⎥⎦⎤⎢⎣⎡-21 =()()τττωd dt e t f f tj ⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞--+∞∞-21=()()τωτωd e F f t j -+∞∞-⎰21=()()ττωωd e f F t j -+∞∞-⎰12=()()=⋅ωω12F F ),()(21ωωF F ⋅ 3.2频域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω[],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()(21)()(2121~ωωπF F t f t f s *=上式称为频域卷积定理,它说明两信号在时域的乘积对应于这两个函数傅氏变换的卷积除以π2.证明 ()()()()ωππωωπωd e du u w F u F F F s tj ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡*21211-~212121 于是例3.1 求积分方程的解,其中()()t f t h ,为函数,且()()()t h t f t g 和,的Fourier 变换都存在. 解 假设()[](),ωG t g F =()[](),ωH t h F =()[](),ωF t f F = 由卷积定义知现对积分方程两端取Fourier 变换可得解得所以原方程的解为例3.2 求常系数非齐次线性微分方程 的解,其中()t f 为函数. 解 设()[]()[]()ωωF t f F Y t y F ==),(现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得 解得所以原方程的解 由卷积定理得=()()τττd e f t f et t--∞+∞--⎰=*212. 例3.3求微分积分方程的解.其中c b a t ,,,+∞<<∞-均为常数. 解 设()[]()()[]()ωωH t h F X t x F ==,现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得解得()()()⎪⎭⎫⎝⎛-+=++=ωωωωωωωc a i b H i c b ai H X ,所以原方程的解4.卷积公式及其应用与推广 4.1卷积公式设X 和Y 的联合密度函数为)y x f ,(,则Y X Z +=得概率密度为证明 Y X Z +=的分布函数是:⎰⎰=≤+=≤=Dz xy f p z Z p Z F )()z Y X ()()(其中D ={}z y x y x ≤+:),(于是⎰⎰⎰⎰⎰⎰+∞∞-∞-+=+∞∞--∞-≤+-===zy x u yz zy x Z dudy y y u f dxdyy x f dxdy y x f Z F ),(),(),()(=⎰⎰∞-+∞∞--z dydu y y u f ),(从而⎰+∞∞--='=dy y y z f Z F Z f z z ),()()(由X 和Y 的对称性知⎰+∞∞--='=dx x x z f Z F Z f z z ),()()(。

课件:卷积及其性质和计算

课件:卷积及其性质和计算

f (1) 2
t
必须加上一个前提条件,就是
f1 t
t
df1
d
d
二、卷积的性质
三、δ(t)的卷积特性 • 任意信号f(t)与δ(t)的卷积等于该信号f(t) 。
推论
f
t
t
f
t
d
f
t
d
f t
1. f (t) (t t0) f (t t0) 2. f (t t1) (t t 2) f (t t1 t 2)
s' t f1 t f2' t
f1' t f2 t
由卷积定义,
st
f1
f2
t
d
两端对t微分,得到
s'
t
d dt
f1
f2
t
d
f1
d dt
f2 t d
二、卷积的性质
s'
t
d dt
f1
f2
t
d
f1
d dt
f2 t d
f1 t f2' t
利用卷积的交换律,可得
s'
t
d dt
f1
f2
t
d
d
dt
f1 t
f2
d
d dt
f1 t
f2 d
f1' t f2 t
二、卷积的性质
二、微积分性质
• 积分性质
两个函数卷积的积分,等于两个函数中任一函数的积 分与另一函数的卷积,即
s(1) t
f1 t
f (1) 2
t
f (1) 1
t
f2 t
r (t )

第二章 (4)卷积积分的性质

第二章 (4)卷积积分的性质

f 1 (t )
f 2 (t )
2
1
0
2
0 1
1
2 3
t
1
3
t
解法一: 解法一:图示法
f 1 (τ
t <1 ,
)
f (t ) = 0
2
0
1
2 3
τ
f 2 (t τ
t2
)
1
t 0
1
τ
解法一: 解法一:图示法
f 1 (τ
t <1 ,
)
t
f (t ) = 0
1< t < 2 ,
f (t ) = ∫ 2dτ = 2(t 1)
(2) e ε(t + 3) ε(t 5) 2t e ε (t + 3) ε (t 5) ∞ 2τ = ∫ e ε (τ + 3) ε (t τ 5)dτ ∞
2t
=∫t 53e2τ1 2(t 5) 6 e = e 2 6 1 2( t 2) = e 1 e 2
[
1 2τ dτ = e 2
' ∞ ∞
上式称为杜阿密尔积分. 上式称为杜阿密尔积分. 杜阿密尔积分 其物理含义为: 其物理含义为:LTI系统的零状态响应等于激励的 系统的零状态响应等于激励的
f ' (t )与系统的阶跃响应 g(t )的卷积积分. 的卷积积分. 导数
例2.4-4 求图示函数 f1(t ) 与 f2 (t ) 的卷积 f (t ) .
若f (t ) = f1(t ) f2(t ),则 f1(t t1 ) f2(t t2 ) = f1(t t2 ) f2 (t t1 ) = f (t t1 t2 )
推广4 推广

卷积简单介绍

卷积简单介绍

卷积是分析数学中一种重要的运算。

设:,是上的两个可积函数,作积分:可以证明,关于几乎所有的,上述积分是存在的。

这样,随着的不同取值,这个积分就定义了一个新函数,称为函数与的卷积,记为。

我们可以轻易验证:,并且仍为可积函数。

这就是说,把卷积代替乘法,空间是一个代数,甚至是巴拿赫代数。

卷积与傅里叶变换有着密切的关系。

例如两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,利用此一性质,能简化傅里叶分析中的许多问题。

由卷积得到的函数一般要比和都光滑。

特别当为具有紧支集的光滑函数,为局部可积时,它们的卷积也是光滑函数。

利用这一性质,对于任意的可积函数,都可以简单地构造出一列逼近于的光滑函数列,这种方法称为函数的光滑化或正则化。

卷积的概念还可以推广到数列、测度以及广义函数上去。

函数f与g的卷积记作,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数。

积分区间取决于f与g的定义域。

对于定义在离散域的函数,卷积定义为1. 首先将两个函数都用来表示。

2. 对其中一个函数做水平翻转:→3. 加上一个时间偏移量,让能沿着轴滑动。

4. 让t从-∞滑动到+∞。

两函数交会时,计算交会范围中两函数乘积的积分值。

换句话说,我们是在计算一个滑动的的加权平均值。

也就是使用当做加权函数,来对取加权平均值。

最后得到的波形(未包含在此图中)就是f和g的卷积。

如果f(t)是一个单位脉冲,我们得到的乘积就是g(t)本身,称为冲激响应。

计算卷积的方法[编辑]当为有限长度,为有限长度的信号,计算卷积有三种主要的方法,分别为1.直接计算(Direct Method) 2.快速傅里叶转换(FFT)和3.分段卷积(sectioned∙作法:利用卷积的定义∙若和皆为实数信号,则需要个乘法。

∙若和皆为更一般性的复数信号,不使用复数乘法的快速算法,会需要个乘法;但若使用复数乘法的快速算法,则可简化至个乘法。

因此,使用定义直接计算卷积的复杂度为。

2-4卷积积分的性质.

2-4卷积积分的性质.

§2.4 卷积的性质• 代数性质 • 微分积分性质•与冲激函数或阶跃函数的卷积一.代数性质 1.交换律证明交换律•卷积结果与交换两函数的次序无关。

因为倒置与倒置 积分面积与t 无关。

•一般选简单函数为移动函数。

如矩形脉冲或δ(t )。

2.分配律系统并联运算 系统并联 系统并联,框图表示:结论:子系统并联时,总系统的冲激响应等于)()()()(1221t f t f t f t f *=*)()()()()]()([)(3121321t f t f t f t f t f t f t f *+*=+*)()()()()]()([)(3121321t f t f t f t f t f t f t f *+*=+*)(t h )()(1t h t f *()()()t h t h t h 21+=()()t f t f 21*τττd )()(21-⋅=⎰+∞∞-t f f λλλd )()(12-⋅=⎰+∞∞-t f f ,令λτ=-t λτλτd d ::-=→⎰⎰-∞∞++∞∞-,则()τ1f ()τ2f ()()t f t f 21*()()t f t f 12*=各子系统冲激响应之和。

3.结合律系统级联运算 系统级联系统级联,框图表示:结论:时域中,子系统级联时,总的冲激响应等于子系统冲激响应的卷积。

二.微分积分性质微积分性质的证明 已知两端对t 求导 即 推广:g (t )的积分[])]()([)()()()(2121t f t f t f t f t f t f **=**)]()([)()()()(2121t h t h t f t h t h t f **=**)()(t h t f *=())()(21t h t h t h *=121)()()()()(t h t f t h t f t g *'='*='⎰∞∞--=τττd )()()(t h f t g 交换律⎰⎰∞∞-∞∞--=-=ττττττd )(d )(d d d )(d )(d )(d h tt f t t h f t t g )()()()()(t h t f t h t f t g *'='*=')()()()()()()()(t h t f t h t f t g n n n *=*=)()()()()()1()1()1(t h t f t h t f t g *=*=---微分性质积分性质联合实用微分n 次,积分m 次 m =n , 微分次数=积分次数对于卷积很方便。

信号与系统 卷积积分的性质

信号与系统  卷积积分的性质
P47 2-8(1)(3)(5) , 2-10(2)(4) P48 2-11(1)(3)(4)
信号与系统
d x t dt
h d
t
2
1
1 0
2
c
1
t
0
4
t
d
dxt t h d 15 dt 8
t
9 8
2
dxt t h d dt
3
1 0
2
2
6
1 0
2 3
6
t
f
e
信号与系统
t t t
[ 1 d ]u (t 1) [ 1 d ]u (t 2)
1 2
t
t
(t 1)u (t 1) (t 2)u (t 2)
(t 1)[u (t 1) u (t 2)] 3u (t 2) 0 t 1 3
0 t a 1 e d 1 e at 0 a
f t
1
1 d ]u(t ) 1 e at u t a
t 0
f d
t 0

t
e at
1 a
0
a
t
0
b
t
信号与系统
作业 13-4-16

t

y( )d f (t ) h( )d h(t ) f ( )d

t
y(t)的一重积分
y ( 1) (t ) f (t ) h( 1) (t ) f ( 1) (t ) h(t )
推广:
y ( m) (t ) f (t ) h( m) (t ) f ( m) (t ) h(t )

《信号与系统教学课件》§2.6 卷积及其性质和计算

《信号与系统教学课件》§2.6 卷积及其性质和计算

将卷积的微分性质和积分性质加以推广,可以得到
s
t
nm
f (n) 1
t
f (m) 2
t
f (m) 1
t
f (n) 2
t
X
二、卷积的性质
注意函数的积分和微分并不是一个严格的可逆关系, 因为函数加上任意常数后的微分与原函数的微分是相 同的。因此,对于等式
f1 t
f2 t
f1' t
k
d
k
f
3
t
d
令w k
f1
k
f2
w f3
t
k
w d w d k
令st f2t f3t
f1 k s t k d k
f1 t st
f1 t
f2 t
f3 t
f 1
t f2 t
f3 t
X
二、卷积的性质
一、代数性质 • 结合律
对于函数f1 t , f2 t , f3 t ,存在
h2 t
r(t)
h1 t
图2.6.2 卷积交换律的系统意义
X
二、卷积的性质
一、代数性质
• 结合律
对于函数f1 t , f2 t , f3 t ,存在
f1 t f2 t f3 t f1 t f2 t f3 t
根据卷积的定义
f1 t
f2
t
f3
t
f1
k
f2
X
三、卷积的计算
根据卷积的定义,卷积计算是由若干基本的信号运算组成的, 对于
s
t
f1
f2
t
d
第一步 反褶:将 f1 t 反褶运算,得到 f1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f1()
f2(t
)d
iii) 若t 0, f1(t)0, f2(t)0,则
S(t) 0,
t
0
t
S(t) 0
f1() f2(t )d,
t
0
精选PPT
2
§2.7 卷积及其性质
2, 卷 积 及 分 的 求 取 方 法
(1) 函 数 计 算 法
例,已知
f1 (t )
1 [u (t 2
2 ) u (t 5)]
二,离散卷积和
1,定义
两个序列x1(n),x2(n) 得卷积和定义为
x1(n)*x2(n) x1(m)x2(nm) m
如果两个序列都是因果的,即 x1(n) x1(n)u(n),x2(n) x2(n)u(n) 则有
n
x1(n)*x2(n) x1(m)x2(nm) m0
精选PPT
13
§2.7 卷积及其性质
解 : s(t) f1 (t)* f1 (t) d fd 1 ( tt)* t f2 ()d
f1(t)
f2(t)
2
1
0 123
t
1
2
01
t
精选PPT
11
§2.7 卷积及其性质
f1'(t) 2
1
0 12 3
t
f2'(t)
1
2
01
t
s(t) 2
45
1 23
t
-2
精选PPT
12
§2.7 卷积及其性质
f1( ) f2 (t )d
举例说明。
精选PPT
6
§2.7 卷积及其性质
(1)分配律:f1(t)[ f2(t) f3(t)] f1(t) f2(t) f1(t) f3(t) 物理意义:几个系统并联,可等效为一个冲激响应
h(t) h1(t)h2(t) (2)结合律: [ f1(t) f2(t)] f3(t) f1(t)[ f2(t) f3(t)]
§2.7 卷积及其性质
一,卷积积分
1, 定 义
设 f1 (t )和 f 2 (t )是 定 义 在 ( , )区 间 上 的 两 个 函 数 ,
则 积 分
S (t ) f1 ( ) f 2 (t ) d
称 为 f1 (t )和 f 2 (t )的 卷 积 , 记 为 f1 (t ) f 2 (t )
对 于 S (t )
f1 ( ) f 2 (t ) d
i) 若 t 0, f1 (t ) 0, 即
S (t ) 0
f1 ( ) f 2 (t ) d
精选PPT
1
§2.7 卷积及其性质
ii) 若t 0, f2(t)=0,那么对于f2(t),t 0, f2(t)0
S(t)
t
于是
S(t) (t 3)u(t 3)(t 6)u(t 6)(t 9)u(t 9)(t 12)u(t 12)
0,
t3,3,
12t, 0,
t 3 3t 6 6t 9 9t 12
t 12
由 此 可 见 , 函 数 式 积 分 应 特 别 注 意 积 分 结 果 存 在 的 区 间 , 稍 不
留 意 就 会 出 错 。
精选PPT
3
§2.7 卷积及其性质
对于 同理
u(t 1)u( 2)d u(t 1)u( 5)d
u(t 7)u( 2)d u(t 7)u( 5)d
S1
u(t 1)u( 2)d,通过积分限判断得
t 1
S1 2 11d (t 3) u(t 3)
f2 (t) 2 u (t 1) u (t 7 )
求 S (t ) f1 (t ) f2 (t )
解:
S (t ) f1 (t ) f2 (t )
f 1 ( ) f 2 ( t ) d
1 [ u ( 2 ) u ( 5 )
2
2 u (t 1) u (t 7 ) d
f1(t)
f2(t)
f1(t)
df2(t) dt
f2(t)
df1(t) dt
(5 )卷积的积分
t
t
t
f1() f2()d f1(t) f2()d f2(t) f1()d
精选PPT
8
§2.7 卷积及其性质
推论
f1(t) f2(t) (i) f1(t)(j) f2(t)(ij)
t
f ( t ) u ( t ) f ( ) d
精选PPT
10
§2.7 卷积及其性质
例 : 求 卷 积 s ( t) f1 ( t)* f2 ( t) , 其 中 f1 ( t) 2 [ u ( t 1 ) u ( t 3 ) ]
f2 ( t) u ( t) 2 u ( t 1 ) u ( t 2 )
t 1
S2
u(t 1)u( 5)d
5
11d (t 6) u(t 6)
t7
S3
u(t 7)u( 2)d
2
11d (t 9) u(t 9)
t7
S4
u(t 7)u( 5)d
5
11d (t 12) u(t 12)
精选PPT
4
§2.7 卷积及其性质
2, 卷 积 和 的 性 质
卷积和的性质与卷积积分完全对应。特别地,有
(1) 卷 积 和 的 差 分
x1 (n ) * x2 (n ) x1 (n ) * x2 (n ) [ x1 (n ) * x2 (n )] x1 (n ) * x2 (n ) x1 (n ) * x2 (n ) [ x1 (n ) * x2 (n )] (2) 卷 积 和 的 累 加
物理意义:若冲击响应为h1(t),h2(t)的两个系统相串联, 此两系统的组合可等效唯一个冲击响应
h(t) h1(t)h2(t)的系统。
精选PPT
7
§2.7 卷积及其性质
(3) 交换律: f1(t) f2(t) f2(t) f1(t) 物理意义:串联的子系统可以任意交换位置。
(4)卷积的微分:
d dt
i 和(i j)为00整 整数 数
表示微分 表示积分
精选PPT
9
§2.7 卷积及其性质
( 6) 与 奇 异 函 数 的 卷 积 f (t) (t) f (t) f (t) (t t0 ) f (t t0 ) (t t1 ) (t t2 ) (t t1 t2 ) f (t ) '(t ) f '(t ) f (t) (k)(t) f (k)(t) f (t) (k)(t t0 ) f (k)(t t0 )
精选PPT
5
§2.7 卷积及其性质
(2) 卷积积分的图解法
观察
S(t)
f1( ) f2 (t )d
实现卷积积分有四个步骤:
第一步,改变积分变量, f1(t) f1( ), f2 (t) f2 ( )
第二步, f2 ( )反转 f2 ( )
第三步,f2 ( )平移 f2 (t )
第四步,相承与积分
相关文档
最新文档