最小方差无偏估计UMVUE分解
第六章第三节 最小方差无偏估计

达到下界, 则T必为g( ) 的最小方差无偏估计. 但
是它不一定存在,也就是说,C-R不等式有时给出的 下界过小.
(3)当等号成立时, T 为达到方差下界的无偏估计, 此时称T 为g(θ)的有效估计。 有效估计一定是 UMVUE.(反之不真)
(2) I()的另一表达式为
I
(
)
E(
2
ln p(x; 2
)
),
(若
2
p(x; 2
)
存在)
例3 设总体为Poisson分布,即
p(x; ) x e , x 0,1, 2.....
x!
则 I ( ) 1 .
例4 设总体为指数分布Exp(1/θ),即
p(x; ) 1 exp{ x}, x 0, 0.
(1)是实数轴上的一个开区间
(2) 支撑S {x | p(x; ) 0}与无关;
(3) p(x; ) 存在且对中一切 有
p(x; )dx
p( x; )
dx
(4) E( ln p(x; ))2 存在
则称
I
(
)
def
E(
ln
p(x;
)
)2
为总体分布的Fisher信息量.
注:
(1)I(θ)越大,总体分布中包含未知参数的信息越多。
估计. 反之,却不一定成立.
由此, 求证T是g()的有效估计的步骤为:
(1) 验证T是g( )的无偏估计,即E(T ) g( );
第六章第三节
最小方差无偏估计
一、Rao-Blackwell定理 二、最小方差无偏估计 三、 Cramer-Rao不等式
最小方差无偏估计

xi 2
−
5s
2
,
ϕ
=0
,所以
1 n
n i =1
xi 2
− 5s2
是
µ 2 − 4σ 2 的ቤተ መጻሕፍቲ ባይዱ小方差无偏估计。
7.
设总体的概率函数为
p(x;θ
)
,满足定义
6.3.1
的条件,若二阶导数
∂2 ∂θ 2
p(x;θ ) 对一
切的θ ∈ Θ 存在,证明费歇信息量
I (θ ) = −E( ∂2 ln p(x;θ )) ∂θ 2
2.3 节 最小方差无偏估计 内容概要
1、一致最小方差无偏估计
设θˆ 是θ 的一个无偏估计,如果对另外任意一个θ 的无偏估计θ~ ,在参数空间 Θ = {θ}
上都有
Varθ (θˆ) ≤ Varθ (θ~)
则称θˆ 是θ 的一致最小方差无偏估计,简记为 UMVUE。
2、判断准则
设 θˆ = θ (x1, , xn ) 是 θ 的 一 个 无 偏 估 计 , Var(θˆ) < ∞ 。 如 果 对 任 意 一 个 满 足
分为 0 的项,有
∫ ∫ ∑ ( ) ∑ ∞ −∞
ϕ x ⋅ ∞ n 2
−∞ i=1 i
2πσ 2
−n 2
exp
−
1 2σ
2
n i=1
xi2
+
nx σ2
µ
−
nµ 2 2σ 2
dx1
dxn = 0
∑ ( ) n
这表明 E(ϕ ⋅ xi2 ) = 0 ,由此可得到 E s2ϕ = 0 ,因而
注意到 g = E(gˆ | T ) ,这说明
最小方差无偏估计

是其样本,T=T(x1, x2 , …, xn )是 的充分统计量,则
对 的任一无偏估计
,令 ,
则 也是 的无偏估计,且
定理6.3.2说明:如果无偏估计不是充分统计 量的函数,则将之对充分统计量求条件期 望可以得到一个新的无偏估计,该估计的 方差比原来的估计的方差要小,从而降低 了无偏估计的方差。换言之,考虑 的估 计问题只需要在基于充分统计量的函数中 进行即可,该说法对所有的统计推断问题 都是正确的,这便是所谓的充分性原则。
(5) 期望
存在;则称
为总体分布的费希尔(Fisher) 信息量。
费希尔信息量是数理统计学中一个基本概念, 很多的统计结果都与费希尔信息量有关。如 极大似然估计的渐近方差,无偏估计的方差
的下界等都与费希尔信息量I( )有关。I( )的 种种性质显示,“I( )越大”可被解释为总 体分布中包含未知参数 的信息越多。
一个无偏估计,
存在,且对一切∈Θ ,
微分可在积分号下进行,则有
➢ 上式称为克拉美-罗(C-R)不等式;
➢ [g’(θ)]2/(nI( ))称为g( )的无偏估计的方差 的C-R下界,简称g( )的C-R下界。
➢ 特别,对 的无偏估计 ,有
;
➢ 如果等号成立,则称 T=T(x1, …, xn) 是
g( )的有效估计,有效估计一定是UMVUE。
例6.3.3 设总体为泊松分布P()分布,则
于是
例6.3.4 设总体为指数分布,其密度函数为 可以验证定义6.3.2的条件满足,且 于是
定理6.3.4(Cramer-Rao不等式)
设定义6.3.2的条件满足,x1, x2 , …, xn 是来自
该总体的样本,T=T(x1, x2 , …, xn )是g( )的任
最小方差无偏估计

最小方差无偏估计⏹最小方差无偏估计的定义⏹RBLS定理⏹计算实例1. 最小方差无偏估计的定义对于未知常数的估计不宜采用最小均方估计,但可以约束偏差项为零的条件下,使方差最小。
定义:最小方差无偏估计定义为约束估计是无偏的条件下,使方差{}{}22ˆˆˆˆ()[()]()minVar E E E θ=θ-θ=θ-θ→估计的均方误差为22ˆˆˆˆ(){[]}()[()]Mse E Var E θ=θ-θ=θ+θ-θ偏差项估计方差在前面讨论的有效估计量是无偏的,且方差达到CRLB,所以有效估计量是最小方差无偏估计。
如果有效估计量不存在,如何求最小方差无偏估计呢?这时可利用RBLS定理求解。
2. RBLS(Rao-Blackwell-Lehmann-Scheffe)定理如果是一个无偏估计、是一个充分统计量,那么是:(1) θ的一个可用的估计(a valid estimator);(2) 无偏;(3) 对所有的θ,方差小于等于的方差。
θ()T z ˆ(|())E T θ=θz θ如果充分统计量是完备的,则是最小方差无偏估计。
()T z ˆ(|())E T θ=θz 完备: 只存在唯一的T (z)的函数,使其无偏。
例1:高斯白噪声中未知常数的估计0,1,...,1i iz A w i N =+=-iw 其中是均值为零、方差为σ2高斯白噪声序列。
求最小方差无偏估计。
解:首先找一个无偏估计,很显然是无偏。
1A z =其次,求A 的充分统计量,由前面的例题可知,是A 的充分统计量。
1()N i i T z -==∑z 3. 计算举例接着求条件数学期望()ˆ|()AE A T =z 由高斯随机变量理论:1(|)()(,)(())(())E x y E x Cov x y Var y y E y -=+-2()~(,)T N NA N σz 而1121100(,())()N N i i i i Cov A T E z A z NA E w w --==⎧⎫⎧⎫⎛⎫=--==σ⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎩⎭∑∑z ()11221001ˆ|()()N N i i i i A E A T A N z NA z N ---==⎛⎫==+σσ-= ⎪⎝⎭∑∑z由于完备的充分统计量只存在一个唯一的函数使其无偏,所以最小方差无偏估计量也可以通过下面的方法求解:假定T(z)是完备的充分统计量,那么ˆ(())g T θ=z 在刚才的例题中,10()N ii T z -==∑z 2.1.3 计算举例例2: 假定观测为其中为独立同分布噪声,且,求均值θ=β/2的最小方差无偏估计。
4-一致最小方差无偏估计

例 设总体为泊松分布 ( ), 计算Fisher信息量. P 解 P( )的分布列为 x p( x; ) e , x 0 ,1, , x! 可以看出正则条件满足 ,且
于是
ln p( x; ) xln ln( x! ) , x ln p( x; ) 1.
关于相合性的两个常用结论
1. 样本 k 阶原点矩是总体 k 由大数定律证明 阶原点矩的相合估计.
ˆ 2. 设 n是 的无偏估计 ˆ 量, 且 lim Var( n ) , 则 0
ˆ n 是 的相合估计.
n
用切比雪夫不 等式证明
ˆ ˆ 定理 设θn θn ( x1 ,x2 , xn )是的一个估计量, ˆ ˆ lim E (θn ) θ, lim Var( θn ) 0 , 若
注:定理说明若无偏估 计不是充分统计量的函 数, 则将其对充分统计量求 条件期望可以得到一个 新 的无偏估计,从而降低 了无偏估计的方差 .
统计的一个基本原则: 在充分统计量存在时, 任何统计推断可以基于 充分 统计量进行,这可以简 化统计推断的程序,通 常将该原 则称为充分性原则 .
例1 设X 1 , X 2 , , X n 是来自b(1, p)的样本,则X是p 的充分统计量.求 p 2的无偏估计.
推广
ˆ ˆ 定理 若 n1, , nk 分别是 1, , k的相合估计, g( 1, , k )是 1, , k的连续函数,则 ˆ ˆ ˆ g( , , )是的相合估计.
n1 nk
注: 样本均值是总体均值的 相合估计
样本方差是总体方差的 相合估计 样本标准差是总体标准 差的相合估计
相合估计量仅在样本容量 n 足够大时,才显示其优越性.
数理统计:最小方差无偏估计

2
Eˆ
2
2E
ˆ
Eˆ
Eˆ
=E
ˆ Eˆ
2
Eˆ
2
注意: 和Eˆ都是定值.
Var ˆ [Bias(ˆ)]2
定义:Bias(ˆ)=E(ˆ)
方差
随机误差 (有效性)
偏倚平方 系统误差 (无偏性)
7
为了说明UMVUE的计算方法,需要用到条件期望, 回顾如下。
1. 条件期望定义
若随机变量Y 在 X x 条件下的分布为 f ( y | x) ,且
则称
y f (y | x) , 或者 y f ( y | x)dy - y
E Y | X x y f ( y | x) (离散型)
ci为任意常数,i 0,1, , n
E
c0
n
ci
Xi
|
T
c0
n
ciE Xi | T
i1
i1
(2) E E X T EX . (重期望公式)
内层:给定T时,关于X求条件期望.
外层:是T的函数,关于T求期望。
11
(3) E[g(T)X|T]=g(T) E[X|T], 其中g(t)是任何实值函数;
E(X |Y y)
E(X |Y )
Y取确定值y的条件下
Y取值随机的条件下
若记 g( y) E( X |Y y), 则 g(Y ) E( X |Y ) 作为随机变量Y
的函数, 我们可称之为在给定Y的条件下X的条件期望, 它是随机变量.
最小方差无偏估计有效估计

f
(xj
,
) dx
j
0
则有 E( ln L( x, ))2 n E( ln f ( x, ))2 nI( )
i 1
综上所述
( g'( ))2
D(T ( X ))
nI( )
例4(p55例2.22)
设X1, X2 ,L
,
X
是来自泊松分布
n
P ( )的一个样本,试求的无偏估计的方差下界。
解 由于f ( x;) x e , E( X ) , D( X ) ,
L( x, )}{ L( x, ) L( x, )}dx L( x, )
由施瓦兹不等式可知
( g'( ))2 {(T ( x) g( ))2 L( x, )dx
1
L( x,
)
L( x,
(
) )2 dx
D(T ( X
))
1
L( x, )
( L( x, ))2dx
D(T( X
))
(
ln
L( x,
X ;
))2
0
则对一切 ,有 D(T( X )) (g'( ))2 ,其中 nI( )
(g'( ))2 为罗-克拉美下界,I( )称为Fisher信息量。 nI( )
特别是当g( ) 时,有 D(T ( X )) 1 . nI( )
由此可见,统计量的方差不可以无限的小,存在 下界。当其方差达到下界,它一定是MVUE. 但最小 方差无偏估计不一定达到下界.
1),因而D(Sn*2 )
2 4
. n 1
3、有效估计
定义2.8 设ˆ(或T( X ))是 (或g( ))的一个无偏估计,若
最小方差无偏估计

^
是 g(θ) 的 UMVUE 的充要条件为:
ˆ ,U ) E ( g ˆ U ) 0, U U 0 , Cov ( g
上述条件等价于 g(θ) 的 UMVUE g ( x) 与任意一个 0的无偏估计都不相关。
定义2.3.3:假如参数的无偏估计存在,则称此参数为
可估参数。 定义2.3.4:设 F ={p(x; θ): θ∈Θ}是一个参数分布族。 g(θ) 是 Θ 上的一个可估参数,Ug 是 g(θ) 的无偏估计类。 假如 g ( x) 是这样的一个无偏估计,对一切 g ( x) U ( g ), 有
^*
上式左端作为a的二次多项式,可求得: ˆ ( )) Cov 2 (U , g 左端最小值为 0 Var (U )
ˆ ( )) 0. 因此Cov (U , g
(充分性“” ) 设g ˆ ( )满足Cov ( g ˆ ,U ) 0, U U 0 , .
~( ) - g ˆ ( ), 对任意一个其它的无偏估计g ( ), 令U g ~( ) - g ˆ ( )为0的无偏估计。 则U g ~( )) Var (U g ˆ ( )) 则 : Var( g
但当估计类缩小时,一致最小均方差估计有可能存在。
三、一致最小方差无偏估计
由上一节知,一致最小均方误差估计不存在。我们现在把
范围缩小到无偏估计来考虑。 由 MSE 的定义可知无偏估计的均方误差就是方差。所以最
好的无偏估计就是方差最小的无偏估计。 这里我们将参数 θ 用其函数 g(θ) 代替,g(θ) 的估计用
均方误差要求系统偏差和随机误差越小越好
例2.3.3:设 x1, x2, …, xn是来自正态分布 N(μ, σ2) 的一个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中等号成立的充要条件为X与 (Y)几乎处处相等. 将之应用在参数估计中可得:
E (Y ) ,Var ( (Y )) Var ( X )
定理2: 设总体的概率函数为p(x;θ),
ˆ 也是的无偏估计,且Var Var
是样本, T T ( x1 , , xn ) 是θ的充分统计量, ˆ ( x , , x ), 令 E( ˆ | T ), 则 对θ的任一无偏估计 1 n
x1 ,
, xn
注:定理2表明:
若无偏估计不是充分统计量的函数,则将之对充分 统计量求条件期望可得一个新的无偏估计,且它为充分统计量的函
即, 考虑点估计只需在充分统计量的 函数中进行, 这就是 — 充分性原则. 例1.设 ( x1 , , xn ) 为来自b(1,p) 的样本, 求p2的U.E
数且方差会减小.
i 1
ˆ | T t ), 其中t (t )=E ( xi 1
t (t 1)
故 =
T (T 1) n( n 1)
n ( n 1)
为θ的无偏估计.且 Var ( ) Var ( 1 )
二、最小方差无偏估计
ˆ是的一个无偏估计量, 若对于的任一方差 定义: 设 存在的无偏估计量 , 都有 ˆ) Var ( ) , Var ( ˆ是 的一致最小方差无偏估计, 记为UMVUE. 则称
注: 一致最小方差无偏估计是一种最优估计.由定理2, 只要它存在.它一定是充分统计量的函数.一般地,若依赖 于充分统计量的无偏估计只有一个,它一定是UMVUE. Problem: 无偏估计的方差是否可以任意小? 如果不能任意小, 那么它的下界是什么?
定理3: (UMVUE准则) 设 x1 , , xn 是总体X的样本, ˆ ( x , , x ) 是θ的任一无偏估计, Var
1 n
如果对任一个满足 E ( x1 , , xn ) 0 的 ( x1 , , xn ), 都有
Cov ( , ) 0, ˆ是的UMVUE. 反之亦成立. 则
例2: n 设x1 ,
i 1
T xi 为θ 的充分统计量,证明:
, xn
为来自Exp(1/θ) 的样本,则
第六章 第三节
最小方差无偏估计
一、Rao-Blackwell定理 二、最小方差无偏估计 三、 Cramer-Rao不等式
一、Rao-Blackwell 定理
优良的无偏估计都是充分统计量的函数.
定理1: 则有
设X和Y是两个r.v.,EX=μ,VarX>0,令 ( y) E ( X | Y y)
T 为θ的UMVUE. x n
三、罗-克拉美(Cramer–Rao )不等式
1、 Fisher信息量的定义. 设总体X 的概率函数为p(x; ),,且满足条件: (1)是实数轴上的一个开区间;
正 则 条 件
Байду номын сангаас
ln p( x; ) 2 则称 I ( ) E ( ) 为总体分布的Fisher信息量.
泊松分布 X ~ P( ), 0. 指数分布
I ( )
1
X ~ Exp( ),
I ( ) 2
正态分布 X ~ N ( ,1),
X ~ N (0, ),
2
I ( ) 1
I ( )
2
1 2 4
0 1 2 4
X ~ N ( , ),
x
x!
e , x 0,1, 2.....
.
例4: 设总体为指数分布Exp(1/θ),即
p ( x; )
则 I ( )
1
1
.
exp{ }, x 0, 0.
x
2
注: 常见分布的信息量 I()公式
1 两点分布X ~ b(1,p) I ( p) p (1 p ) P( X x) p x (1 p)1 x , x 0,1
注:
(1)I(θ)越大,总体分布中包含未知参数的信息越多。 (2) I()的另一表达式为
2 ln p( x; ) I ( ) E ( ), 2 2 p( x; ) ( 存在,满足正则条件) 2
例3:设总体为Poisson分布,即
p( x; )
则 I ( ) 1
解:前已求过: x (或T nx) 为p 的充分统计量 1 , x1 1, x2 1 令θ=p2 , 则 ˆ1 为θ的无偏估计.
进一步改进:
n i 1
0,
else
因为 T
xi 是充分统计量
n
,由定理2, 从而可令 =E ( 1 | T ) (T ), 可得 (t )=
2
1 2 2 I ( , ) 0
2、定理4 (Cramer-Rao不等式):
设总体X 的概率函数为p(x ; ),, 满足上面定义 中的条件;x1,….,xn 是来自总体X的一个样本, T(x1,….,xn ) 是g( )的一个无偏估计. g ( ) g ( ) 存在, 且对中一切 有 n g ( ) T ( x1 , x2 , , xn ) p( xi ; )dx1 dxn
def
(2) 支撑S {x | p( x; ) 0}与 无关; p ( x; ) (3) 存在且对中一切 有 p ( x; ) p ( x; )dx dx ln p( x; ) 2 (4) E ( ) 存在
的微分可在积分号下进行,即
g ( )
i 1
T ( x1 , x2 ,
n , xn ) ( p( xi ; ))dx1 i 1 n
dxn
i 1
T ( x1 , x2 ,
n , xn )[ ln( p( xi ; ))] i 1
p( x ; )dx