初三中考压轴题专题——y与x的函数关系式

合集下载

数学中考数学压轴题知识点及练习题附解析

数学中考数学压轴题知识点及练习题附解析

一、中考数学压轴题1.已知:菱形ABCD,点E 在线段BC 上,连接DE,点F 在线段AB 上,连接CF、DF, CF 与DE 交于点G,将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上.(1)求证:CD=CF;(2)设∠CED= x,∠DCF= y,求y 与x 的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,当x=45°时,以CD 为底边作等腰△CDK,顶角顶点K 在菱形ABCD 的内部,连接GK,若GK∥CD,CD=4 时,求线段KG 的长.2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.3.如图,AB∥CD,定点E,F分别在直线AB,CD上,平行线AB,CD之间有一动点P.(1)如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为.(2)如图3,当∠EPF=90°,F P平分∠EFC时,求证:EP平分∠AEF;(3)如图4,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=.②猜想∠EPF与∠EQF的数量关系,并说明理由;4.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.5.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 6.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.7.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.8.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.9.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC =-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.10.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 上以每秒3的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.11.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.12.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.13.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+6214.在菱形ABCD 中,点P 是对角线BD 上一点,点M 在CB 的延长线上,且PC PM =, 连接PA .()1如图①,求证:PA PM =;()2如图②,连接,AM PM 与AB 交于点,120O ADC ︒∠=求证 =PC AM ;()3连接AM ,当 90ADC ︒∠=时,PC 与AM 的数量关系是15.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.16.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.17.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).18.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.19.已知:AB 为⊙O 的直径,点C 为弧AB 的中点,点D 为⊙O 上一点,连接CD ,交AB 于点M ,AE 为∠DAM 的平分线,交CD 于点E .(1)如图1,连接BE ,若∠ACD=22°,求∠MBE 的度数;(2) 如图2,连接DO 并延长,交⊙O 于点F ,连接AF ,交CD 于点N .①求证:DM 2+CN 2=CM 2;②如图3,当AD=1,AB=10时,请直接写出....线段ME 的长. 20.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 21.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.22.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC .(2)若⊙O 的半径为5,求CA •CE 的最大值.(3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y ,①求y 关于x 的函数解析式;②若CB BE =45,求y 的值. 23.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).24.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.25.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.D解析:(1)见解析;(2)y=1603x +;(2)2 【解析】【分析】(1)根据翻折的性质得△DFG ≌△DFA ,从而推导得出∠FDC=∠DFG ,进而得到CF=DC ; (2)在等腰△DGC 和等腰△CFD 中,可用y 表示出∠GDC 、∠FDC 的值,从而求出∠ADF ,根据∠ADE=∠DEC ,得出y 与x 的关系式;(3)先证△KCD 是等腰直角三角形,根据CD 的长得到KC 的值,然后再△KGC 中求得KG 的值.【详解】(1)∵将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上∴△DFG ≌△DFA ,∠AFD=∠FDC∴∠AFD=∠DFG∴∠FDC=∠DFG∴CF=DC ;(2)∵AD=DG=DC=FC ,∠DCF=y∴在△DGC 中,∠DGC=y ,∠GDC=180-2y在△CFD 中,∠CFD=∠CDF=902y -∴∠FDG=∠FDC -∠GDC=3902y - ∴∠ADF=∠FDG=3902y -,∴∠ADE=3y -180 ∵AD ∥BC∴∠ADE=∠DEC ,即3y -180=x化简得:y=1603x +; (3)如下图,过点K 作CD 的垂线,交CD 于点I ,延长KG 交BC 于点L ,过点C 作GL 的垂线,交GL 于点Q ,过点C 作GD 的垂线,交GD 于点N ,∵x=45°,∴y=75°,∠ADE=x=45°∴∠DGC=∠DCG=75°,∴∠NDC=30°,∴∠ADC=45°+30°=75°,∵四边形ABCD是菱形,∴∠B=75°,∵KG∥DC,∴KG∥AB,∠KGD=∠NDC=30°,∴∠GLC=∠B=75°,∠KGC=30°+75°=105°,∴∠LGC=75°,∴∠CGL=∠CGN,∴GC是∠LGN的角平分线,∴CQ=CN,∵CD=4,∠CDE=30°,∴在Rt△CND中,CN=2,∴CQ=2,∵KG∥CD,∴∠QKI=∠KIC=90°∵CQ⊥KL∴四边形CQKI是矩形,∵CK=KD,KI⊥CD,∴CI=ID=2,∴CI=CQ=2,∴矩形CQKI是正方形∴IK=CQ=2,∴在Rt△KIC中,CK=22,如下图,过点G作CK的垂线,交CK于点M,∴△KGM是等腰直角三角形,△GMC是直角三角形,且∠C=30°,设GM=x,则在Rt△GKM中,KM=GM=x,在Rt△GMC中,CG=2x,3x,∴322解得:62∴2=232x.【点睛】本题考查菱形的性质和翻折的性质,需要注意,翻折后的图形和翻折前的图形时完全相等的,这个条件不可忽略.2.B解析:(1)①(2,0),(12),(﹣12y2x;③y=﹣22x2;(2)①半径为2,M(3333);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC =CD =1,OA =BC =2,∴BD =OE =1,OD =CF =BE=2, ∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE ∥OD 交OA 于E ,作PM ∥OD 交OA 于M .∵OD ∥BE ,OD ∥PM ,∴BE ∥PM ,∴BE OE PM OM=, ∴21y x=, ∴y =2x .故答案为:y =2x .③如图2﹣3中,作QM ∥OA 交OD 于M .222MQ DM OA DOx y ∴=-∴= ∴222y x =-+故答案为:y=﹣22x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=23,∴OF=FA=3,∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN=233,ON=2MN=433,∴M4323,33⎛⎫⎪ ⎪⎝⎭.②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=3∴△MKO是等边三角形,∴MN=3,当FN=1时,MF=3﹣1=2,当EN=1时,ME=3+1=4,观察图象可知当⊙M的半径r的取值范围为2<r<4.故答案为:2<r<4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.E解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)①150°,∠EQF=180°-12∠EPF【解析】【分析】(1)如下图,过点P作AB的平行线,根据平行线的性质可推导出角度关系;(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP;(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出∠PEQ+∠PFQ=150°,最后在四边形EPFQ中得出结论;②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出∠PEQ+∠PFQ=180°-1EPF2,最后在四边形EPFQ中得出结论.【详解】(1)如下图,过点P作PQ∥AB∵PQ∥AB,AB∥CD,∴PQ∥CD ∴∠AEP=∠EPQ,∠QPF=∠PFC 又∵∠EPF=∠EPQ+∠QPF∴∠EPF=∠AEP+∠PFC如下图,过点P作PQ∥AB同理,AB ∥QP ∥CD∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360°(2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90°∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90°∴∠PEF+∠PFE=∠AEP+∠PFC∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300°∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=150°在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=∠QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=()1360EPF 2∠︒-=180°-1EPF 2∠ ∴在四边形PEQF 中: ∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1EPF 2∠ 【点睛】本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.4.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.5.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x =的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x =的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=; 故答案为:0;(2)若点(,)p q 在反比例函数8y x =的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x =的图象上 ∴8q p=代入方程260px x q -+=得: 2860px x p -+=解得:12x p =,24x p = ∵1212x x = ∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-== 又∵方程20ax bx c ++=是半等分根方程∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x = 所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.6.E解析:(1)EF =,见解析;(2)BK =;(3)①AGH 是等边三角形,见解析;②14 【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到AE =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到1DH =,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)EF =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F ,1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=. //AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.7.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤.【解析】【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可.【详解】(1)()1,2D -到线段BC 的距离为2,22(12)(20)1332DC =--+-=<⨯∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,22(12)(10)103EC =--+-=>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,22(02)(20)2232FC =-+-=<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=,得1131m =+,2131m =-当点在O 内部时,22224(2)3(44(2))m m m m ++-+≥--+-+解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为1312m -≤≤-或0131m ≤≤+;(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.8.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°【解析】【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF ∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO 一定要小于90°,注意解得取舍.【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。

2021年中考数学压轴题提升训练实际问题中的方程组与函数题型含解析

2021年中考数学压轴题提升训练实际问题中的方程组与函数题型含解析

实际问题中的方程(组)与函数题型【例1】俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%,在试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售,设每天销售量为y本,销售单价为x元.(1)请直接写出y与x直接的函数关系式及x的取值范围;(2)当每本足球纪念册的销售单价是多少元时,商店每天获利2400元?(3)当每本足球纪念册的销售单价是多少元时,商店每天的利润w最大?最大利润是多少元?【答案】见解析.【解析】解:(1)y=300-10(x-44),整理得:y=-10x+740,(44≤x≤52);(2)由题意得:(x-40)(-10x+740)=2400,解得:x=50,x=64(舍),即当每本足球纪念册的销售单价是50元时,商店每天获利2400元.(3)由题意得:w=(x-40)(-10x+740)=-10(x-57)2+2890∵-10<0,对称轴为x=57,∴当x<57时,w随x增大而增大,∵44≤x≤52,∴当x=52时,w取最大值,最大为2640元,即当每本足球纪念册的销售单价是52元时,商店每天的利润最大,最大利润是2640元.【例2】某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若购买以上两种牲畜共50头,并使这50头的成活率不低于97%,且要使购买的总费用最低,应如何购买?【答案】见解析.【解析】解:(1)设甲种牲畜的单价为x元,由题意得:3x+2x+3000=7500,解得:x=1100,2×1100+200=2400,即甲种牲畜的单价为1100元,乙种牲畜的单价为2400元.(2)设购买甲种牲畜m头时,总购买费用为w元,则w=1100m+2400(50-m)=-1300m+120000,由题意知:95%m+99%(50-m)≥97%×50,解得:m≤25,即0≤m≤25,∵-1300<0,∴w随m的增大而减小,当m=25时,w取最小值,即费用最低,∴购买两种牛各25头时,费用最低.【变式2-1】水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)【答案】见解析.【解析】解:(1)设现在实际购进这种水果价格为每千克a元,则原来价格为每千克(a+2)元,由题意,得:80(a+2)=88a,解得:a =20.即现在实际购进这种水果每千克20元;(2)①设y 与x 之间的函数关系式为:y =kx +b ,将(25,165),(35,55)代入y =kx +b 得,251653555k b k b +=⎧⎨+=⎩, 解得:11440k b =-⎧⎨=⎩, 即y 与x 之间的函数关系式为:y =﹣11x +440;②设这种水果的销售价格为x 元/千克时,利润为w 元,则w =(x ﹣20)y=(x ﹣20)(﹣11x +440)=﹣11(x ﹣30)2+1100,∵﹣11<0,∴当x =30时,w 有最大值,最大值为1100.即这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元.【例3】在江苏卫视《最强大脑》节目中,搭载百度大脑的机器人小度以3:1的总成绩,,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?【答案】见解析.【解析】解:(1)设该商家第一次购进机器人x 个, 由题意得:1100024000102x x+=, 解得:x =100.经检验,x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.(2)设每个机器人的标价是a 元.由题意得:a ﹣11000﹣24000≥×20%,解得:a ≥140.答:每个机器人的标价至少是140元.【变式3-1】由于技术更新,智能电视的功能越来越强大,价格也逐渐下降,某电器商行经营的A 款40英寸智能电视去年销售总额为5万元,今年每台销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 款40英寸智能电视每台售价多少元?(用列方程的方法解答)(2)该电器商行计划新进一批A 款40英寸智能电视和新款B 款40英寸智能电视共60台,且B 款40英寸智能电视的进货数量不超过A 款40英寸智能电视数量的两倍,应如何进货才能使这批智能电视获利最多?A ,B 两款40英寸智能电视的进货和销售价格如下表:【答案】见解析.【解析】解:设今年A 款40英寸智能电视每台售价为x 元,则去年每台售价为(x +400)元,由题意得: ()50000120%50000400x x⨯-=+, 解得:x =1600,经检验,x =1600是原方程的解,符合题意,∴今年A 款40英寸智能电视每台售价为1600元.(2)设购进A 款电视a 台,则购进B 款(60-a )台,此时获利y 元,y =(1600-1100)a +(2000-1400)(60-a )=-100a +36000,其中:60-a ≤2a ,0≤a ≤60,即20≤a ≤60,且a 为整数;∵-100<0,∴y 随a 的增大而减小,当a =20时,y 取最大值,即当进A 款电视20台,B 款电视40台时,获利最大.【例4】紫石中学为了给同学们提供更好的学习环境,计划购买一批桂花树和香樟树来绿化校园,经市场调查发现购买2棵桂花树3棵香樟树共需360元,购买3棵桂花树2棵香樟树共需340元.(1)桂花树香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于桂花树的1.5倍,请你算算,该校本次购买桂花树和香樟树共有哪几种方案.【答案】见解析.【解析】解:(1)设桂花每棵x 元,香樟树每棵y 元,由题意得:2336032340x y x y +=⎧⎨+=⎩, 解得:x =60,y =80,答:桂花树每棵60元,香樟树每棵80元.(2)设桂花树购买x 棵,则香樟树购买(150-a )棵,由题意得:()608015010840150 1.5x x x a ⎧+-≤⎨-≥⎩, 解得:58≤x ≤60,∴有三种购买方案:桂花树58棵,香樟树92棵;桂花树59棵,香樟树91棵;桂花树60棵,香樟树90棵.【变式4-1】冬季来临,某网店准备在厂家购进 A ,B 两种暖手宝共 100 个用于销售,若购买 A 种暖手宝 8 个,B 种暖手宝 3 个,需要 950 元;若购买 A 种暖手宝 5 个,B 种暖手宝 6 个,则需要 800 元.(1)购买 A ,B 两种暖手宝每个各需多少元?(2)①由于资金限制,用于购买这两种暖手宝的资金不能超过 7 650 元,设购买 A 种暖手宝 m 个,求②在①的条件下,购进A种暖手宝不能少于 50 个,则有哪几种购买方案?(3)购买后,若一个A种暖手宝运费为 5 元,一个B种暖手宝运费为 4 元, 在第(2)问的各种购买方案中,购买 100 个暖手宝,哪一种购买方案所付的运费最少?最少运费是多少元?【答案】见解析.【解析】解:(1)设A、B两种暖手宝的价格分别为x元/个、y元/个,由题意得:83950 56800x yx y+=⎧⎨+=⎩,解得:x=100,y=50,即A、B两种暖手宝的价格分别为100元/个,50元/个.(2)①由题意得:100m+50(100-m)≤7650,解得:m≤53,∴m的取值范围是:0≤m≤53,且m为整数;②∵50≤m≤53,∴共有以下四种购买方案,A种50个,B种50个;A种51个,B种49个;A种52个,B种48个;A种53个,B种47个;(3)设总运费为w元,则:w=5m+4(100-m)=m+400,∵1>0,∴w随m的增大而增大,当m=50时,运费最少,最少为450元,∴当购买A种产品50个,B种产品50个时,总运费最少,最少为450元 .1.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户, 经市场调查得知,种植草莓不超过20 亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1 500 m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过 15 亩时,每亩可获得利润 1800 元;超过 15 亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系式为z=-20x+2 100.(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量(2)如果小王家计划承包40 亩荒山种植草莓和樱桃,当种植樱桃面积(x 亩)满足0<x <20时,求小王家总共获得的利润w (元)的最大值.【答案】见解析.【解析】解:(1)由题意得:()()2180001520210015x x p x x x ⎧<≤⎪=⎨-+>⎪⎩(2)种植樱桃面积x 亩,则种植草莓面积(40-x )亩,由题意知,①当0<x ≤15时,w =1800x +1380(40-x )+2400=420x +57600,∵420>0,∴w 随x 的增大而增大,当x =15时,w 最大,最大值为63900,②当15<x ≤20时,w =-20x 2+2100x +1380(40-x )+2400=-20(x -18)2+64080,∵-20<0,∴当x =18时,w 取最大值,最大值为64080,∵64080>63900,∴当x =18时,小王家总共获得的利润w 取最大值,最大值为64080元.2.某游乐园的门票销售分两类:一类个人门票,分为成人票,儿童票;一类为团体门票(一次购买门票 10 张及以上),每张门票在成人票价格基础上打 6 折.已知一个成人带两个儿童购门票需 80 元;两个成人带一个儿童购门票需 100 元.(1)每张成人票和儿童票的价格分别是多少元?(2)光明小学 4 名老师带领 x 名儿童到该游乐园,设购买门票需 y 元.①若每人分别购票,求 y 与 x 之间的函数关系式;②若购买团体票,求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围;③请根据儿童人数变化设计一种比较省钱的购票方案.【答案】见解析.【解析】解:设成人票每张a元,儿童票每张b元,由题意得:a+2b=80,2a+b=100,解得:a=40,b=20,即成人票每张40元,儿童票每张20元;(2)①y=4×40+20x=160+20x②y=40×0.6(x+4)=24x+96,由x+4≥10,得x≥6,且x为整数.③(i)当160+20x>24x+96,即x<16,∴当6≤x<16且x为整数时,应全部购买团体票较为优惠;(ii)当160+20x=24x+96,即x=16,∴当x=16时,购买团体票或分别购买均可以;(iii)当160+20x<24x+96,即x>16,∴当x>16且x为整数时,应分别购买较为优惠.3..近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加,某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表:(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共 80 台,其中B型空气净化器的进货量不多于A 型空气净化器的 2 倍,为使该公司销售完这 80 台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为 200 m3/小时,B型空气净化器的净化能力为 300 m3/小时,某长方体室内活动场地的总面积为 200 m2,室内墙高 3 m,该场地负责人计划购买 5 台空气净化器每天花费30 分钟将室内空气净化一新,若不考虑空气对流等因素,至多要购买A型空气净化器多少台?【答案】见解析.【解析】解:(1)设每台A型空气净化器和B型空气净化器的销售利润分别是x元,y元,由题意得:5395034900x yx y+=⎧⎨+=⎩,解得:x=100,y=150,∴每台A型空气净化器和B型空气净化器的销售利润分别是100元,150元. (2)设购买A型m台,则购进B型(80-x)台,利此时润为w元,由题意知:80-m≤2m,0≤m≤80,m为整数可得:803≤m≤80,m为整数,W=100m+150(80-m)=-50m+12000,∵-50<0,∴w随m的增大而减小,当m=27时,w取最大值,80-27=53,即购进A型27台,B型53台时,售完后获利最大. (3)设购买A型a台,则够买B型(5-a)台,∴12×200a+12×300(5-a)≥200×3,解得:a≤3,∵0≤a≤5,∴0≤a≤3,且a为整数,即至多要购买A型空气净化器3台.4.某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x(天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x(天)之间的函数关系式.(1)求y关于x和p关于x的函数关系式;(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?【答案】见解析.【解析】解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵直线y=k1x过点(15,45),∴15k1=45,解得k1=3,∴y=3x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b, ∵点(15,45),(20,0)在y=k2x+b的图象上,∴15k2+b=45, 20k2+b=0解得:k2=-9,b=180∴y=﹣9x+180(15<x≤20);∴y与x之间的函数关系式为:y=3015 91801520x xx x≤≤⎧⎨-+<≤⎩.①当0≤x<10时,p=25,当10≤x≤20时,设销售单价p与销售时间x之间的函数解析式为:p=mx+n, ∵点(10,25),(20,15)在p=mx+n的图象上,∴10m+n=25,20m+n=15,解得:m=-1,n=35,∴p=﹣x+35(10≤x≤20),∴p=25010351020xx x≤<⎧⎨-+≤≤⎩;(2)若日销售量不低于36千克,即y≥36.当0≤x≤15时,y=3x,3x≥36,解得:x≥12;当15<x≤20时,y=﹣9x+180,﹣9x+180≥36,解得:x≤16,∴12≤x≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣x+35(10≤x≤20),k=﹣1<0,∴p随x的增大而减小,∴当12≤x≤16时,x取12时,p有最大值,此时p=﹣12+35=23.∴此次销售过程中“最佳销售期”共有5天,在此期间销售金额最高是第12天.5..某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和1个B品牌的计算器共需122元;购买1个A品牌和2个B品牌的计算器共需124元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店举行促销活动,具体办法如下:购买A品牌计算器按原价的九折销售,购买B 品牌计算器超出10个以上超出的部分按原价的八折销售.①设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;②小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过10个,问购买哪种品牌的计算器更合算?请说明理由.【答案】见解析.【解析】解:(1)设A品牌计算器的单价为m元,B品牌计算器的单价为n元,由题意得:2m+n=122,m+2n=124,解得:m=40,n=42,即A品牌计算器的单价为40元,B品牌计算器的单价为42元.(2)①由题意:y1=0.9×40x=36x,当0<x≤10时,y2=42x;当x>10时,y2=42×10+42(x﹣10)×0.8=33.6x+84.∴y2=42010 33.68410x xx x≤≤⎧⎨+>⎩.②当购买数量超过10个时,y2=33.6x+84.(i)当y1<y2时,36x<33.6x+84,即x<35,当10<x<35时,购买A品牌的计算器更合算;(ii)当y1=y2时,36x=33.6x+84,即x=35,∴当x=35时,购买两种品牌的计算器花费一样多;(iii)当y1>y2时,36x>33.6x+84,即x>35.∴当x>35时,购买B品牌的计算器更合算.6..某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.【答案】见解析.【解析】解:(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据题意,得:2x+y=56,x+2y=82,解得:x=10,y=36,即一根A型跳绳售价是10元,一根B型跳绳的售价是36元;(2)由m≤3(50﹣m),得:m≤37.5,∴0≤m≤37,且m为整数,设购进A型跳绳m根,总费用为W元,根据题意,得:W=10m+36(50﹣m)=﹣26m+1800,∵﹣26<0,∴W随m的增大而减小,∴当m=37时,W最小=838,即当购买A型跳绳37根,B型跳绳13根时,最省钱.7..为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购进A种树苗a棵,所需费用为W,求W与x的函数关系式;(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,由题意得:80x+60(17﹣x)=1220,解得:x=10,即购进A种树苗10棵,B种树苗7棵;(2)W与a的函数关系式:W=80a+60(17﹣a)=20a+1020;(3)由题意得:17-a<a,即a>8.5,∴8.5<a≤17,且a为整数,由(2)知,W=20a+1020,W随a的增大而增大,∴a=9时,即购买9棵A种树苗,8棵B种树苗时,费用最少,W=80×9+60×8=1200,即购买9棵A种树苗,8棵B种树苗时,费用最少,需要1200元.8..孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【答案】见解析.【解析】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:25600 3380x yx y+=⎧⎨+=⎩,解得:10080xy=⎧⎨=⎩,答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,有a≥3(100﹣a),解得:a≥75.设实际花费金额是y元,则:y=0.9[100a+80(100﹣a)]=18a+7200.∵18>0,∴y随a的增大而增大,∴当a=75时,y取最小值,即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.9..某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如下表:(1)如果在线下购买甲、乙两种书架共30个,花费8 280元,求甲、乙两种书架各购买了多少个?(2)如果在线上购买甲、乙两种书架共30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.【答案】见解析.【解析】解:(1)设线下购买甲种书架x个,乙种书架y个,由题意得:30 2403008280x yx y+=⎧⎨+=⎩,解得:1218 xy=⎧⎨=⎩,即线下购买甲种书架12个,乙种书架18个.(2)设购买甲种书架a个,则购买乙种书架(30-a)个,总花费为w元, ∵30-a≥3a,即a≤7.5(其中a为正整数),W=(210+20)a+(250+30)(30-a)=-50a+8400,∵-50<0,∴w随a的增大而减小,当a=7时,w最小,最小值为8050元,即当购买7个甲种书架,23个乙种书架时,总费用最低,最低为8050元.10..某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【答案】见解析.【解析】解:(1)设y与x之间的函数解析式为y=kx+b,由题意得:50100 6080k bk b+=⎧⎨+=⎩,解得:2200kb=-⎧⎨=⎩,y与x之间的函数表达式是:y=﹣2x+200;(2)由题意得,W=(x﹣40)(﹣2x+200)=﹣2(x﹣70)2+1800,(3)∵W=﹣2(x﹣70)2+1800,40≤x≤80,∵﹣2<0,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小, 且当x=70时,W取得最大值,此时W=1800.11..小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天; 信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表: 生产甲产品数(件) 生产乙产品数(件) 所用时间(分钟) 10 10 350 3020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【答案】见解析.【解析】解:(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟. 由题意得:10103503020850x y x y +=⎧⎨+=⎩,解得:x =15,y =20,即生产一件甲产品需要15分钟,生产一件乙产品需要20分钟.(2)设生产甲种产品共用x 分钟,则生产乙种产品用(25×8×60﹣x )=(12000-x )分钟,收入为w 元,则生产甲种产品15x 件,生产乙种产品1200020x-件. ∴w =1.5×15x +2.8×1200020x-=﹣0.04x +1680, ∵15x≥60,即:x ≥900, w =﹣0.04x +1680中,∵﹣0.04<0,∴w 随x 的增大而减小,∴当x =900时,w 取得最大值,最大值为:1644元, 则小王该月收入最多是1644+1900=3544元, 此时生产甲60件,乙555件,∴小王该月最多能得3544元,此时生产甲、乙两种产品分别60件,555件.12..“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B 售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m<15),B的售价不变,超市如何进货获利最大?【答案】见解析.【解析】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,由题意得:104065030x x=-,解得:x=80,经检验x=80是原分式方程的解,80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是 80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏, 根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得:40≤a≤55.∵a为整数,55-40+1=16,∴该超市有 16 种进货方案(3)设超市销售台灯所获总利润为w元,w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15①当 8<m<10 时,即 10﹣m>0,w随a的增大而增大,当a=55 时,所获总利润w最大,此时进货方案为:A品牌台灯 55 盏、B品牌台灯 45 盏;②当m=10 时,w=3000;当A品牌台灯数量满足 40≤a≤55时,利润均为 3000元;③当 10<m<15 时,即 10﹣m<0,w随a的增大而减小,当a=40 时,所获总利润w最大,此时进货方案为:A品牌台灯 40 盏、B品牌台灯 60 盏.13..为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入34万元.(1)种植A,B两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.【答案】见解析.【解析】解:(1)设种植A,B两种蔬菜,每亩各需分别投入x万元,y万元,由题意得:203036 302034 x yx y+=⎧⎨+=⎩解得:0.60.8xy=⎧⎨=⎩,即种植A,B两种蔬菜,每亩各需分别投入0.6万元,0.8万元. (2)由题意得:w=0.8m+1.2×1000.60.8m-=﹣0.1m+150 ∵1000.6m-≥0,∴0≤m≤5003,(3)∵m≥2×1000.60.8m-解得:m≥100在w=﹣0.1m+150中,∵﹣0.1<0,∴w随m的增大而减小,∴当m=100时,w取最大值为:140万元,∴1000.60.8m-=50即当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.14..2018年4月8日﹣11日,博鳌亚洲论坛2018年年会在海南省博鳌镇召开.本届博鳌亚洲论坛的主题为“开放创新的亚洲,繁荣发展的世界”.围绕这一主题,年会设置了“全球化与一带一路”“开放的亚洲”“创新”“改革再出发”四大板块,展开60多场正式讨论.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】见解析.【解析】解:(1)设甲种、乙种商品的销售单价分别是x元,y元,由题意,得:23 321500x yx y=⎧⎨-=⎩解得:x=900,y=600,.答:甲种商品的销售单价是900元,乙种商品的单价为600元(2)设销售甲种商品a万件,则销售乙种商品(8﹣a)万件,由题意,得:900a+600(8﹣a)≥5400解得:a≥2,即至少销售甲种商品2万件.15..某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B 型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【答案】见解析.【解析】解:(1)设每部A型手机的销售利润为x元,则每部B型手机的销售利润为(x-50)元,根据题意,得:3000200050x x=-,解得:x=150,经检验:x=50是原方程的解,150-50=100,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机(110﹣n)部,则y=150(110﹣n)+100n=﹣50n+16500,∵110﹣n≤2n,∴3623≤n≤110且n为整数,∴y关于n的函数关系式为y=﹣50n+16500 (3623≤n≤110且n为整数);②∵﹣50<0,∴y随n的增大而减小,∴当n=37时,y取得最大值,最大值为14650元,答:购进A型手机73部、B型手机37部时,销售总利润最大;(3)y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,3623≤n≤80,且n为整数),①当30<m<50时,y随n的增大而减小,当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,n取3623≤n≤80的整数时,获得最大利润;③当50<m<100时,y随n的增大而增大, ∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.16..某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,201520359000 10201052051600x yy x++⨯=⎧⎨+⨯=+⨯+⎩,解得:220260xy=⎧⎨=⎩,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,所需的费用为w元,由题意得:m≤3(40﹣m),即m≤30,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少为10000元.17..某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】见解析.。

2021年全国各地中考数学压轴题分类汇编(通用版)函数(二)(含答案与解析)

2021年全国各地中考数学压轴题分类汇编(通用版)函数(二)(含答案与解析)

2021年全国各地中考数学压轴题分类汇编(通用版)函数(二)参考答案与试题解析一.选择题(共7小题)1.(2021•丹东)如图,点A在曲线到y1=(x>0)上,点B在双曲线y2=(x<0)上,AB//x 轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值()A.﹣6B.﹣8C.﹣10D.﹣12解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A在曲线到y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.2.(2021•丹东)已知抛物线y=ax2+bx+c(a>0),且a+b+c=﹣,a﹣b+c=﹣.判断下列结论:①abc<0;②2a+2b+c>0;③抛物线与x轴正半轴必有一个交点;④当2≤x≤3时,y最小=3a;⑤该抛物线与直线y=x﹣c有两个交点,其中正确结论的个数()A.2B.3C.4D.5解:∵a+b+c=﹣,a﹣b+c=﹣,∴两式相减得b=,两式相加得c=﹣1﹣a,∴c<0,∵a>0,b>0,c<0,∴abc<0,故①正确;∴2a+2b+c=2a+2×﹣1﹣a=a>0,故②正确;∵当x=1时,则y=a+b+c=﹣,当x=﹣1时,则有y=a﹣b+c=﹣,∴当y=0时,则方程ax2+bx+c=0的两个根一个小于﹣1,一个根大于1,∴抛物线与x轴必有一个交点,故③正确;由题意知抛物线的对称轴为直线x==,∴当2≤x≤3时,y随x的增大而增大,∴当x=2时,有最小值,即为y=4a+2b+c=4a+1﹣1﹣a=3a,故④正确;联立抛物线y=ax2+bx+c及直线y=x﹣c可得:x﹣c=ax2+bx+c,整理得:,∴Δ=,∴该抛物线与直线y=x﹣c有两个交点,故⑤正确;∴正确的个数有5个;故选:D.3.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连结BC交x轴于点D.若点A的横坐标为1,BC =3BD,则点B的横坐标为()A.B.2C.D.3解:作BE⊥x轴于E,∴AC∥BE,∴△CDF∽△BDE,∴==,∵BC=3BD,∴==,∴CF=2BE,DF=2DE,设B(,b),∴C(1,﹣2b),∵函数y=﹣(x>0)的图象交于点C,∴﹣k=1×(﹣2b)=﹣2b,∴k=2b,∴B的横坐标为==2,故选:B.4.(2021•营口)如图,在平面直角坐标系中,菱形ABCD的边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数y=经过A,B两点,若菱形ABCD面积为8,则k值为()A.﹣8B.﹣2C.﹣8D.﹣6解:∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∵A、B两点的纵坐标分别是4、2,反比例函数y=经过A、B两点,∴x B=,x A=,即A(,4),B(,2),∴AB2=(﹣)2+(4﹣2)2=+4,∴BC=AB=,又∵菱形ABCD的面积为8,∴BC×(y A﹣y B)=8,即×(4﹣2)=8,整理得=4,解得k=±8,∵函数图象在第二象限,∴k<0,即k=﹣8,故选:A.5.(2021•陕西)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.6解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.6.(2021•本溪)如图,在矩形ABCD中,BC=1,∠ADB=60°,动点P沿折线AD→DB运动到点B,同时动点Q沿折线DB→BC运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,△PBQ的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.解:∵四边形ABCD是矩形,∴AD=BC=1,∠A=∠C=90°,AD∥BC,∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,∴BD=2AD=2,当点P在AD上时,S=•(2﹣2t)•(1﹣t)•sin60°=(1﹣t)2(0<t<1),当点P在线段BD上时,S=(4﹣2t)•(t﹣1)=﹣t2+t﹣(1<t≤2),观察图象可知,选项D满足条件,故选:D.7.(2021•陕西)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大解:设二次函数的解析式为y=ax2+bx+c,由题知,解得,∴二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x﹣)2﹣,∴(1)函数图象开口向上,(2)与x轴的交点为(4,0)和(﹣1,0),(3)当x=时,函数有最小值为﹣,(4)函数对称轴为直线x=,根据图象可知当x>时,y的值随x值的增大而增大,故选:C.二.填空题(共2小题)8.(2021•长春)如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F 两点.当四边形CDFE为正方形时,线段CD的长为﹣2+2.解:把A(2,4)代入y=ax2中得4=4a,解得a=1,∴y=x2,设点C横坐标为m,则CD=CE=2m,∴点E坐标为(m,4﹣2m),∴m2=4﹣2m,解得m=﹣1﹣(舍)或m=﹣1+.∴CD=2m=﹣2+2.故答案为:﹣2+2.9.(2021•陕西)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)解:∵2m﹣1<0(m<),∴图象位于二、四象限,在每一个象限内,y随x的增大而增大,又∵0<1<3,∴y1<y2,故答案为:<.三.解答题(共16小题)10.(2021•吉林)如图,在平面直角坐标系中,一次函数y=x﹣2的图象与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2),过点B作BC⊥y轴于点C.(1)求反比例函数的解析式;(2)求△ABC的面积.解:(1)∵B点是直线与反比例函数交点,∴B点坐标满足一次函数解析式,∴,∴m=3,∴B(3,2),∴k=6,∴反比例函数的解析式为;(2)∵BC⊥y轴,∴C(0,2),BC∥x轴,∴BC=3,令x=0,则y=,∴A(0,﹣2),∴AC=4,∴,∴△ABC的面积为6.11.(2021•陕西)已知抛物线y=﹣x2+2x+8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求点B、C的坐标;(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵y=﹣x2+2x+8,取x=0,得y=8,∴C(0,8),取y=0,得﹣x2+2x+8=0,解得:x1=﹣2,x2=4,∴B(4,0);(2)存在点P,设P(0,y),若CC'是斜边,则PC>PO,不合题意,舍去,∵CC'∥OB,且PC与PO是对应边,∴,即:,解得:y1=16,,∴P(0,16)或P(0,).12.(2021•长春)在平面直角坐标系中,抛物线y=2(x﹣m)2+2m(m为常数)的顶点为A.(1)当m=时,点A的坐标是(,1),抛物线与y轴交点的坐标是(0,);(2)若点A在第一象限,且OA=,求此抛物线所对应的二次函数的表达式,并写出函数值y 随x的增大而减小时x的取值范围;(3)当x≤2m时,若函数y=2(x﹣m)2+2m的最小值为3,求m的值;(4)分别过点P(4,2)、Q(4,2﹣2m)作y轴的垂线,交抛物线的对称轴于点M、N.当抛物线y=2(x﹣m)2+2m与四边形PQNM的边有两个交点时,将这两个交点分别记为点B、点C,且点B的纵坐标大于点C的纵坐标.若点B到y轴的距离与点C到x轴的距离相等,直接写出m 的值.解:(1)当m=时,y=2(x﹣)2+1,∴顶点A(,1),令x=0,得y=,∴抛物线与y轴交点的坐标为(0,),故答案为:(,1),(0,);(2)∵点A(m,2m)在第一象限,且OA=,∴m2+(2m)2=()2,且m>0,解得:m=1,∴抛物线的解析式为y=2(x﹣1)2+2,当x<1时,函数值y随x的增大而减小;(3)∵当x≤2m时,若函数y=2(x﹣m)2+2m的最小值为3,∴分两种情况:2m<m,即m<0时,或2m>m,即m>0时,①当m<0时,2(2m﹣m)2+2m=3,解得:m=(舍)或m=﹣,②当m>0时,2(m﹣m)2+2m=3,解得:m=,综上所述,m的值为或﹣;(4)如图1,当m>0时,∵P(4,2)、Q(4,2﹣2m),∴M(m,2),N(m,2﹣2m),抛物线y=2(x﹣m)2+2m与四边形PQNM的边有两个交点,若点B在PM边上,点C在MN边上,∴令y=2,则2=2(x﹣m)2+2m,∴x=m+或x=m﹣(不合题意,应舍去),∴B(m+,2),C(m,2m),根据题意,得2m=m+,解得:m=或m=(不合题意,应舍去);若点B在PM边上,点C在NQ边上,则2﹣2m=m+,解得:m=,经检验,m=不符合题意,舍去,∴m=,若点B在PQ边上,点C在NQ边上,则4=2﹣2m,解得:m=﹣1<0,不合题意,舍去;当m<0时,如图2,若点B在NQ边上,点C在PM边上,则2﹣2m=2(x﹣m)2+2m,∴x=m+或x=m﹣(舍去),∴|m+|=2,当m+=2时,得m2﹣2m+3=0,∵Δ=(﹣2)2﹣4×1×3=﹣8<0,∴该方程无解;当m+=﹣2时,得m2﹣6m+3=0,解得:m=3﹣或m=3+,∵m<0,∴均不符合题意;若点B在NQ边上,点C在MN边上,则|m+|=|2m|,∴m+=﹣2m或m+=2m,∵m<0,∴m=﹣或m=﹣1﹣,经验证,m=﹣时,不符合题意;∴m=﹣1﹣;若点B在PQ边上,点C在PM边上,显然点B到y轴的距离为4,点C到x轴的距离为2,不符合题意;综上所述,m的值为或或﹣1﹣.13.(2021•丹东)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?解:(1)∵依题意,得:y=50+(100﹣x)××10=﹣5x+550,∴y与x的函数关系式为y=﹣5x+550;(2)∵依题意得:y(x﹣50)=4000,即(﹣5x+550)(x﹣50)=4000,解得:x1=70,x2=90,∵70<90,∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x﹣50)=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵﹣5<0,此图象开口向下,∴当x=80时,w有最大值为4500元,∴为了每月所获利润最大,该商品销售单价应定为80元.14.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.解:(1)将A(0,﹣),点B(1,)代入y=x2+bx+c得:,解得,∴y=x2+x﹣.(2)∵y=x2+x﹣=(x+)2﹣2,∵抛物线开口向上,对称轴为直线x=﹣.∴当x=﹣时,y取最小值为﹣2,∵2﹣(﹣)>﹣﹣(﹣2),∴当x=2时,y取最大值22+2﹣=.(3)①PQ=|﹣2m+1﹣m|=|﹣3m+1|,当﹣3m+1>0时,PQ=﹣3m+1,PQ的长度随m的增大而减小,当﹣3m+1<0时,PQ=3m﹣1,PQ的长度随m增大而增大,∴﹣3m+1>0满足题意,解得m<.②∵0<PQ≤7,∴0<﹣3m+1≤7,解得﹣2≤m<,如图,当x=﹣时,点P在最低点,PQ与图象有1交点,m增大过程中,﹣<m<,点P与点Q在对称轴右侧,PQ与图象只有1个交点,直线x=关于抛物线对称轴直线x=﹣对称后直线为x=﹣,∴﹣<m<﹣时,PQ与图象有2个交点,当﹣2≤m≤﹣时,PQ与图象有1个交点,综上所述,﹣2≤m≤﹣或﹣≤m时,PQ与图象交点个数为1,﹣<m<﹣时,PQ 与图象有2个交点.15.(2021•大连)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中50≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?解:(1)设y=kx+b,将(50,100)、(80,40)代入,得:,解得:∴y=﹣2x+200 (50≤x≤80);(2)设电商每天获得的利润为w元,则w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵﹣2<0,且对称轴是直线x=70,又∵50≤x≤80,∴当x=70时,w取得最大值为1800,答:该电商售价为70元时获得最大利润,最大利润是1800元.16.(2021•丹东)如图,已知点A(﹣8,0),点B(﹣5,﹣4),直线y=2x+m过点B交y轴于点C,交x轴于点D,抛物线y=ax2+x+c经过点A、C、D,连接AB、AC.(1)求抛物线的表达式;(2)判断△ABC的形状,并说明理由;(3)E为直线AC上方的抛物线上一点,且tan∠ECA=,求点E的坐标;(4)N为线段AC上的动点,动点P从点B出发,以每秒1个单位长度的速度沿线段BN运动到点N,再以每秒个单位长度的速度沿线段NC运动到点C,又以每秒1个单位长度的速度沿线段CO向点O运动,当点P运动到点O后停止,请直接写出上述运动时间的最小值及此时点N的坐标.解:(1)∵直线y=2x+m过点B(﹣5,4),交y轴于点C,∴﹣4=2×(﹣5)+m,解得:m=6,∴C(0,6),将A(﹣8,0)、C(0,6)代入,得:,解得:,∴抛物线的表达式为;(2)△ABC为直角三角形,且∠BAC=90°,理由如下:∵点A(﹣8,0),点B(﹣5,﹣4),点C(0,6),∴AB2=(﹣8+5)2+(0+4)2=25,AC2=(﹣8+0)2+(0﹣6)2=100,BC2=(﹣5+0)2+(﹣4﹣6)2=125,∴AC2+AB2=BC2,∴△ABC为直角三角形,且∠BAC=90°;(3)由(2)知AB=5,AC=10,∴tan∠BCA==tan∠ECA,∴∠BCA=∠ECA,如图1,延长BA至F,使AF=AB,连接CF,则点B、F关于点A对称,∴F(﹣11,4),∵∠BAC=∠F AC=90°,AF=AB,AC=AC,∴△F AC≌△BAC(SAS),∴∠BCA=∠FCA,∴点E为直线CF与抛物线的交点,设直线CF的解析式为y=kx+b,则,解得:,∴直线CF的解析式为,联立方程组,解得:或(舍去),故点E坐标为(,);(4)过N作MN⊥BC于M,过F作FM'⊥BC交AC于N',连接FN,则FN=BN,∵AB=5,BC=,∴sin∠BCA=,∴MN=,又CO=6,∴点P运动时间t==BN+MN+6=FN+MN+6≥FM'+6,当F、N、M三点共线时,t最小,∵AC=10,BC=,∴sin∠ABC=,∴FM'=,∴点P运动时间t的最小值为,由直线BC的表达式y=2x+6得点D坐标为(﹣3,0),∵FD=,∴点D与点M'重合,则点N(即N')为直线FD与直线AC的交点,由点A(﹣8,0)和C(0,6)得直线AC的表达式为,由点F(﹣11,4)和D(﹣3,0)得直线FD的表达式为,联立方程组,解得:,∴此时N坐标为(﹣6,).17.(2021•营口)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?解:(1)设线段AB的表达式为:y=kx+b(40≤x≤60),将点(40,300)、(60,100)代入上式得:,解得:,∴函数的表达式为:y=﹣10x+700(40≤x≤60),设线段BC的表达式为:y=mx+n(60<x≤70),将点(60,100)、(70,150)代入上式得:,解得:,∴函数的表达式为:y=5x﹣200(60<x≤70),∴y与x的函数关系式为:y=;(2)设获得的利润为w元,①当40≤x≤60时,w=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∵﹣10<0,∴当x=50时,w有值最大,最大值为4000元;②当60<x≤70时,w=(x﹣30)(5x﹣200)﹣150(x﹣60)=5(x﹣50)2+2500,∵5>0,∴当60<x≤70时,w随x的增大而增大,∴当x=70时,w有最大,最大值为:5(70﹣50)2+2500=4500(元),综上,当售价为70元时,该商家获得的利润最大,最大利润为4500元.18.(2021•大连)已知函数y=,记该函数图象为G.(1)当m=2时,①已知M(4,n)在该函数图象上,求n的值;②当0≤x≤2时,求函数G的最大值.(2)当m>0时,作直线x=m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m 的值;(3)当m≤3时,设图象与x轴交于点A,与y轴交与点B,过点B作BC⊥BA交直线x=m于点C,设点A的横坐标为a,C点的纵坐标为c,若a=﹣3c,求m的值.解:(1)当m=2时,y=,①∵M(4,n)在该函数图象上,∴n=42﹣2×4+2=10;②当0≤x<2时,y=﹣x2+x+2=﹣(x﹣)2+2,∵﹣<0,∴当x=时,y有最大值是2,当x=2时,y=22﹣2×2+2=2,∵2<2,∴当0≤x≤2时,函数G的最大值是2;(2)分两种情况:①如图1,当Q在x轴上方时,由题意得:OP=m,∵∠POQ=45°,∠OPQ=90°,∴△POQ是等腰直角三角形,∴OP=PQ,∴m=﹣+m+m,解得:m1=0,m2=6,∵m>0,∴m=6;②当Q在x轴下方时,同理得:m=﹣﹣m 解得:m1=0,m2=14,∵m>0,∴m=14;综上,m的值是6或14;(3)分两种情况:①如图2,当0≤m≤3时,过点C作CD⊥y轴于D,当x=0时,y=m,∴OB=m,∵CD=m,∴CD=OB,∵AB⊥BC,∴∠ABC=∠ABO+∠CBD=90°,∵∠CBD+∠BCD=90°,∴∠ABO=∠BCD,∵∠AOB=∠CDB=90°,∴△ABO≌△BCD(ASA),∴OA=BD,当x<m时,y=0,即﹣x2+x+m=0,x2﹣x﹣2m=0,解得:x1=,x2=,∴OA=,且﹣≤m≤3,∵点A的横坐标为a,C点的纵坐标为c,若a=﹣3c,∴OD=c=﹣a,∴BD=m﹣OD=m+a,∵OA=BD,∴=m+,解得:m1=0(此时,A,B,C三点重合,舍),m2=;②当m<0时,如图3,过点C作CD⊥y轴于D,同理得:OA=BD,当x≥m时,y=0,则x2﹣mx+m=0,解得:x1=,m2=(舍),∴OA==a,∴=c﹣m=﹣a﹣m,解得:m1=0,m2=﹣;综上,m的值是或﹣.19.(2021•营口)如图,在平面直角坐标系xOy中,抛物线y=3x2+bx+c过点A(0,﹣2),B(2,0),点C为第二象限抛物线上一点,连接AB,AC,BC,其中AC与x轴交于点E,且tan∠OBC =2.(1)求点C坐标;(2)点P(m,0)为线段BE上一动点(P不与B,E重合),过点P作平行于y轴的直线l与△ABC的边分别交于M,N两点,将△BMN沿直线MN翻折得到△B′MN,设四边形B′NBM的面积为S,在点P移动过程中,求S与m的函数关系式;(3)在(2)的条件下,若S=3S△ACB′,请直接写出所有满足条件的m值.解:(1)∵抛物线y=3x2+bx+c过点A(0,﹣2),B(2,0),∴,解得,∴抛物线的解析式为y=3x2﹣5x﹣2,如图1中,设BC交y轴于D.∵tan∠OBD=2=,OB=2,∴OD=4,∴D(0,4),设直线BD的解析式为y=kx+b,则有,解得,∴直线BD的解析式为y=﹣2x+4,由,解得(即点B)或,∴C(﹣1,6).(2)∵A(0,﹣2),B(2,0),C(﹣1,6),∴直线AB的解析式为y=x﹣2,直线AC的解析式为y=﹣8x﹣2,∴E(﹣,0),当0<m<2时,∵P(m,0),∴M(m,﹣2m+4),N(m,m﹣2),∴MN=﹣2m+4﹣m+2=﹣3m+6,∴S=•BB′•MN=×2(2﹣m)×(﹣3m+6)=3m2﹣12m+12.当﹣<m≤0时,如图2中,∵P(m,0),∴M(m,﹣2m+4),N(m,﹣8m﹣2),∴MN=﹣2m+4+8m+2=6m+6,∴S=•BB′•MN=×2(2﹣m)×(6m+6)=﹣6m2+6m+12.综上所述,S=.(3)∵直线AC交x轴于(﹣,0),B′(2m﹣2),当﹣6m2+6m+12=3××|2m﹣2+|×8,解得m=或(都不符合题意舍弃),当3m2﹣12m+12=3××|2m﹣2+|×8,解得m=1或11(舍弃)或﹣2+或﹣2﹣(舍弃),综上所述,满足条件的m的值为1或﹣2+.20.(2021•本溪)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?解:(1)由题意,得:y=100﹣2(x﹣60)=﹣2x+220,∴y=﹣2x+220;(3)W=﹣2x2+300x﹣8800=﹣2(x﹣75)2+2450,∵﹣2<0,∴当x=75时,W有最大值,最大值为2450元,答:每件定价为75元时利润最大,最大利润为2450元.21.(2021•吉林)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.解:(1)乙地接种速度为40÷80=0.5(万人/天),0.5a=25﹣5,解得a=40.(2)设y=kx+b,将(40,25),(100,40)代入解析式得:,解得,∴y=x+15(40≤x≤100).(3)把x=80代入y=x+15得y=×80+15=35,40﹣35=5(万人).22.(2021•山西)综合与探究如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.解:(1)当y=0时,x2+2x﹣6=0,解得x1=﹣6,x2=2,∴A(﹣6,0),B(2,0),当x=0时,y=﹣6,∴C(0,﹣6),∵A(﹣6,0),C(0,﹣6),∴直线AC的函数表达式为y=﹣x﹣6,∵B(2,0),C(0,﹣6),∴直线BC的函数表达式为y=3x﹣6;(2)①存在:设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,∵B(2,0),C(0,﹣6),∴BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,∵DE∥BC,∴当DE=BC时,以点D,C,B,E为顶点的四边形为平行四边形,分两种情况:如图,当BD=BC时,四边形BDEC为菱形,∴BD2=BC2,∴(m﹣2)2+(m+6)2=40,解得:m1=﹣4,m2=0(舍去),∴点D的坐标为(﹣4,﹣2),∴点E的坐标为(﹣6,﹣8);如图,当CD=CB时,四边形CBED为菱形,∴CD2=CB2,∴2m2=40,解得:m1=﹣2,m2=2(舍去),∴点D的坐标为(﹣2,2﹣6),∴点E的坐标为(2﹣2,2);综上,存在点E,使得以点D,C,B,E为顶点的四边形为菱形,点E的坐标为(﹣6,﹣8)或(2﹣2,2);②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,∵A(﹣6,0),B(2,0),∴抛物线的对称轴为直线x=﹣2,∵直线BC的函数表达式为y=3x﹣6,直线l∥BC,∴设直线l的解析式为y=3x+b,∵点D的坐标(m,﹣m﹣6),∴b=﹣4m﹣6,∴M(﹣2,﹣4m﹣12),∵抛物线的对称轴与直线AC交于点N.∴N(﹣2,﹣4),∴MN=﹣4m﹣12+4=﹣4m﹣8,∵S△DMN=S△AOC,∴(﹣4m﹣8)(﹣2﹣m)=×6×6,整理得:m2+4m﹣5=0,解得:m1=﹣5,m2=1(舍去),∴点D的坐标为(﹣5,﹣1),∴点M的坐标为(﹣2,8),∴DM==3,答:DM的长为3.23.(2021•本溪)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF 的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),则PF=2,由点A、B的坐标得,直线AB的表达式为y=﹣x+3,设点P的坐标为(x,﹣x2+x+3),则点E(x,﹣x+3),则矩形PEGF的面积=PF•PE=2×(﹣x2+x+3+x﹣3)=3S△BOC=3××BO•CO=×3×1,解得x=1或3,故点P的坐标为(1,)或(3,3);(3)由抛物线的表达式知,其对称轴为x=,故点Q的坐标为(,n),当∠ABQ为直角时,如图2﹣1,设BQ交x轴于点H,由直线AB的表达式知,tan∠BAO=,则tan∠BHO=,故设直线BQ的表达式为y=x+t,该直线过点B(0,3),故t=3,则直线BQ的表达式为y=x+3,当x=时,y=x+3=5,即n=5;②当∠BQA为直角时,过点Q作直线MN交y轴于点N,交过点A与y轴的平行线于点M,∵∠BQN+∠MQA=90°,∠MQA+∠MAQ=90°,∴∠BQN=∠MAQ,∴tan∠BQN=tan∠MAQ,即,则,解得n=;24.(2021•陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是1m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.解:(1)由图象知:“鼠”6min跑了30m,∴“鼠”的速度为:30÷6=5(m/min),“猫”5min跑了30m,∴“猫”的速度为:30÷5=6(m/min),∴“猫”的平均速度与“鼠”的平均速度的差是1(m/min),故答案为:1;(2)设AB的解析式为:y=kx+b,∵图象经过A(7,30)和B(10,18),把点A和点B坐标代入函数解析式得:,解得:,∴AB的解析式为:y=﹣4x+58;(3)令y=0,则﹣4x+58=0,∴x=14.5,∵“猫”比“鼠”迟一分钟出发,∴“猫”从起点出发到返回至起点所用的时间为14.5﹣1=13.5(min).答:“猫”从起点出发到返回至起点所用的时间13.5min.25.(2021•长春)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)02468箭尺读数y(厘米)618304254【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)解:【探索发现】①如图②,②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y=kx+b,则,解得:,∴y=6x+6;【结论应用】应用上述发现的规律估算:①x=12时,y=6×12+6=78,∴供水时间达到12小时时,箭尺的读数为78厘米;②y=90时,6x+6=90,解得:x=14,∴供水时间为14小时,∵本次实验记录的开始时间是上午8:00,8:00+14=22:00,∴当箭尺读数为90厘米时是22点钟.。

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。

中考数学压轴题分析-函数图象中点的存在性问题-由比例线段产生的函数关系问题

中考数学压轴题分析-函数图象中点的存在性问题-由比例线段产生的函数关系问题

中考数学压轴题分析-函数图象中点的存在性问题-由比例线段产生的函数关系问题例1 2015年呼和浩特市中考第25题已知抛物线y =x 2+(2m -1)x +m 2-1经过坐标原点,且当<0时,y 随x 的增大而减小。

(1)求抛物线的解析式,并写出y < 0时,对应x 的取值范围;(2)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线交抛物线于另一点D ,再作AB ⊥x 轴于点B , DC ⊥x 轴于点C.①当BC =1时,直接写出矩形ABCD 的周长;②设动点A 的坐标为(a , b ),将矩形ABCD 的周长L 表示为a 的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A 的坐标;如果不存在,请说明理由.动感体验请打开几何画板文件名“15呼和浩特25”,拖动点A 在x 轴下方的抛物线上运动,观察L 随a 变化的图像,可以体验到,有两个时刻,L 取得最大值,这两个时刻的点A 关于抛物线的对称轴对称.思路点拨1.先用含a 的式子表示线段AB 、AD 的长,再把L 表示为a 的函数关系式.2.点A 与点D 关于抛物线的对称轴对称,根据对称性,点A 的位置存在两个情况. 满分解答(1)因为抛物线y =x 2+(2m -1)x +m 2-1经过原点,所以m 2-1=0.解得m =±1。

如图1,当m =1时,抛物线y =x 2+x 的对称轴在y 轴左侧,不符合当x <0时,y 随x 的增大而减小。

当m =-1时,抛物线y =x 2-3x 符合条件。

图1 图2 图3(2)①当BC =1时,矩形ABCD 的周长为6。

②如图2,抛物线y =x 2-3x 的对称轴为直线32x =,如果点A 在对称轴的左侧,那么3322D a x -=-。

解得3D x a =-。

所以AD =3-2a 。

当x =a 时,y =x 2-3x =a 2-3a 。

备战中考数学压轴题专题一元二次方程的经典综合题含答案解析

备战中考数学压轴题专题一元二次方程的经典综合题含答案解析

一、一元二次方程真题与模拟题分类汇编(难题易错题)1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1=1+3,x2=1﹣3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+3,x2=1﹣3.2.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.3.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为±2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m2=0,解得m=±,∴原方程为x2﹣7x+10=0,解得x=2或x=5,即m的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.4.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】5. y 与x 的函数关系式为:y=1.7x (x≤m );或( x≥m) ;6.关于x 的方程()2204kkx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【解析】 【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404kk k =+-⋅>, 1k ∴>-, 又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204kkx k x +++=的两根分别为1x ,2x ,由根与系数的关系有:1212214k x xkx x +⎧+=-⎪⎪⎨⎪=⎪⎩,又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-,由()1知,1k >-,且0k ≠,43k ∴=-不符合题意,因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

中考数学与反比例函数有关的压轴题附答案解析

中考数学与反比例函数有关的压轴题附答案解析

中考数学与反比例函数有关的压轴题附答案解析一、反比例函数1.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.2.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

最新九年级中考数学专题:实际问题与二次函数应用题压轴题训练

最新九年级中考数学专题:实际问题与二次函数应用题压轴题训练

2023年九年级中考数学专题:实际问题与二次函数应用题压轴题训练1.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售_______________件,每件盈利____________元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.2.某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场调查发现当每个背包的售价为40元时,月均销量为280个,售价每增长2元,月均销量就相应减少20个,设每个背包的售价为x元.(1)月均销量为_______个;(直接写出答案)(2)当x为何值时,月销售利润为3120元?(3)求月销售利润的最大值.3.某商店销售一种商品,该商品的进价为40元/件,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,部分数据如表:(1)直接写出y与x之间的函数表达式为______;(2)当售价定为多少元时,每周可获得最大利润?最大利润是多少元?(3)由于某种原因,该商店进价提高了m元/件(m>0),通过销售记录发现,当销售价格大于76元/件时,每周的利润随售价的增大而减小,请直接写出m的取值范围为______.4.在九年级学生即将毕业之际.某商店购进了一批成本为4元/本的毕业纪念册.当每本纪念册售价为10元时,平均每周能售出40本,为了扩大销售量,减少库存,商店决定降价促销,调查发现,如果每本纪念册每降价1元,那么该商店平均每周可多售出20本.(1)设售价降低了x元,用含x的代数式表示降价后每周可售出纪念册的本数;(2)商家要想平均每周盈利300元,每本纪念册应该降价多少元?(3)商家要想获得最大收益,每本纪念册应该降价多少元?最大收益是多少元?5.某某商店销售一种销售成本为40 元/件的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x (元/件)满足一次函数关系,并且当x =20 时,y=1000,当x =25 时,y=950.(1)求出y与x 的函数关系式,并写出自变量的取值范围;(2)求出每件售价多少元时,商店销售该商品每天能获得最大利润,最大利润是多少元;(3)如果该商店要使每天的销售利润不低于13750 元,且每天的总成本不超过20000 元,那么销售单价应控制在什么范围内?6.商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施.经调查发现,一件衬衫每降价1元,每天可多售出2件.(1)设每件降价x元,每天盈利y元,列出y与x之间的函数关系式;(2)若商场每天要盈利1200元,每件应降价多少元?(3)每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?7.“蓝莓园里果盈枝,又到尝鲜采撷时”,今年我县蓝莓又喜获丰收.某水果商店从某蓝莓园购入一款进价为40元/千克的蓝莓,为了向消费者推广该蓝莓,商店计划开展为期10天的降价促销活动,调查发现,第1天的单价x(元/千克)和销量y(千克)均与t成一次函数关系,部分数据如下表.(1)分别求x,y与t的函数表达式;(2)在活动开展的第几天,销售蓝莓的日利润为1650元;(3)请直接写出该活动进行到第几天时可以获得最大日利润,最大日利润为多少?8.某服装厂生产A品种服装,每件成本为73元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当0<x≤200时,y与x的函数关系式为.(2)零售商到此服装厂一次性批发A品牌服装x(0<x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?(3)政府为服装厂制定优惠政策:当一次性批发服装件数满足0<x≤200时,决定每件服装给与a元的补贴(0<a<13),若此条件下可获得的最大利润为2560元,请求出a的值,写出详细过程.9.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?10.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请直接写出p与x之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.11.家具店销售某款书桌和椅子,每张书桌比每把椅子多20元,一套桌椅共180元.(1)求每张书桌、每把椅子分别多少元;(2)开学前期据预测,可单独售出书桌200张、椅子300把,以及200套桌椅,当单独购买其一物品时价格不变,如果书桌和椅子一起成套购买每套160元,若每套桌椅价格每下降1元,将有20人原计划购买书桌和30人原计划购买椅子的改为购买成套桌椅.问:将成套桌椅价格下降多少元时,销售总收入最大?最大值是多少万元?12.一大型商场经营某种品牌商品,该商品的进价为每件6元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,表格记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于17元/件,若某一周该商品的销售最不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于17元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.13.“国庆节期间”某商场销售一款商品,每件的成本是50元.销售期间发现:销售单价是100元时,每天销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x 元时,每天销售利润为y 元. (1)求y 与x 之间的函数表达式.(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少? (3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要 元.14.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元. (1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后利润分别为W 1,W 2(单位:元). ①求W 1,W 2关于x 的函数关系式;①当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少元?15.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg ,每日销售量y (kg )与销售单价x (元/kg )满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg .设公司销售板栗的日获利为w (元).(1)请求出日销售量y 与销售单价x 之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w 最大?最大利润为多少元? (3)当销售单价在什么范围内时,日获利w 不低于42000元?16.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销售量y (单位:件)与线下售价x (单位:元/件,1224x ≤<)满足一次函数关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)当线下售价x 为多少时,线下月销售量最大,最大是多少件?(3)若线上售价始终比线下每件便宜2元,且线上的月销售量固定为400件.①求出总利润w (单位:元)与线下售价x (单位:元/件,1224x ≤<)的函数关系式; ①回忆一次函数的概念,请你给上一问求出的函数命名,并用字母表示出它的一般形式.17.2022年广西雨水增多,种植荔枝的果农损失严重,为了增加农民收入,助力乡村振兴.某驻村干部指导农户进行荔枝种植和销售,已知荔枝的种植成本为8元/kg ,经市场调查发现,今年端午节期间荔枝的销售量y (单位:kg )与销售单价x (单位:元/kg )()840x ≤≤满足的函数图象如图所示.(1)根据图象信息,求y 与x 的函数关系式;(2)当销售单价为30元/kg 时,销售荔枝获得的利润是多少元? (3)求端午节期间销售荔枝获得的最大利润.18.某超市销售一批成本为20元/千克的绿色健康食品,深受游客青睐.经市场调查发现,该食品每天的销售量y (千克)与销售单价x (元/千克)之间满足一次函数关系,其图像如图所示.(1)求该食品每天的销售量y (千克)与销售单价x (元/千克)之间的函数关系式; (2)若超市按售价不低于成本价,且不高于40元销售,则销售单价定为多少,才能使销售该食品每天获得的利润W (元)最大?最大利润是多少?(3)若超市要使每天销售该食品获得的利润不低于2400元,则每天的销售量最少应为 千克.19.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的两组对应值如表:注:周销售利润=周销售量×(售价﹣进价)(1)每件商品的进价为元/件,y与x的函数关系式为(不要求写出自变量的取值范围);(2)当每件商品售价x为多少元时,周销售利润w最大?并求出此时的最大利润;(3)若该商品每件进价提高了4元,其每件售价不超过m元(m是大于50的常数,且是整数),该商店在销售中,周销售量与售价仍满足(1)中的函数关系,直接写出周销售的最大利润.20.某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y(件)是售价x(元/件)的一次函数,其售价、销售量的二组对应值如下表:(1)直接写出y关于售价x的函数关系式:;(2)若某天销售利润为800元,求该天的售价为多少元/件?(3)设商店销售该商品每天获得的利润为W(元),求W与x之间的函数关系式,并求出当销售单价定为多少时,该商店销售这种商品每天获得的利润最大?参考答案:1.(1)(202)x +;(40)x -(2)每件童装降价20元时,平均每天赢利1200元 (3)不可能平均每天赢利2000元,理由见解析2.(1)(680-10x )(2)当x 为56或42时,月销售利润为3120元 (3)月销售利润最大为3610元3.(1)2200y x =-+(2)当售价定为75元时,每周可获得最大利润,最大利润是2450元 (3)02m <≤4.(1)4020x + (2)3元(3)每本纪念册应降价2元,商家获得收益最大,最大收益是320元5.(1)101200(40120)y x x =-+≤≤(2)当每件售价80元时,商店销售该商品每天可获得最大利润,最大利润是16000元 (3)销售单价应控制在70元至95元之间6.(1)2260800y x x =-++ (2)降价20元(3)每件降价15元时,商场每天的盈利达到最大,盈利最大是1250元7.(1)60x t =-()110t ≤≤且t 为正整数,6010y t =+()110t ≤≤且t 为正整数 (2)在活动开展的第5天或第9天,销售蓝莓的日利润为1650元 (3)第7日获得最大日利润,最大日利润为为1690元8.(1)y =﹣110x +100 (2)x 为400时,w 最大,最大值是2800元 (3)59.(1)5150y x =-+ (2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.10.(1)301500p x =-+(2)这批农产品的销售价格定为40元,才能使日销售利润最大 (3)a 的值为2.11.(1)每张书桌100元,每把椅子80元(2)将成套桌椅价格下降10元时,销售总收入最大,最大值是10.5万元12.(1)50012000y x =-+(2)这一周该商场销售这种商品获得的最大利润为54000元,售价为12元 (3)36m ≤≤13.(1)2580027500y x x =-+- (2)80元,最大利润4500元 (3)500014.(1)140元,20元(2)①W 1=﹣6x 2+40x +7000;W 2=﹣20x +1000 ①5,805015.(1)1005000y x =-+;(2)销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元;答案第3页,共3页 (3)当2030x ≤≤时,日获利w 不低于42000元16.(1)()10024001224y x x =-+≤<(2)当12x =最小时,1200y =最大(3)①()21003800288001224w x x x =-+-≤<;①二次函数,2y ax bx c =++(a 、b 、c 为常数,且0a ≠)17.(1)()()32218321203240x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩(2)126千克(3)3840元18.(1)2180y x =-+(2)销售单价定为40元时,才能使销售该食品每天获得的利润W (元)最大,最大利润是2000元(3)6019.(1)20,y =﹣2x +200;(2)当每件售价为60元时,周销售利润w 最大,最大利润为3200元;(3)当50<m <62时,周销售最大利润为﹣2m 2+248m ﹣4800,当m ≥62时,周销售最大利润为2888元.20.(1)y =-2x +200(2)60元或者90元(3)w =-2x 2+300x -10000,75元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.(2011普陀区模拟考压轴题)
直角三角板ABC 中,∠A =30°,BC =1.将其绕直角顶点C 逆时针旋转一个角α(0120α︒<<︒且α≠ 90°),得到Rt△''A B C , (1)如图9,当''A B 边经过点B 时,求旋转角α的度数;
(2)在三角板旋转的过程中,边'A C 与AB 所在直线交于点D ,过点 D 作DE ∥''A B 交'CB 边于点E ,联结BE .
①当090α︒<<︒时,设AD x =,BE y =,求y 与x 之间的函数解析式及定义域; ②当ABC BDE S S ∆∆=3
1
时,求AD 的长.
C
B
A
C
B
A
图9
备用图
备用图
6.(2011年上海市中考)
在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线
PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13
EMP ∠=
. (1)如图1,当点E 与点C 重合时,求CM 的长;
(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;
(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.
8.(2010年上海市中考压轴题)
如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.
(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;
(2)若CE=2,BD=BC,求∠BPD的正切值;
(3)若
1
tan
3
BPD
∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.
图9 图10(备用) 图。

相关文档
最新文档