2021年中考数学专项训练: 涉及内心外心的试题(含答案)

合集下载

三角形的重心垂心内心外心附三角函数的图象与性质练习题及答案

三角形的重心垂心内心外心附三角函数的图象与性质练习题及答案

三角形的重心垂心内心外心附三角函数的图象与性质练习题及答案一、三角形重心定理二、三角形外心定理三、三角形垂心定理四、三角形内心定理五、三角形旁心定理有关三角形五心的诗歌三角形五心定理三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

三角形内心和外心练习题

三角形内心和外心练习题

EB内心和外心一、选择题:1、对于三角形的外心,下列说法错误的是( )A。

它到三角形三个顶点的距离相等B。

它到三角形任意一个顶点的距离等于其外接圆的半径C.它是三角形三条角平分线的交点D。

它是三角形三条边垂直平分线的交点2、下列命题正确的个数有( )错误!过两点可以作无数个圆;错误!经过三点一定可以作圆;错误!任意一个三角形有一个外接圆,而且只有一个外接圆;○,4任意一个圆有且只有一个内接三角形。

A.1个B.2个 C。

3个 D.4个2、在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离是( )A。

5cm B。

6cm C. 7cm D。

8cm3、下列说法错误的是()A.三角形有且只有一个内切圆B.若I为△ABC的内心,则AI平分∠BACC。

三角形的内心不一定都在三角形的内部D。

等腰三角形的内心一定在它底边的高上4、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则△ABC的外接圆的面积为()A.254cm2 B.5πcm2 C.254πcm2 D.25cm25、⊙O与△ABC分别相切于点D、E、F,△ABC的周长为20cm,AF=5cm,CF=3cm,则BE的长度为( )A。

1cm B。

2cm C。

3cm D.2.5cm第5题第7题第9题6、△ABC内接于⊙O,∠A=60°,⊙O的半径为5,则BC的长为( )C。

527、已知,如图在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,⊙O为Rt△ABC的内切圆,切点为D、E、F,则⊙O的半径为()A。

12cm B.1cm C.32cm D.2cm8、等边三角形的内切圆半径为r,外接圆半径为R,高为h,则r:R:h的值为()A.1:2:3B.1。

2:1:3 D。

19、如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,CD=1,则⊙O的半径为( )A。

初中数学,三角形五心,必刷题集(含答案),中考自招拉分项

初中数学,三角形五心,必刷题集(含答案),中考自招拉分项

初中数学,三⾓形五⼼,必刷题集(含答案),中考⾃招拉分项快收藏!!!这么好的汇总资料不多得!
初中⼏何,三⾓形五⼼会和圆的知识点结合起来,所以难度会相对较⾼
在中考压轴题、⾃主招⽣命题中常考
所以向来是兵家必争之地!
三⾓形五⼼主要有:
①重⼼:三条中线的交点
②内⼼:三条⾓平分线交点
③外⼼:三边垂直平分线交点
④垂⼼:三条⾼交点
⑤旁⼼:旁切圆圆形
性质繁多,这⾥就不⼀⼀列举
今天给⼤家分享,《三⾓形五⼼经典题集》含答案,
让各位初中同学提前了解考题类型、知识点分布
助⼒娃娃们学的轻松,学的精通。

⽂档页数较多,如若照⽚模糊,可通过以下途径获得电⼦档:
①加关注,转发、点赞本⽂,将爱⼼传递出去。

②评论区留⾔:五⼼
希望我的分享能给您的孩⼦带来帮助!等有效果了欢迎给我反馈,分享喜悦!。

【中考提分】三角形五心的经典考题

【中考提分】三角形五心的经典考题

有关三角形五心的经典试题三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC ,∠PP ′C =21∠PNC =21∠BAC .∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2)=21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每A B C PP MN 'A B C QK P O O O ....S 123条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △PAD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b ac -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′,∴∆∆S S '=(aCF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43.AA 'F F 'GE E 'D 'C 'P C B D∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c2⇒a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置.(1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知13212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称. 同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2. 求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH2=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABH AH ∠sin =2R ⇒AH 2=4R 2cos 2A ,Aa sin =2R ⇒a 2=4R 2sin 2A . ∥=∥=.OA A A A 1234H H 12H H HM AB BA ABC CC F12111222D E∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有A 21A =r 2+bca cb 2222-+·bc -(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用).例7.ABCD 为圆内接凸四边形,取△DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题)证明见《中等数学》1992;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC之内心.(B ·波拉索洛夫《中学数学奥林匹克》)分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知AQ =αsin r . ∵QK ·AQ =MQ ·QN ,∴QK =AQQNMQ ⋅=αsin /)2(r rr R ⋅-=)2(sin r R -⋅α.由Rt △EPQ 知PQ =r ⋅αsin .∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .α利用内心等量关系之逆定理,即知P 是△ABC 这内心. 五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于A B C D O O O 234O 1AααMBCNE R OQFrP一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周. (杭州大学《中学数学竞赛习题》)分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c ) =41[(a +b )2-c 2]=21ab ;(p -a )(p -b )=21(-a +b +c )·21(a -b +c )=41[c 2-(a -b )2]=21ab .∴p (p -c )=(p -a )(p -b ). ① 观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p . 而r =21(a +b -c ) =p -c . ∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p =4p -(a +b +c )=2p . 由①及图形易证.例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r ·22q r =qr . (IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知OD =OA ′·2'sinA =A ′B ′·'''sin 2'sinB O A B ∠·2'sin A =A ′B ′·2''sin2'sin2'sin B A B A +⋅, Kr r r r O O O 213AOE CBabcA ...'B 'C 'OO 'EDO ′E = A ′B ′·2''sin2'cos 2'cosB A B A +. ∴2'2''B tg A tg E O OD =. 亦即有11q r ·22q r =2222Btg CNB tg CMA tgA tg ∠∠ =22B tg A tg=qr. 六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF . (1991,国家教委数学试验班招生试题)分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE的内心.从而有ID =CD =DE , IF =EF =FA , IB =AB =BC .再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有:BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS .∴BI +DI +FI ≥IA +IE +IC . ∴AB +BC +CD +DE +EF +FA=2(BI +DI +FI ) ≥(IA +IE +IC )+(BI +DI +FI )=AD +BE +CF .I 就是一点两心.例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心.证明OE 丄CD . (加拿大数学奥林匹克训练题)分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3121-)DC =2:1.∴DG :GK =DE :EF ⇒GE ∥MF .∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心.Erdos ..I P AB CD E FQ SA B CD E F OKG易证OE 丄CD . 例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .(1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°,∴∠DIE =360°-105°×3=45°.∵∠AKB =30°+21∠DAO =30°+21(∠BAC -∠BAO )=30°+21(∠BAC -60°)=21∠BAC =∠BAI =∠BEI .∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高. 同理EO 是△DIE 之垂心,OI 丄DE . 由∠DIE =∠IDO ,易知OI =DE .例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距离和为d 重,垂心到三边距离和为d 垂.求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ① ∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ② ∴BCHBHsin =2,∴HH 1=cos C ·BH =2·cos B ·cos C . 同样可得HH 2,HH 3. ∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③ 欲证结论,观察①、②、③,O A BC DEFI K30°B C O IA O G H O G H GO G H 123112233须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B +cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.练 习 题1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)6.△ABC 的边BC =21(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I 为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;(2)△AEF 与△ABC 有一个旁心重合.。

初三数学冀教版三角形的内心与外心易错题

初三数学冀教版三角形的内心与外心易错题

初三数学冀教版三角形的内心与外心易错题1、一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,答案B 解析2、一个几何体的三视图如图所示,则此几何体是(答案C 解析3、分式方程的解是()A.2 B.1 C.-1 D.-2 答案B 解析解:4、已知等腰三角形中的一边长为5㎝,另一边长为9㎝,则它的周长为(答案D 解析5、如图点C在线段AB上,AC=2BC,M、N分别为AC、BC的中点,若BC=4cm,求线段MN 的长。

答案MN=MB-NB=6-2=4(cm)解析6、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是(; 答案D解析7、给出下列结论正确的有(;)①物体在阳光照射下,影子的方答案B 解析8、若点M(a,b)在第二象限,则点(,b)是在()A.第一象限B.第二象答案A解析考点:点的坐标.分析:第一、二、三、四象限内点的符号分别为:(+,+)、(-,+)、(-,-)、(+,-),点A(a,b)在第二象限,所以a、b的符号分别是-、+.解答:解:因为点A(a,b)在第二象限,所以a<0、b>0,所以-a+1>0,所以点Q(-a+1,b)在第一象限.故选A.点评:解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号.9、命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等。

其中错误的有答案C 解析10、某商品以每包30千克为标准,32千克记为+2千克,那么记为-3千克、+5千克、-2千克、+1千克、+4千克的5包答案A 解析分析:首先求出-3千克、+5千克、-2千克、+1千克、+4千克的平均数,然后加上30千克即可求解.解30+(-3+5-2+1+4)=30+1=31千克.故选A.11、方程的解是()A.B.C.D.答案C 解析七年级数学北京课标版直径所对圆周角的特征下列说法错误的是答案C 解析12。

2023年人教版数学中考复习考点专练——三角形的内切圆与内心(含答案)

2023年人教版数学中考复习考点专练——三角形的内切圆与内心(含答案)

2023年人教版数学中考复习考点专练——三角形的内切圆与内心一、单选题1.如图,⊙O内切于⊙ABC,切点为D,E,F,若⊙B=50°,⊙C=60°,连接OE,OF,DE,DF,⊙EDF等于()A.45°B.55°C.65°D.70°2.下列命题是真命题的是()A.对顶角相等B.平行四边形的对角线互相垂直C.三角形的内心是它的三条边的垂直平分线的交点D.三角分别相等的两个三角形是全等三角形3.如图,已知⊙ABC与⊙ACD都是直角三角形,⊙B=⊙ACD=90°,AB=4,BC=3,CD=12。

则⊙ABC的内切圆与⊙ACD的内切圆的位置关系是()A.内切B.相交C.外切D.外离4.如图,⊙ABC中,⊙C=90°,AC=12,BC=5,⊙O与⊙ABC的三边相切于点D、E、F,则AD长为()A.8B.10C.12D.14 5.下列四个命题中,正确的个数是()①经过三点一定可以画圆;②任意一个三角形一定有一个外接圆;③三角形的内心是三角形三条角平分线的交点;④三角形的外心到三角形三个顶点的距离都相等;⑤三角形的外心一定在三角形的外部.A .4个B .3个C .2个D .1个 6.在⊙ABC 中,O 为内心,⊙A=80°,则⊙BOC=( )A .140°B .135°C .130°D .125° 7.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )A .2 ﹣2B .2﹣C ﹣1D 8.有如下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有( )A .1个B .2个C .3个D .4个 9.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .2B .32CD .10.如图,在 ABC ∆ 中, 60BAC ∠=︒ 其周长为20,⊙I 是 ABC ∆ 的内切圆,其半径为 ,则 BIC ∆ 的外接圆半径为( )A .7B .C .2D 二、填空题11.在⊙ABC 中,⊙C=90°,AB=10,且AC=6,则这个三角形的内切圆半径为 .12.已知一个三角形的三边长分别为5、7、8,则其内切的半径为 .13.如图,在平面直角坐标系中,矩形 OACB 的顶点 ()68C , ,点 I 是 ABC 的内心,将 ABC 绕原点顺时针旋转 90︒ 后, I 的对应点 I ' 的坐标是 .14.从一个边长为 cm 的正三角形钢板上裁下一个面积最大的圆,则这个圆的半径是 cm .15.若直角三角形的两边a 、b 是方程 27120x x -+= 的两个根,则该直角三角形的内切圆的半径r = .三、解答题16.如图,在⊙ABC 中,⊙C=90°,⊙O 是⊙ABC 的内切圆,切点分别为D ,E ,F ,若BD=6,AD=4,求⊙O 的半径r .17.如图⊙ABC 内接于圆O ,I 是⊙ABC 的内心,AI 的延长线交圆O 于点D .(1)求证:BD=DI ;(2)若OI⊙AD ,求AB AC BC+的值.18.如图,在⊙ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,若⊙A=70°,求⊙FDE.19.如图,⊙ABC中,⊙C=90°,⊙O是⊙ABC的内切圆,D、E、F是切点.(1)求证:四边形ODCE是正方形;(2)如果AC=6,BC=8,求内切圆⊙O的半径.20.如图:在三角形ABC中,AB=5,AC=7,BC=8,求其内切圆的半径.21.如图,点E是⊙ABC的内心,AE的延长线交BC于点F,交⊙ABC的外接圆⊙O 于点D,连接BD,过点D作直线DM,使⊙BDM=⊙DAC.(⊙)求证:直线DM是⊙O的切线;(⊙)求证:DE2=DF•DA.答案解析部分1.【答案】B2.【答案】A3.【答案】C4.【答案】B5.【答案】B6.【答案】C7.【答案】A8.【答案】C9.【答案】C10.【答案】D11.【答案】212.13.【答案】(64)-,14.【答案】115.【答案】1或1 216.【答案】解:连接EO,FO,∵⊙O是⊙ABC的内切圆,切点分别为D,E,F,∴OE⊙BC,OF⊙AC,BD=BE,AD=AF,EC=CF,又∵⊙C=90°,∴四边形ECFO是矩形,又∵EO=FO,∴矩形OECF是正方形,设EO=x,则EC=CF=x,在Rt⊙ABC中BC2+AC2=AB2故(x+6)2+(x+4)2=102,解得:x=2,即⊙O的半径r=2.17.【答案】(1)证明:∵点I 是⊙ABC 的内心 ∴⊙BAD=⊙CAD ,⊙ABI=⊙CBI∵⊙CBD=⊙CAD∴⊙BAD=⊙CBD∴⊙BID=⊙ABI+⊙BAD ,⊙BAD=⊙CAD=⊙CBD , ∵⊙IBD=⊙CBI+⊙CBD ,∴⊙BID=⊙IBD∴ID=BD ;(2)解:连接OA 、OD 、BD 和BI ,∵OA=OD ,OI⊙AD∴AI=ID ,∵I 为⊙ABC 内心,∴⊙BAD=⊙BCD ,∴弧BD=弧CD ,∵弧CD=弧CD ,∴⊙BCD=⊙BAD ,∴⊙DBI=⊙BCD+⊙CBI=⊙CAD+⊙CBI , =12(⊙BAC+⊙ACB ), ∵⊙DIB=⊙DAB+⊙ABI=12(⊙BAC+⊙ABC ), ∴⊙DIB=⊙DBI ,∴BD=ID=AI ,BD DC ∧∧=,故OD⊙BC ,记垂足为E ,则有BE=12BC ,作IG⊙AB于G,又⊙DBE=⊙IAG,而BD=AI,∴Rt⊙BDE⊙Rt⊙AIG,于是,AG=BE=12BC,但AG=12(AB+AC﹣BC),故AB+AC=2BC,∴AB ACBC=2.18.【答案】解:连接IE,IF,∵内切圆I和边BC、CA、AB分别相切于点D、E、F,∴⊙AEI=⊙AFI=90°,∵⊙A=70°,∴⊙EIF=110°,∴⊙FDE=55°.答:⊙FDE的度数为55°.19.【答案】(1)解:∵⊙O是⊙ABC的内切圆,∴OD⊙BC,OE⊙AC,又⊙C=90°,∴四边形ODCE是矩形,∵OD=OE,∴四边形ODCE是正方形.(2)解:∵⊙C=90°,AC=6,BC=8,∴AB= =10,由切线长定理得,AF=AE ,BD=BF ,CD=CE , ∴CD+CE=BC+AC ﹣BD ﹣AE=BC+AC ﹣AB=4, 则CE=2,即⊙O 的半径为2.20.【答案】解:如图,作 AD BC ⊥ ,设 BD x = ,则 8CD x =- ,由勾股定理可知: 2222AB BD AC CD -=- ,则 ()2225498x x -=-- ,解得 52x = ,则 2AD = ,故 118222ABC S BC AD =⋅=⨯⨯= , 由三角形的内切圆性质,可得: ()12ABC S r AB BC AC =++2ABC S r AB BC AC ∴===++ . 21.【答案】解:(⊙)如图所示,连接OD , ∵点E 是⊙ABC 的内心,∴⊙BAD=⊙CAD ,∴BD = CD ,∴OD⊙BC ,又∵⊙BDM=⊙DAC ,⊙DAC=⊙DBC , ∴⊙BDM=⊙DBC ,∴BC⊙DM ,∴OD⊙DM ,∴直线DM 是⊙O 的切线;(⊙)如图所示,连接BE ,∵点E 是⊙ABC 的内心,∴⊙BAE=⊙CAE=⊙CBD ,⊙ABE=⊙CBE , ∴⊙BAE+⊙ABE=⊙CBD+⊙CBE ,即⊙BED=⊙EBD,∴DB=DE,∵⊙DBF=⊙DAB,⊙BDF=⊙ADB,∴⊙DBF⊙⊙DAB,∴DFDB=DBDA,即DB2=DF•DA,∴DE2=DF•DA.。

中考数学圆内心外心

中考数学圆内心外心

B前言:元月调考圆的知识占据较大比重,这里抓出一些常考的重点、难点题型做专项训练。

第1个问题 内心、外心知多少 【2013元调 第10题】如图,点I 和O 分别是△ABC 的内心和外心,则∠AIB 和∠AOB 的关系为( )A 、AIB AOB ∠=∠ B 、AIB AOB ∠≠∠C 、121802AIB AOB ∠-∠=o D 、121802AOB AIB ∠-∠=o 分析:外心:圆在三角形外,经过三角形3个顶点三角形外接圆的圆心,圆心到3个顶点的距离相等,它是三边的垂直平分线的交点。

内心:圆在三角形内,与三边都相切三角形内切圆的圆心,圆心到三边的距离相等,它是三个内角平分线的交点。

∠AIB 和∠AOB 都与 ∠C 有关系,∠AOB=2∠C , ∠AIB=180°-(∠IAB+∠IBA )=180°-12(∠A+∠B )=180°-12(180°-∠C )=90°+12∠C外心和内心的考查很频繁外心考查重点:①圆周角与圆心角的转换,如2013中考第22题如图,△ABC 为等腰三角形,AB=AC ,则∠BEC=∠BOD②直角三角形的外心是斜边的中点,反之说明是直角三角形(2013中考第25题) 内心的考查更灵活:常考角度、面积(1)11190,90,90222BOC A BOA C AOC B ∠=+∠∠=+∠∠=+∠o o o(2)1()2S a b c r ABC =++V ,a 、b 、c 为三边长,r 是内切圆的半径当90BAC ∠=o 时,四边形ADOF 为正方形,2a b cr +-=AABE【例题1】如图,AB 是⊙O 的直径,点P 为半圆上一点(不与A 、B 重合),点I 为△ABP 的内心,连接PI 交⊙O 于点M ,IN ⊥BP 于N ,下列结论: ①∠APM=45°;②AB=2IM ;③∠BIM=∠BAP ;④PMOBIN +=22;其中正确的个数有________________A 、1个B 、2个C 、3个D 、4个 分析:①题目中给出直径、圆上的点这样的字眼想到:直径所对圆周角等于180度,则△ABP 是直角三角形 ②I 为内心,内心与三角形顶点的连线即为内角平分线 则PI 平分APB ∠,所以∠APM=45°。

备考2023年中考数学一轮复习-图形的性质_圆_三角形的内切圆与内心-单选题专训及答案

备考2023年中考数学一轮复习-图形的性质_圆_三角形的内切圆与内心-单选题专训及答案

备考2023年中考数学一轮复习-图形的性质_圆_三角形的内切圆与内心-单选题专训及答案三角形的内切圆与内心单选题专训1、(2021薛城.中考模拟) 如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I重合,则图中阴影部分的周长为()A . 4.5B . 4C . 3D . 22、(2017泰州.中考真卷) 三角形的重心是()A . 三角形三条边上中线的交点B . 三角形三条边上高线的交点C . 三角形三条边垂直平分线的交点D . 三角形三条内角平分线的交点3、(2019桥东.中考模拟) 如图,点E点为△ABC的内心,且EF⊥BC于点F,若∠BAC=38°,∠B=56°,则∠AEF的度数为()A . 163B . 164C . 165D . 1664、(2016丹阳.中考模拟) 三角形内切圆的圆心为()A . 三条边的高的交点B . 三个角的平分线的交点C . 三条边的垂直平分线的交点D . 三条边的中线的交点5、(2018嘉兴.中考模拟) 下列命题是假命题的是()A . 三角形的内心到这个三角形三边的距离相等B . 有一个内角为60°的等腰三角形是等边三角形C . 直角坐标系中,点(a,b)关于原点成中心对称的点的坐标为(-b,-a)D . 有三个角是直角且一组邻边相等的四边形是正方形6、(2015湖州.中考真卷) 如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G 分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A . CD+DF=4B . CD﹣DF=2 ﹣3C . BC+AB=2 +4D . BC﹣AB=27、(2019滨州.中考模拟) 如图,在ΔABC中,,,作的内切圆,分别与、、相切于点、、,设,ΔABC 的面积为,则关于的函数图象大致为()A .B .C .D .8、(2018武昌.中考模拟) 若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A .B .C .D .9、(2017淄川.中考模拟) 如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1, S2, S3,…,S10,则S 1+S2+S3+…+S10=()A . 4πB . 3πC . 2πD . π10、(2018烟台.中考真卷) 如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A . 56°B . 62°C . 68°D . 78°11、(2018武汉.中考模拟) 如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC的大小是()A . 40°B . 50°C . 60°D . 70°12、(2015武汉.中考模拟) 如图,△ABC中,下面说法正确的个数是()个.①若O是△ABC的外心,∠A=50°,则∠BOC=100°;②若O是△ABC的内心,∠A=50°,则∠BOC=115°;③若BC=6,AB+AC=10,则△ABC的面积的最大值是12;④△ABC的面积是12,周长是16,则其内切圆的半径是1.A . 1B . 2C . 3D . 413、(2017武汉.中考真卷) 已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A .B .C .D .14、(2016襄阳.中考真卷) 如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A . 线段DB绕点D顺时针旋转一定能与线段DC重合B . 线段DB绕点D顺时针旋转一定能与线段DI重合C . ∠CAD绕点A顺时针旋转一定能与∠DAB重合D . 线段ID绕点I顺时针旋转一定能与线段IB重合15、(2019福田.中考模拟) 如图,点O是△ABC的内心,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+ ∠A;②EF=mn;④以E为圆不可能是△A BC的中位线;③设OD=m,AE+AF=n,则S△AEF心、BE为半径的圆与以F为圆心、CF为半径的圆外切.其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个(2018深圳.中考模拟) 小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A .B .C .D .17、(2012.中考真卷) 如图,⊙O内切于△ABC,切点分别为D,E,F,连接OE,OF,DE,DF,乙组∠A=80°,则∠EDF等于()A . 40°B . 45°C . 50°D . 80°18、(2017眉山.中考真卷) 如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A . 114°B . 122°C . 123°D . 132°19、(2016遵义.中考真卷) 如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q 分别是△ABC和△ADC的内切圆,则PQ的长是()A .B .C .D . 2(2019天山.中考模拟) 已知在△ABC中,∠BAC=90°,M是边BC的中点,BC的延长线上的点N满足AM⊥AN.△ABC的内切圆与边AB,AC的切点分别为E,F,延长EF分别与AN,BC的延长线交于P、Q,则=()A . 1B . 0.5C . 2D . 1.521、(2020平昌.中考模拟) 如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为()A . ∠AIB=∠AOB B . ∠AIB≠∠AOBC . 4∠AIB﹣∠AOB=360°D . 2∠AOB ﹣∠AIB=180°22、(2020广西壮族自治区.中考模拟) 如图,等边的内切圆O切边于点D,已知等边三角形的边长为12,则图中阴影部分的面积为( )A .B .C .D .23、(2020陕西.中考模拟) 如图,点为角平分线交点,,,,将平移使其顶点与重合,则图中阴影部分的周长为( )A .B .C .D .24、(2021武汉.中考模拟) 如图,是的直径,C是上一点,E 是的内心,.若,则的面积为()A .B . 2C .D . 125、(2021杭州.中考模拟) 如图,在中,,于D,⊙O为的内切圆,设⊙O的半径为R,AD的长为h,则的值为()A .B .C .D .26、(2021荆门.中考模拟) 如图,点为的内心,,,,则的面积是()A .B .C . 2D . 427、(2021海沧.中考模拟) 如图所示,在4×4的网格中,A、B、C、D、O均在格点上,则点O是()A . △ABC的内心B . △ABC的外心C . △ACD的外心D . △ACD的重心28、(2021新华.中考模拟) 如图,在中,.小丽按照下列方法作图:①作的角平分线,交于点D;②作的垂直平分线,交于点E.根据小丽画出的图形,判断下列说法中正确的是()A . 点E是的外心B . 点E是的内心C . 点E在的平分线上D . 点E到边的距离相等29、如图,已知,用尺规按照下面步骤操作:①作线段的垂直平分线;②作线段的垂直平分线,交于点O;③以O为圆心,长为半径作.结论Ⅰ:点O是的内心.结论Ⅱ:.对于结论Ⅰ和结论Ⅱ,下列判断正确的是()A . Ⅰ和Ⅱ都对B . Ⅰ和Ⅱ都不对C . Ⅰ不对Ⅱ对D . Ⅰ对Ⅱ不对30、如图,点是的内心,的延长线和的外接圆相交于点,连接,,,若,则的大小为()A .B .C .D .三角形的内切圆与内心单选题答案1.答案:B2.答案:A3.答案:C4.答案:B5.答案:C6.答案:A7.答案:A8.答案:B9.答案:D10.答案:C11.答案:B12.答案:C13.答案:C14.答案:D15.答案:D16.答案:C17.答案:C18.答案:C19.答案:B20.答案:A21.答案:C22.答案:23.答案:24.答案:25.答案:26.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题 8.(2020•丽水)如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是上一点,则∠EPF 的度数是( ) A .65° B .60° C .58° D .50° {答案}B
{解析}如图,连接OE ,OF .
∵⊙O 是△ABC 的内切圆,E ,F 是切点,∴OE ⊥AB ,OF ⊥BC ,∴∠OEB =∠OFB =90°,∵△ABC 是等边三角形,∴∠B =60°,∴∠EOF =120°,∴∠EPF ∠EOF =60°,因此本题选B . 9.(2020·嘉兴)如图,在等腰△ABC 中,AB =AC =25,BC =8,按下列步骤作图:
①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于1
2
EF 的长为半径作弧相交于点H ,作射线AH ; ②分别以点A ,B 为圆心,大于
1
2
AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;
③以点O 为圆心,线段OA 长为半径作圆.则⊙O 的半径为( ) A .25 B .10 C .4 D .5
{答案}D
{解析}本题考查了三角形的外接圆、垂径定理以及线段垂直平分线、角平分线的尺规作图.如图,由尺规作图可知,AH 为∠BAC 的平分线,又AB =AC ,知AO ⊥BC ,BG =CG =4,又因为AB =25,得到AG =2.在Rt △OGC 中,设OC =r ,则OG =r –2,所以2
2
2
(2)4
r r =-+,解得r =5,因此本题选D .
7. (2020·连云港) 10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心
A.△AED
B.△ABD
C.△BCD
D.△ACD
(第7题图)
{答案}D
{解析}本题考查了三角形外心的概念,外心到三角形三个顶占的距离相等,即是三角形三边垂直平分线的交点处,故选D .
(2020·济宁)9.如图,在△ABC 中一点D 为△ABC 的内心,∠A =60°,CD=2,BD=4.则△DBC 的面积是( ) A.43 B.23 C.2 D.4
G
O
B
C
{答案
}B
{解析}如图,∵点D 为△ABC 的内心,∴BD ,CD 分别是∠B 、∠C 的平分线, 又∵∠A =60°,∴∠ABC+∠ACB=120°,∴∠DBC+∠DCB=60°,∴∠BDC=120°. 过点C 作BD 的垂线,交BD 的延长线于点E ,垂足为E ,∴∠EDC=60°,
∵CD=2,∴CE=CD ·∵BD=4,∴11
22
BDC S BD CE ∆=
⋅=⨯=
8.(2020·随州)设边长为a 的等边三角形的高、内切圆的半径、外接圆的半径分别为h 、r 、R ,则下列结论不正确的是( )
A. h=R+r
B.R=2r
C.a r 43=
D. a R 3
3=
{答案}C
{解析}本题考查了正三角形的内切圆和外接圆的相关计算、三角函数,解答过程如下:如图所示,
由题意得:h=R+r,R=2r,h=AD=a
2
3
,BD=
2
a

∴r=OD=a
6
3
,R=OA=OB=a
3
3
.∴C错误.因此本题选C.
二、填空题
15.(2020·南京)如图,线段AB、BC的垂直平分线l1、l2相交于点O.若∠1=39°,则∠AOC=____°.
{答案}78
{解析}由题意可知点O是△ABC的外接圆圆心,如图,∴∠AOC=2∠B.在四边形OEBD中,∠OEB+∠ODB=180°,∴∠B+∠DOE=∠1+∠DOE=180°,∴∠B=∠1=39°.∴∠AOC=2∠B=78°.
15.(2020·泰州)如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C、在直角坐标系中的坐标分别为()
3,6,()
3,3
-,()
7,2
-,则ABC
∆内心的坐标为______.
{答案}(2,3)
{解析}本题考查了三角形内心的知识,三角形的内心是三角形三条角平分线的交点,本题我们只需作出∠B和∠C 的两条角平分线,两角平分线的交点就是内心的位置.
10.(2020·青海)如图4,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=______.
l2
l1
A
B C
O
1
l2
l1
A
B C
D
E
O
1
A
O
r
图4
{答案}1
{解析}AB =22AC BC =5.由“直角三角形内切圆的半径等于两直角边的和与斜边差的一半”可知,r =12
×(3+4-5)=1.
三、解答题 21.(2020湖州)如图,已知△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,连结BD ,BC 平分∠ABD .
(1)求证:∠CAD =∠ABC ;
(2)若AD =6,求CD
̂的长. 【分析】(1)由角平分线的性质和圆周角定理可得∠DBC =∠ABC =∠CAD ;
(2)由圆周角定理可得CD
̂=AC ̂,由弧长公式可求解. 【解答】解:(1)∵BC 平分∠ABD ,∴∠DBC =∠ABC ,∵∠CAD =∠DBC , ∴∠CAD =∠ABC ;
(2)∵∠CAD =∠ABC ,∴CD ̂=AC ̂,∵AD 是⊙O 的直径,AD =6, ∴CD
̂的长=1
2
×1
2
×π×6=3
2
π.。

相关文档
最新文档