湘教版九年级上册数学第3章单元测试卷
第3章 图形的相似数学九年级上册-单元测试卷-湘教版(含答案)

第3章图形的相似数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,D,E分别是△ABC的边AB,BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.2、图中两个四边形是位似图形,它们的位似中心是()A.点MB.点NC.点OD.点P3、如图,△OAB∽△OCD,OA:OC 3:2,∠A α,∠C β,△OAB与△OCD的面积分别是和,△OAB与△OCD的周长分别是和,则下列等式一定成立的是()A. B. C. D.4、若,则的值为()A.1B.C.D.5、如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()A.12mB.10mC.8mD.7m6、如图,斜靠在墙上的梯子AB,梯脚B距墙面1.6米,梯上一点D距墙面1.4米,BD长0.55米,则梯子AB的长为( )米A.3.85B.4.00C.4.4D.4.50.7、如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:68、如图,在平行四边形ABCD中,E为CD上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△ABF等于()A.2:3B.2:5C.4:9D.4:259、如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE 沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S1与△ABC的面积S2之间的关系是()A. B. C. D.10、下列说法错误的是()A.有一个角等于60°的两个等腰三角形相似B.有一个角等于100°的两个等腰三角形相似C.有一个角等于90°的两个等腰三角形相似D.有一个角等于30°的两个等腰三角形相似11、若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3B.3:2C.4:9D.9:412、如图,点 A在函数y= (x>0)的图象上,AB⊥x轴于点 B,过线段AO 的三等分点M,N分别作x轴的平行线交AB于点P,Q.若S四边形MNQP= 3,则k的值为A.9B.12C.15D.1813、已知两点A(2,0),B(0,4),且∠1=∠2,则点C的坐标为()A.(2,0)B.(0,2)C.(1,0)D.(0,1)14、若两个相似三角形的周长之比是1:2,则它们的面积之比是()A.1:2B.1:C.2:1D.1:415、如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:①△BMD≌△DFE;②△NBE∽△DBC;③AC=2DF;④EF AB=CF BC,其中正确结论的个数是()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,在中,,,,点E为边AB上的一个动点,连接ED并延长至点F,使得,以EC、EF为邻边构造,连接EG,则EG的最小值为________.17、如图,在□ABCD中,AB=6,AD=8,∠B=60°,∠BAD 与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是________.18、如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:________.19、在比例尺为1:200000的宿迁城市交通地图上,迎宾大道的长约为3.6cm,则这条道路的实际长度是________.20、如图,已知点是的重心,过作的平行线,分别交于点,交于点,作,交于点,若四边形的面积为4,则的面积为________.21、如图,在正方形ABCD中,E是CD边上一点,DE=2,过B作AE的垂线,垂足为点F,BF=3,将△ADE沿AE翻折,得到△AGE,AG与BF于点M,连接BG,则△BMG的周长为________22、如图,五边形和五边形是位似图形,且,则等于________.23、在平行四边形ABCD中,E为CD的中点,△DOE的面积是2,△DOA的面积________24、如图,四边形OABC为矩形,AB=1,AB=1,矩形OA'B'C'与矩形OABC是位似图形,O为位似中心,位似比为k,过点B的反比例函数y= (k≠0)的图象与A'B'B'C'分别交于点D,E,若△ADA'的面积为3,则k的值为________ 。
第3章 图形的相似数学九年级上册-单元测试卷-湘教版(含答案)

第3章图形的相似数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图所示,在中,,若,,则的值为()A. B. C. D.2、如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE的长为()A.3B.6C.9D.123、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2= GF×AF;④当AG=6,EG=2 时,BE的长为,其中正确的结论个数是()A.1B.2C.3D.44、如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有()A.1个B.2个C.3个D.4个5、两个相似三角形的一组对应边分别为5cm和3cm,如果它们的面积之和为136cm2,则较大三角形的面积是()A.36cm 2B.85cm 2C.96cm 2D.100cm 26、如图所示,在△ABC中,DE∥BC,若,则=()A. B. C. D.7、把一个三角形变成和它相似的三角形,若面积扩大5倍,则边长扩大();若边长扩大5倍,则面积扩大()A.5倍,10倍B.10倍,25倍C. 倍,25倍D.25倍,25倍8、如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于F,若AE:DF=2:3,则BF:BC的值是()A. B. C. D.9、某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A.1.25mB.10mC.20mD.8m10、已知x:y:z=3:4:6,则的值为()A. B.1 C. D.11、如图,中,,则下列等式中不成立的是()A. B. C. D.12、如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E 、F ,连结BD 、DP ,BD与CF相交于点H. 给出下列结论:①△BDE ∽△DPE;②;③DP 2=PH ·PB;④. 其中正确的是().A.①②③④B.①②④C.②③④D.①③④13、已知点M将线段AB黄金分割(AM>BM),则下列各式中不正确的是()A. B. C.D.14、如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为()A.5B.C.D.15、如果,则下列正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,△ABC中,AB=6,DE∥AC,将△BDE绕点B顺时针旋转得到△BD′E′,点D的对应点D′落在边BC上.已知BE′=5,D′C=4,则BC的长为________.17、高为3米的木箱在地面上的影长为12米,此时测得一建筑物在水面上的影长为36米,则该建筑物的高度为________ 米.18、如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,AH交OB于点E,若OB=4,S菱形ABCD=24,则OE的长为________.19、如果线段c是a、b的比例中项,且a=2,b=8,则c=________.20、如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③DP2=PH•PB;④.其中正确的是________ .(写出所有正确结论的序号)21、如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2, l3上,∠ACB=90°,AC交l2与点D.已知l1与l2的距离为1,l2与l3的距离为3,则线段CD的长等于________.22、如图,已知△ABC中,AB=5,AC=3,点D在边AB上,且∠ACD=∠B,则线段AD的长为________.23、如图,菱形的对角线、交于点O,点E、F、G分别在、、上,且四边形为矩形.若,,则的长为________.24、如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则+= ________.25、在直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是________三、解答题(共5题,共计25分)26、已知≠0,求的值.27、如图,在△ABC中,点D在边AB上,点F、E在边AC上,且DF∥BE,.求:的值.28、如图,已知,,,求的度数.29、如图,在△ABC中,已知点D、E分别是AB、AC上的点,△ADE~△ACB,相似比为AD:AC=2:3,△ABC的角平分线AF叫DE于点G,交BC于点F,求AG与GF的比30、如图,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,求AP的长.参考答案一、单选题(共15题,共计45分)2、B3、D4、C5、D6、B7、C8、B9、C10、A11、D12、D13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第3章 图形的相似数学九年级上册-单元测试卷-湘教版(含答案)

第3章图形的相似数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△=4:25,则DE:EC=()ABFA.3:2B.1:1C.2:5D.2:32、下列说法正确的个数是()( 1 ).对应边成比例的多边形都相似,(2).有一组邻边相等的两个平行四边形相似,(3).有一个角相等的两个菱形相似,(4).正六边形都相似,A.1B.2C.3D.43、如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(2,4).点A在轴的正半轴上,点C在轴的正半轴上,点P是BC的中点.以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,记点P的对应点为P1,则P1的坐标为()A.(3,3)B.(3,2)或(,)C.(3,3)或(,) D.(2,3)或(,)4、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.5、将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8C.D.26、如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A,B,C和D,E,F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4B.4C.3.4D.2.47、下列各组长度的线段(单位:)中,成比例线段的是()A.1,2,3,4B.1,2,3,5C.2,3,4,5D.2,3,4,68、《孙子算经》是我国古代重要的数学著作,其下卷有题如下:“今有竿不知长短,度其影得一丈五尺.别立一表,长一尺五寸,影得五寸.问竿长几何?”译文:“有一根竹竿不知道它的长短,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长是五寸,则这根竹竿的长度为多少尺?”可得这根竹竿的长度为()(提示:丈尺,尺寸)A.五丈B.四丈五尺C.五尺D.四尺五寸9、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米10、将2019个边长为1的正方形按如图所示的方式排列,点A,A1, A2, A3,……A2019和点M,M1, M2……,M2018是正方形的顶点,连接A1M,A2M1, A3M2,……A2018分别交正方形的边A1M,A2M1, A3M2,……A2018M2017于点N1, N2, N3……N2018,四边形M1N1A1A2的面积是,四边形M2N2A2A3的面积是,…,则为()A. B. C. D.11、如图,当小颖从路灯AB的底部A点走到C点时,发现自己在路灯B下的影子顶部落在正前方E处.若AC=4m,影子CE=2m,小颖身高为1.6m,则路灯AB的高为()A.4.8米B.4米C.3.2米D.2.4米12、如图,在平行四边形ABCD中,E,F分别是边AD,BC的中点,AC分别交BE,DF于G,H,试判断下列结论:①△ABE≌△CDF;②AG=GH=HC;③2EG=BG;④S△ABG:S四边形GHDE=2:3,其中正确的结论是()A.1个B.2个C.3个D.4个13、下列命题中,正确的个数是()①等边三角形都相似;②直角三角形都相似;③等腰三角形都相似;④锐角三角形都相似;⑤等腰三角形都全等;⑥有一个角相等的等腰三角形相似;⑦有一个钝角相等的两个等腰三角形相似;⑧全等三角形相似.A.2个B.3个C.4个D.5个14、如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是)A. B. C. D.15、如图,正方形的边长为4,延长至使,以为边在上方作正方形,延长交于,连接、,为的中点,连接分别与、交于点、.则下列结论:①;②;③;④.其中符合题意的结论有( )A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知,则________17、如图,与是以点为位似中心的位似图形,相似比为,若点的坐标为,则点的坐标为:________.18、如图,在平面直角坐标系中,为坐标原点,的边在轴上,顶点在轴的正半轴上,点在第一象限,将沿轴翻折,使点落在轴上的点处,点恰好为的中点,与交于点.若图象经过点,且,则的值为________.19、如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是________.(只需写一个条件,不添加辅助线和字母)20、上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为________米21、如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为________.22、如图,D,E分别是△ABC的边AB和AC上的动点,且DE∥BC,当DE把△ABC的面积分成1:3的两部分时,的值为________.23、图1是小红在“淘宝·双11”活动中所购买的一张多档位可调节靠椅,档位调节示意图如图2所示。
湘教版九年级数学上册第3章 图形的相似 单元测试题(含答案)

第3章 图形的相似一、选择题(本大题共7小题,每小题4分,共28分) 1.以下列数据为长度的线段中,能成比例的是( ) A .3 cm ,6 cm ,8 cm ,9 cm B .3 cm ,5 cm ,6 cm ,9 cm C .3 cm ,6 cm ,7 cm ,9 cm D .3 cm ,6 cm ,9 cm ,18 cm2.已知△ABC ∽△A ′B ′C ′,AD ,A ′D ′分别是对应边BC ,B ′C ′上的高,且BC =10 cm ,B ′C ′=6 cm ,AD =7 cm ,则A ′D ′为( )A.163 cm B .12 cm C.215cm D .以上都不正确 3.在△ABC 中,D ,E 分别为边AB ,AC 的中点,则△ADE 与△ABC 的面积之比为( ) A.12 B.13 C.14 D.164.在△ABC 和△DEF 中,AB =AC ,DE =DF ,根据下列条件,能判定△ABC 和△DEF 相似的是( )A.AB DE =AC DFB.AB DE =BC EF C .∠A =∠E D .∠B =∠D 5.宽与长的比是5-12(约0.618)的矩形叫作黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图1,作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF .以点F 为圆心,以FD 的长为半径画弧,交BC 的延长线于点G .作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )图1A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH6.如图2,已知△ABC ,任取一点O ,连接AO ,BO ,CO ,并取它们的中点D ,E ,F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长比为1∶2;④△ABC 与△DEF 的面积比为4∶1.A .1B .2C .3D .4图2 图37.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50 cm ,镜面中心C 距离旗杆底部D 的距离为4 m ,如图3所示.已知小丽同学的身高是1.54 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,则旗杆DE 的高度为( )A .10 mB .12 mC .12.4 mD .12.32 m二、填空题(本大题共7小题,每小题5分,共35分) 8.已知ab =3,则a -b b=________.9.在△ABC 中,AB =6,AC =8,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,需添加一个条件是________.(写出一种情况即可)10.如图4,以点O 为位似中心,将△ABC 缩小得到△A ′B ′C ′,若AA ′=2OA ′,则△ABC 与△A ′B ′C ′的周长比为________.11.如果两个相似三角形的面积比是16∶9,那么它们对应的角平分线的比是________.图4 图512.如图5,在平面直角坐标系中,每个小方格的边长均为1,△AOB 与△A ′OB ′是以原点O 为位似中心的位似图形,且OA OA ′=32,点A ,B 都在格点上,则点B ′的坐标是________.13.如图6,为了测量一水塔的高度,小强用2 m 长的竹竿做测量工具,移动竹竿,使竹竿、水塔顶端的影子恰好落在地面上的同一点.此时,竹竿与这一点相距8 m ,与水塔相距32 m ,则水塔的高度为________m.图614.如图7,在Rt △ABC 中,∠C =90°,AC =6,BC =8,P ,Q 分别为边BC ,AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.图7三、解答题(本大题共3小题,共37分)15.(10分)已知:如图8,△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5).(1)在网格中画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.图816.(13分)如图9(示意图),小明把手臂水平向前伸直,手持长为a的小尺竖直,瞄准小尺的两端E,F,不断调整站立的位置,使站在点D处正好看到旗杆的底部和顶部.如果小明的手臂长l=40 cm,小尺的长a=20 cm,点D到旗杆底部的距离AD=25 m,求旗杆BA 的高度.图917.(14分)如图10,在正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,EF交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.图101.[答案] D 2.[答案] C 3.[答案] C 4.[答案] B5.[解析] D 设正方形ABCD 的边长为2,则CD =2,CF =1.在直角三角形DCF 中,DF =CF 2+CD 2=12+22=5,∴FG =5,∴CG =5-1,∴CGCD =5-12,∴矩形DCGH为黄金矩形.故选D.6.[解析] C 根据位似的性质得出①△ABC 与△DEF 是位似图形,②△ABC 与△DEF 是相似图形.∵△DEF 是将△ABC 的三边缩小为原来的12得到的,∴△ABC 与△DEF 的周长比为2∶1,故③错误.根据面积比等于相似比的平方,可知④△ABC 与△DEF 的面积比为4∶1.故选C.7.[解析] B 由题意可得AB =1.5 m ,BC =0.5 m ,DC =4 m ,△ABC ∽△EDC ,则ABDE =BC DC ,即1.5DE =0.54,解得DE =12(m).故选B. 8.[答案] 29.[答案] ∠A =∠D (答案不唯一) 10.[答案] 3∶1[解析] 由题意可知△ABC ∽△A ′B ′C ′, ∵AA ′=2OA ′,∴OA =3OA ′, ∴AC A ′C ′=OA O ′A ′=31,∴C △ABC C △A ′B ′C ′=AC A ′C ′=31. 故答案为3∶1. 11.[答案] 4∶3 12.[答案] (-2,43)[解析] 由题意得OA OA ′=32.又∵B (3,-2),∴点B ′的横坐标是3×(-23)=-2,点B ′的纵坐标是-2×(-23)=43,即点B ′的坐标是(-2,43).故答案为(-2,43).13.[答案] 1014.154或307 [解析] 在Rt △ABC 中,由勾股定理,得AB =10.应分情况讨论:①当AQ =PQ ,∠QPB =90°时.设AQ =PQ =x .由题意,得PQ ∥AC ,∴△BPQ ∽△BCA , ∴BQ BA =PQ CA ,∴10-x 10=x 6, ∴x =154,∴AQ =154.②当AQ =PQ ,∠PQB =90°时.设AQ =PQ =y . 由题意,得△BQP ∽△BCA ,∴PQ AC =BQ BC ,∴y 6=10-y 8,∴y =307. ③当AQ =AP ,∠PQB =90°时.设AQ =z . 由题意,得△BQP ∽△BCA ,BQ =10-z . BQ BC =BP BA ,10-z 8=BP 10,BP =12.5-1.25z . 在Rt △ACP 中,AC =6,AP =z ,BP =12.5-1.25z ,∴CP =8-(12.5-1.25z )=1.25z -4.5.由勾股定理,得(12.5-4.5z )2+62=z 2,解得z =10,∴此情况不存在.综上所述,满足条件的AQ 的值为154或307.15.解:(1)(2)画图如下图所示,B 2(10,8).16.解:过点C 作CH ⊥AB 于点H ,交EF 于点P ,则CH =AD =25 m ,CP =40 cm =0.4 m ,EF =20 cm =0.2 m.由题意,得EF ∥AB , ∴△CEF ∽△CBA ,∴EFBA=CPCH,即0.2BA=0.425,解得BA=12.5(m).答:旗杆BA的高度为12.5 m.17.解:(1)证明:∵四边形ABCD是正方形,∴AD∥BC,∴∠AMB=∠EAF.又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EF A.(2)∵∠B=90°,AB=12,BM=5,∴AM=122+52=13.∵四边形ABCD为正方形,∴AD=AB=12.∵F是AM的中点,∴AF=FM=6.5.∵△ABM∽△EF A,∴BMF A=AMEA,即56.5=13EA,∴EA=16.9,∴DE=EA-AD=4.9.。
【湘教版】九年级数学上册:第三章图形的相似单元检测试卷(含答案)

第三章《图形的相似》单元检测试卷1. 如果吐耳,那么兰的值是() y 4 X A.鱼 B.C. i4332. 下列各组中的四条线段成比例的是( A.工3, c=2,B. a=4, b=6, c=5, cMOC. <3—2,]5 D.日=2, Z J ^3,3. 己知,C 是线段仙的黄金分割点,AC<BC,若力员2,则殓()A. Vs - 1B.丄(V5+1)C. 3 ■码D. 1(V5 ・ 1)2 24. 如图,在厶ABC 中,DE//BC,翌AD&4,则氏的长是()DB Z对应边冴'的长是( )A. V2B. 2C. 3D. 46. 己知图(1) . (2)中各有两个三角形,其边长和角的度数己在图上 标注,图(2)中力3①交于。
点,对于各图中的两个三角形而言, 下列说法正确的是()A.只有(1)相似B.只有(2)相似一.选择(共10小A. 8B. 10C. 11D. 12C.都相似D.都不相似7. 在平行四边形肋①中,点厅是边肋上一点,且A 吕2ED,虑交对角线勿于点F,则里等于 FC8. 如图,身高1. 8刃的小超站在某路灯下,发现自己的影长恰好是3田,经测量,此时小超离路灯底部的距离是9呂则路灯离地而的高度是9. 如图,△创万与是以点。
为位似中心的位似图形,相似比为1: 2, Z^6Z>90° , CO=CD.若方(1,0),则点 C 的坐标为( )10. 如图,△個7中,点0在线段初上,且ABAD-AC,则下列结论一定1L 己知则业的值为 ________________________4 5 6aD. 9/z?A. (1,2)B. (1,1)C. (V2,V2)D. (2,1)正确的是( )A. A 前AC ・ BDB. AB ・AD^BD ・BCDAB ・AD=BDCD二填空题(共8小j3 2 3A E DB C( )第10题图12.如上图,己知点C是线段力万的黄金分割点,且BOAC.若S表示以虑为边的正方形面积,$表示长为AB.宽为的矩形面积,则S 与$的大小关系为_______________ .13.给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有 ___________ (填序号).14.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为_____________ .15.己知ZiMCs△碑△力氏与△谢的相似比为4: 1,则△遊与△妙对应边上的高之比为 _____________ .16.如图,血^沪皿,眩〃用〃万C则S:免:5n= ______ .第16题图B C17.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点尸处放一水平的平而镜,光线从点力出发经过平而镜反射后刚好射到古城墙G?的顶端C处,已知ABLBD, CDJBD,且测得返1. 2米,B&L 8米,PM2米,那么该古城墙的高度是________________ 米(平面镜的厚度忽略不计).18.如图,在Rt'ABC中,ZACB=90°,①丄肋于点D, CD=2, BD=\,则AD的长是____________ , /IC的长是 ___________ .三•解答题(共6小题)19.如图,在边上为1个单位长度的小正方形网格中:(1)画出△力兀向上平移6个单位长度,再向右平移5个单位长度后的△ A.RG.(2)以点万为位似中心,将△肋C放大为原来的2倍,得到请在网格中画出(3)求△CGG的而积.■X20.已知:如图,△力氏中,,AB=A(=].f点。
九年级数学上册第三章《图形的相似》单元测试卷-湘教版(含答案)

九年级数学上册第三章《图形的相似》单元测试卷-湘教版(含答案) 一、选择题(本题共计12小题,每题3分,共计36分,) 1.下列图形中不一定相似的是A .两个矩形B .两个圆C .两个正方形D .两个等边三角形2.下面四条线段中成比例线段的是A .1a =,2b =,3c =,4d =B .3a =,6b =,9c =,12c =C .1a =,3b =,2c =,6d =D .1a =,2b =,4c =,6d =3.如图,四边形ABCD ∽四边形EFGH ,80A ∠=︒,90C ∠=︒,70F ∠=︒,则H ∠等于A .70︒B .80︒C .110︒D .120︒4.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点()AC BC >,下列结论正确的是A .2AB AC BC = B .2BC AC BC = C .512AC BC -=D .352BC AB -= 5.如图,已知////AD BE CF ,23AB BC =,3DE =,则DF 的长为 A .2 B .4.5 C .3 D .7.56.如图,D 是ABC ∆的边AC 上一点,那么下面四个命题中错误的是A .如果ADB ABC ∠=∠,则ADB ABC ∆∆∽B .如果ABDC ∠=∠,则ABD ACB ∆∆∽ C .如果AB AD AC AB =,则ABC ADB ∆∆∽ D .如果AD AB AB BC=,则ADB ABC ∆∆∽ 7.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边60DE cm =,30EF cm =,测得边DF 离地面的高度 1.5AC m =,10CD m =,则树高AB 为A .4mB .5mC .5.5mD .6.5m第3题图 第5题图 第6题图 第7题图 第8题图8.如图所示,在离某建筑物4m 处有一棵树,在某时刻,1.2m 长的竹竿垂直地面,影长为2m ,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m ,则这棵树高约有多少米A .6.4米B .5.4米C .4.4米D .3.4米9.点D 是线段AB 的黄金分割点()AD BD >,若2AB =,则(BD =A 51-B 35-C .35D 5110.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,//DE BC ,8AC =,6AE =,12AB =,则BD 等于A .3B .9C .6D .811.如图,在ABC ∆,D 是BC 上一点,:1:2BD CD =,E 是AD 上一点,:1:2DE AE =,连接CE ,CE 的延长线交AB 于F ,则:AF AB 为A .1:2B .2:3C .4:3D .4:712.如图所示,为了测量文昌塔AB 的高度,数学兴趣小组根据光的反射定理(图中12)∠=∠,把一面镜子放在点C 处,然后观测者沿着直线BC 后退到点D .这时恰好在镜子里看到塔顶A ,此时量得4CD m =,94BD m =,观测者目高 1.6ED m =,则塔AB 的高度为A .35mB .36mC .37mD .38m第10题图 第11题图 第12题图 二、填空题(本题共计6小题,每题3分,共计18分) 13.若两个相似三角形对应角平分线的比是2:3,它们的周长之和为15cm ,则较小的三角形的周长为 .14.如图,平面直角坐标系中有正方形ABCD 和正方形EFGH ,若点A 和点E 的坐标分别为(2,3)-,(1,1)-,则两个正方形的位似中心的坐标是 .15.设223x y x -=,则x y = . 16.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为1:3,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为5,则C 点坐标为 .17.如图,ABC ∆中,D 是AB 的黄金分割点()AD BD <,过点D 作//DE BC 交AC 于E ,若35BC =+,则DE = .第14题图 第16题图 第17题图18.四条线段a ,b ,c ,d 成比例,其中3b cm =,2c cm =,8d cm =,则a 的长为 .三.解答题(共8小题,共66分)19.已知a 、b 、c 为ABC ∆的三边长,且48a b c ++=,457a b c ==,求ABC ∆三边的长.20.如图,在68⨯的网格图中,每个小正方形边长均为1,点O 和ABC ∆的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A B C ''',使△A B C '''和ABC ∆位似,且位似比为1:2.(2)连接(1)中的AA ',求四边形AA C C ''的周长.(结果保留根号)21.如图,在ABC ∆中,D 是AB 的中点,F 是BC 边延长线上的点,连接DF 交AC 于点E .求证:::CF BF CE AE =.(提示:过点C 作//)CG AB22.如图,在ABC ∆中,4BC =,D 为AC 延长线上一点,3AC CD =,CBD A ∠=∠,过D 作//DH AB ,交BC 的延长线于点H .(1)试说明:HCD HDB ∆∆∽.(2)求DH 的长.23.在ABC ∆中,10BC cm =,6AC cm =,点P 从点B出发,沿BC 方向以2/cm s 的速度向点C 移动,点Q 从点C 出发,沿CA 方向以1/cm s 的速度向点A 移动,若P ,Q 同时出发,设运动时间为ts ,则CPQ ∆能否与CBA ∆相似?若能,求t 的值;若不能,请说明理由.24.如图,是一个零件图,利用三角形位似的知识,以O 为位似中心把原图尺寸放大2倍.25.我们定义:顶角等于36︒的等腰三角形为黄金三角形.如图,ABC ∆中,AB AC =且36A ∠=︒,则ABC ∆为黄金三角形.(1)尺规作图:作B ∠的角平分线,交AC 于点D .(保留作图痕迹,不写作法)(2)请判断BDC ∆是否为黄金三角形,如果是,请给出证明,如果不是,请说明理由.26.阅读下列材料,并按要求完成相应的任务.黄金三角形与五角星当等腰三角形的顶角为36︒(或108)︒时,它的底与腰的比(或腰与底的比)为512-,我们把这样的三角形叫做黄金三角形.按下面的步骤画一个五角星(如图):①作一个以AB为直径的圆,圆心为O;②过圆心O作半径OC AB⊥;③取OC的中点D,连接AD;④以D为圆心OD为半径画弧交AD于点E;⑤从点A开始以AE为半径顺时针依次画弧,正好把O十等分(其中点F,G,B,H,I为五等分点);⑥以点F,G,B,H,I为顶点画出五角星.任务:(1)求出AEOA的值为;(2)如图,GH与BF,BI分别交于点M,N,求证:BMN∆是黄金三角形.参考答案 一、选择题(本题共计12小题,每题3分,共计36分,) 1.A .2.C .3.D .4.D . 5.D . 6.D . 7.D .8.C .9.C .10.A .11.D .12.B .二、填空题(本题共计6小题,每题3分,共计18分)13.6cm . 14.1(4,0)或3(4,)2-. 15. 34. 16. 5(2,5)3. 17. 2. 18.34cm . 三.解答题(共8小题,共66分)19.解:设457a b c x ===, 得4a x =,5b x =,7c x =.48a b c ++=,45748x x x ∴++=,解得3x =,412a x ∴==,515b x ==,721c x ==.20.解:(1)如图所示,△A B C '''即为所求作的三角形;(2)根据勾股定理,222425AC =+=, 22125A C ''=+=,所以,四边形AAC C ''的周长为:15225335+++=+.21.证明:过点C 作//CG AB 交DF 于G , ∴CE CG AE AD=, D 是AB 的中点,AD BD ∴=,∴CG CE BD AE=, //CG AB ,BD FB::CF BF CE AE ∴=.22.解:(1)//DH AB ,A HDC ∴∠=∠,CBD A ∠=∠,HDC CBD ∴∠=∠,又H H ∠=∠,HCD HDB ∴∆∆∽;(2)//DH AB , ∴CD CH AC BC=, 3AC CD =, ∴134CH =, 43CH ∴=, 416433BH BC CH ∴=+=+=, 由(1)知HCD HDB ∆∆∽, ∴DH CH BH DH=, ∴43163DH DH= ∴64893DH ==, 83DH ∴=(负值舍去). 答:DH 的长度为83. 23.解:设运动时间为ts ,则2BP t =,102CP t =-,CQ t =, 90PCQ ACB ∠=∠=︒,∴当CPQ ∆和CAB ∆相似时,有CPQ B ∠=∠或CPQ A ∠=∠, 当CPQ B ∠=∠时,则有CP CQ CB CA =,106解得3011t =. 当CPQ A ∠=∠时,则有CP CQ CA CB =, ∴102610t t -=, 解得5013t =. 综上所述,t 的值为3011或5013. 24.解:如图,25.解:(1)如图所示,BD 即为所求;(2)BDC ∆是黄金三角形,理由如下: BD 是ABC ∠的平分线,36ABD CBD ∴∠=∠=︒,36A ∠=︒,AB AC =,1(18036)722ABC C ∴∠=∠=︒-︒=︒, 又72BDC A ABD ∠=∠+∠=︒, BDC C ∴∠=∠,BD BC ∴=,BDC ∴∆是黄金三角形.26.(1)解:设2OA OC m ==,则OD DC m ==, OC AB ⊥,90AOD ∴∠=︒,2222(2)5AD OD AO m m m ∴=+=+=, DE DO m ==,5AE m m ∴=-,∴55122AE m m OA m --==.故答案为:512-. (2)证明:连接OH ,OI . 点F ,G ,B ,H ,I 为五等分点,1360725HOI ∴∠=⨯︒=︒, 36G ∴∠=︒,同理36F FBI GHF BIG ∠=∠=∠=∠=︒, 又BMN ∠是MHF ∆的外角, 72BMN F GHF ∴∠=∠+∠=︒, 同理72BNM ∠=︒,BMN BNM ∴∠=∠,BM BN ∴=,36FBI ∠=︒,BMN ∴∆是黄金三角形.。
第3章 图形的相似数学九年级上册-单元测试卷-湘教版(含答案)

第3章图形的相似数学九年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、如图,中,于D,下列条件中:①;②;③;④;⑤,⑥,一定能确定为直角三角形的条件的个数是()A.1B.2C.3D.42、如图,△ABC中,∠C=90°,CD⊥AB,若AC=3,AB=4,则AD=()A.1B.C.D.53、若x是3和6的比例中项,则x的值为()A. B. C. D.4、已知两个相似三角形的对应边之比为1:3,则它们的周长比为()A.1:9B.9:1C.1:6D.1:35、如图,在△中,D,E两点分别在边, 上,∥.若,则为()A. B. C. D.6、泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
金字塔的影长,推算出金字塔的高度。
这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似7、如图,D是给定△ABC边BC所在直线上一动点,E是线段AD上一点,DE=2AE,连接BE,CE,点D从B的左边开始沿着BC方向运动,则△BCE的面积变换情况是()A.逐渐变大B.逐渐变小C.先变小后变大D.始终不变8、若两个相似三角形的面积之比为1∶9,则它们对应角平分线之比为()A. B.3 C. D.9、如图,A,D是电线杆AB上的两个瓷壶,AC和DE分别表示太阳光线,若某一时刻线段AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,瓷壶D到地面的距离DB=20m,则电线杆AB的高为()A.15mB. mC.21mD. m10、如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.11、若2a=3b=4c,且,则的值是()A.2B.-2C.3D.-312、如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为()A.9:4B.9:2C.3:4D.3:213、如图,能推得DE∥BC的条件是()A.AD∶AB=DE∶BCB.AD∶DB=DE∶BCC.AE∶AC=AD∶DBD.AD∶DB=AE∶EC14、下列正方形方格中四个三角形中,与甲图中的三角形相似的是()A. B. C.D.15、如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.5二、填空题(共10题,共计30分)16、在平面直角坐标系xOy中,设点P的坐标为(n-1,3n+2),点Q是抛物线y=-x2+x+1上一点,则P,Q两点间距离的最小值为________.17、矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数________.18、如图,图①是一块边长为1,面积记为的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,剪下的正三角纸板面积记为,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记剪下的第2019块小正三角形纸板的面积为,则等于________.19、如图,直线、、…、是一组等距离的平行线,过直线上的点作两条射线与直线、分别相交于、,射线与直线、分别相交于点、.若,则的长为________.20、如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB 于点Q,函数y= 的图象经过点Q,若S△BPQ=S△OQC,则k的值为________ 。
湘教版九年级数学上册单元测试卷附答案第3章 图形的相似

第3章图形的相似一、选择题(共15小题;共45分)1. 如图,,,点在边上,且,则以下正确的是A. B.C. D. 以上都不对2. 下列判断中不正确的是A. 三边对应成比例的两个三角形相似B. 两边对应成比例,且有一个角相等的两个三角形相似C. 斜边与一条直角边对应成比例的两个直角三角形相似D. 有一个角是的两个等腰三角形相似3. 如图所示,,下列比例式中正确的是A. B. C. D.4. 如图,在中,点,,分别是边,,上的点,,,且,那么等于A. B. C. D.5. 下列命题中不正确的是A. 等边三角形都是相似图形B. 矩形都是相似图形C. 正方形都是相似图形D. 圆都是相似图形6. 如图,正五边形是由正五边形经过位似变换得到的,若,则下列结论正确的是A. B. C. D.7. 如图,,,,,,,,,都是方格纸中的格点(即小正方形的顶点),要使与相似,则点应是,,,四点中的A. 或B. 或C. 或D. 或8. 如图所示,在平面直角坐标系中,已知点,过点作轴于点.将以坐标原点为位似中心缩小为原图形的,得到,则的长度是A. B. C. D.9. 下列各组线段中,能成比例线段的一组是A. ,,,B. ,,,C. ,,,D. ,,,10. 如图,在中,点,分别在边,上,下列条件中不能判断的是A. B.C. D.11. 中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离的示意图中,记照板“内芯”的高度为,观测者的眼睛(图中用点表示)与,在同一水平线上,则下列结论中,正确的是A. B. C. D.12. 如图,矩形中,,,点在边上,且.动点从点出发,沿运动到点停止.过点作交射线于点,设是线段的中点,则在点运动的整个过程中,点运动路线的长为A. B. D.13. 如图,,,,.如果的面积用表示,的面积用表示,那么A. B. C. D.14. 如图,在中,是上的中线,是上的一点,,则等于A. B. C. D.15. 如图,在平行四边形中,点在上,连接交对角线于点,若,则A. B. C. D.二、填空题(共8小题;共40分)16. 平行于三角形一边的直线截其他两边所在的直线,所得的.17. 如果,那么.18. 如果梯形两底分别为和,高为,那么两腰延长线的交点到这个梯形的较大底边的距离是.19. 如图,线段两个端点的坐标分别为,.以原点为位似中心,在第一象限内将线段缩小为原来的后得到线段,则端点的坐标为.20. 在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为个单位的的方格纸中,找出一个格点三角形.如果与相似(相似比不为),那么的面积为.21. 如图,,,若,,则.22. 如图,在边长为的正方形中,点,分别是,的中点,,交于点,的中点为,连接,.给出下列结论:① ;② ;③ ;④ .其中正确的结论有.(请填上所有正确结论的序号)23. 如图,在中,,,,中,,点在上,交于点,交于点,当时,.三、解答题(共5小题;共65分)24. 如图,在中,,点是的中点,,交于点.(1)求证:;(2)若,,求的长.25. 如图,和是位似图形,与平行吗?为什么?26. 在校运会中,某班同学为了给运动健儿加油,需制作若干面矩形彩旗.如果有两边长分别为(其中)和的一块矩形绸布,要将它剪出三面彩旗(面料没有剩余),若每面彩旗恰好与原绸布相似,试画出两种不同的剪裁方法的示意图,并写出相应的的值.(不写计算过程)27. 如图,在中,,点在边上移动(点不与点,重合),满足,且点,分别在边,上.(1)求证:;(2)当点移动到中点时,求证:平分.28. 已知:如图,在与中,,,,垂足分别为点,,且,求证:.答案第一部分1. A2. B3. B4. D 【解析】,,,,,,,.5. B6. B7. C 【解析】设小正方形的边长为,则的各边分别为,,.当是或时,的各边分别是,,,与各边成比例,故选C.8. A9. A10. D11. B 【解析】因为,所以,所以.12. C 【解析】如图,当与重合时,点与重合,此时点在处,当点与重合时,点与重合,点在处,点的运动轨迹是线段.,,,,在中,,,,,,又,,,,,,,点的运动路径的长为13. C14. A15. D【解析】,,四边形是平行四边形,,,,.第二部分16. 对应线段成比例17.18.【解析】在梯形中,作于,交于,如图所示.,,,解得..19.20.【解析】如图.,,,.,,,....21.22. ①④【解析】四边形为正方形,,,和分别为和中点,,,,,,,,即,故①正确;,,,,故②错误;为中点,,,,,,,,,故④正确;,而,则和不相等,故,故与不平行,故③错误.23.第三部分24. (1)略(2)25. 平行;和是位似图形,.为位似中心..26. 如图所示,.27. (1)因为,.所以.因为,所以.所以.(2)因为,所以.因为是中点,所以,所以.因为,,所以.所以.所以,即平分.28. 略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章测试卷
一、选择题(每题3分,共24分)
1.下列四组线段中,不是成比例线段的是()
A.a=3,b=6,c=2,d=4 B.a=1,b=2,c=6,d= 3
C.a=4,b=6,c=5,d=10 D.a=2,b=5,c=15,d=2 3 2.能判定△ABC∽△DEF的条件是()
A.AB
DE=
AC
DF B.
AB
DE=
AC
DF,∠A=∠F
C.AB
DE=AC
DF,∠B=∠E D.
AB
DE=
AC
DF,∠A=∠D
3.若△ABC∽△DEF,其面积的比为4∶9,则△ABC与△DEF的周长比为() A.2∶3 B.16∶81 C.3∶2 D.4∶9
4.如图,D是Rt△ABC的斜边BC上异于B,C的一点,过点D作直线截△ABC,使截得的三角形与△ABC相似,满足条件的直线共有()
A.1条B.2条
C.3条D.4条
5.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()
A.AD
AB=
AE
AC B.
CE
CF=
EA
FB
C.DE
BC=
AD
BD D.
EF
AB=
CF
CB
6.在直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按1∶2把△EFO缩小,则点E的对应点E′的坐标为()
A.(2,-1)或(-2,1) B.(8,-4)或(-8,4)
C .(2,-1)
D .(8,-4)
7.如图,已知AB AD =BC DE =AC
AE .下列结论错误的是( ) A .△ABC ∽△ADE B .∠BAD =∠CAE C .AD 平分∠BAC D .∠ABD =∠ACE
8.如图,阳光通过窗口照到室内,在地面上留下一段亮区.已知亮区一边到窗下的墙脚距离CE =3.6 m ,窗高AB =1.2 m ,窗口底边离地面的高度BC =1.5 m ,则亮区ED 的长为( )
A .1.5 m
B .1.6 m
C .1.8 m
D .2.1 m
二、填空题(每题4分,共32分)
9.已知x y =23,则3x =________,y x =________,x +y y =________,x
x +y =________.
10.把长为5+1的线段进行黄金分割,则分成的较长线段的长为____________. 11.两个相似三角形的相似比为4∶5,其中一个三角形的一条中线长为20,则另一个三角形的对应边上的中线长为____________.
12.如图,一组平行横线,其相邻横线间的距离都相等,已知点A ,B ,C ,D ,O 都在横线上,且线段AD ,BC 交于点O ,则AB ∶CD 等于____________.
13.如图,在△ABC 中,DE ∥BC ,BD =2AD ,AE =3,则AC 的长是____________.
14.如图,在△ABC 与△DEF 中,AB DE =BC
EF ,∠B =∠E , CM ⊥AB ,FN ⊥DE ,点G 、H 分别是BC 、EF 的中点.若CM FN =23,则DH
AG =____________.
15.如图,在四边形 ABCD 中,AD ∥BC ,∠B =90°,AB =7,AD =3,BC =4.点P 为AB 边上一动点,若△P AD 与△PBC 相似,则满足条件的点P 有________个.
16.如图,AD 是△ABC 的中线,点E 在AC 上,BE 交AD 于点F ,AF AD =14,则AE
AC =________.
三、解答题(17~20题每题8分,21题12分,共44分)
17.如图,一条河的两岸有一段是互相平行的,为了测量河宽,王刚先站在岸边观察对岸的一目标B ,然后在岸边做一标记D ,使BD 垂直于岸边,再沿岸边走到点C ,接着垂直岸边走到点A ,使A ,B 和岸边的一点F 在一条直线上.如果量得AC =5 m ,FD =20 m ,CF =4 m ,那么河宽BD 是多少米?
18.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(6,
0),B(3,6),C(-3,3),以O为位似中心,画出四边形OABC的位似图形,
使它与四边形OABC的位似比为1∶3,并求出四边形OABC的面积.
19.如图,某人拿着一把长为12 cm的刻度尺站在离电线杆20 m的地方.他把手臂向前伸直,尺子竖直,尺子两端恰好遮住电线杆,已知臂长约为40 cm,求电线杆的高度.
20.如图,在△ABC中,点D是AC上一点,已知AB=24,AC=18,AD=12.
在AB上取一点E,若以A,D,E为顶点的三角形与△ABC相似,求线段AE 的长.
21.如图,在△ABC中,∠C=90°,BC=8 cm,AC∶AB=3∶5,点P从点B 出发沿BC向点C以2 cm/s的速度移动,点Q从点C出发沿CA向点A以1 cm/s 的速度移动,P,Q两点同时出发,同时停止.
(1)经过多少秒,△CPQ的面积为8 cm2?
(2)经过多少秒,以C,P,Q为顶点的三角形恰与△ABC相似?
答案
一、1.C 2.D 3.A 4.C 5.C 6.A
7.C :∵AB AD =BC DE =AC
AE ,∴△ABC ∽△ADE (选项A 成立),∴∠BAC =∠DAE ,∴∠BAD =∠CAE (选项B 成立). ∵AB AD =AC
AE ,∠BAD =∠CAE , ∴△ABD ∽△ACE ,
∴∠ABD =∠ACE (选项D 成立).而AD 平分∠BAC 不一定成立.故选C. 8.B :根据题意,得AE ∥BD ,∴CD ∶CE =CB ∶CA . 又∵AB =1.2 m ,CE =3.6 m ,BC =1.5 m ,
∴(3.6-ED )∶3.6=1.5∶(1.2+1.5),解得ED =1.6 m. 二、9.2y ;32;53;2
5 10.2
11.16或25 :设对应边上的中线长为x . ①若4∶5=20∶x ,则x =25; ②若4∶5= x ∶20,则x =16.
综上,对应边上的中线长为16或25. 12.2∶3 13.9 14.32
15.2 :∵AD ∥BC ,∴∠A =180°-∠B =90°,∴∠A =∠B =90°.设AP 的长为x ,则BP 的长为7-x .①若△APD ∽△BPC ,则AP ∶BP =AD ∶BC ,即x ∶(7-x )=3∶4,解得x =3;②若△APD ∽△BCP ,则AP ∶BC =AD ∶BP ,即x ∶4=3∶(7-x ),解得x =4或x =3.∴满足条件的点P 有2个.
16.17 :如图,过点D 作DG ∥BE ,交AC 于点G .∴AE AG =AF AD =1
4.∵AD 是△ABC
的中线,∴BD =DC ,∴CG EG =CD BD =1,∴AE AC =1
7.
三、17.解:由题意得AC ∥BD , ∴△ACF ∽△BDF , ∴AC ∶BD =CF ∶FD ,
又∵AC=5 m,FD=20 m,CF=4 m,
∴BD=25 m.
答:河宽BD是25 m.
18.解:如图,四边形OA1B1C1和四边形OA2B2C2即为所求;四边形OABC的
面积=9×6-1
2×3×6-
1
2×3×6-
1
2×3×3=31.5.
19.解:如图,作AN⊥EF于N,交BC于M,
∵BC∥EF,∴AM⊥BC,△ABC∽△AEF,∴BC∶EF=AM∶AN,∵AM=0.4 m,AN=20 m,BC=0.12 m,
∴EF=BC·AN
AM=
0.12×20
0.4=6(m).
答:电线杆的高度为6 m.
20.解:∵∠A是公共角,∴△AED与△ABC相似分两种情况:
①AD与AC是对应边时,
∵AB=24,AC=18,AD=12,
AE AB=AD
AC,∴
AE
24=
12
18,解得AE=16;
②AD与AB是对应边时,
∵AB=24,AC=18,AD=12,
AE AC=AD
AB,∴
AE
18=
12
24,解得AE=9.
综上,线段AE的长为9或16.
21.解:(1)设AC=3a cm,AB=5a cm,
由勾股定理,得AB2=AC2+BC2,
∴(3a)2+82=(5a)2,解得a=2(负值舍去),∴AC=6 cm,AB=10 cm.
设经过t s,△CPQ的面积为8 cm2,则PC=(8-2t)cm,CQ=t cm,
∴1
2×(8-2t)×t=8,
即t2-4t+8=0.∵Δ<0,
∴此方程无解.
答:不论经过多少秒,△CPQ的面积都不能为8 cm2.
(2)设经过x s,以C,P,Q为顶点的三角形恰与△ABC相似.∵∠C=∠C,
∴要使以C,P,Q为顶点的三角形恰与△ABC相似,则需有CQ
CA=
CP
CB或
CQ
CB=
CP CA,∴x
6=
8-2x
8或
x
8=
8-2x
6,
解得x=2.4或x=32 11.
答:经过2.4 s或32
11s,以C,P,Q为顶点的三角形恰与△ABC相似.。