激光雷达成像技术优秀课件

合集下载

激光雷达系统ppt课件

激光雷达系统ppt课件
激光雷达系统
组成
机载激光雷达
测量平台
姿态测量与导航系统
激光系统
数据处理
数码相机
同步控制
惯性导航
差分GPS
激光系统
工作流程
• • 机载激光雷达测量系统的的数据采集和处理过程 (一)航飞采集激光扫描数据及数码影像 1.在航飞前要制订飞行计划。航飞计划应包括航带划分,确定飞行高度、 速度、激光脉冲频率、航带宽度、激光反射镜转动速度、数码相机方位元素 及定位、相机拍摄时间间隔等,并将各航带的首尾坐标及其他导航坐标输入 导航计算机内,在飞行导航控制软件的辅助下进行飞行作业。 2.安置GPS接收机。为保证飞机飞行各时刻的三维坐标数据的精度,需 要在地面沿航线布设一定数量的GPS基准站,同时将GPS流动站安置在飞机 上。 3.激光扫描测量。预先设置好扫描镜的摆动方向和摆动角度,当飞机飞行 时,红外激光发生器向扫描镜上不停地发射激光,通过飞机的运动和扫描镜 的运动反射,使激光束打到地面并覆盖测区,当激光束到达地面或遇到其它 障碍物时被反射回来,被一光电接收感应器接收并将其转换成电信号。根据 激光发射至接收的时间间隔即可精确测出传感器至地面的距离。 4.惯性测量。当飞机飞行时,惯性测量装置同时也将飞机的飞行姿态测出 来,并和激光的有关数据、扫描镜的扫描角度一起记录在磁带上。 5.数码相机拍摄。利用数码相机进行拍摄时,需要对其拍摄时间间隔和拍 摄位置进行控制。通常是用GPS系统进行时间和位置控制。 6.数据传输。航飞数据采集结束后,将所有的激光扫描测量数据、数码影 像数据、GPS数据及惯性测量数据都传输到计算机中,为后续数据处理作准 备。
网点的平面坐标(X,Y)及其高程(Z)的数据集,它主要是描述区域地貌形态的空 间分布,是通过等高线或相似立体模型进行数据采集(包括采样和量测),然后进行 数据内插而形成的。DEM是对地貌形态的虚拟表示,可派生出等高线、坡度图等信息, 也可与DOM或其它专题数据叠加,用于与地形相关的分析应用,同时它本身还是制作 DOM的TM, Digital Terrain Model)最初是为了高速公路的自

ppt-第5章激光雷达

ppt-第5章激光雷达
第5章 激光雷达
➢ 5.1 激光雷达的定义 ➢ 5.2 激光雷达的组成 ➢ 5.3 激光雷达的特点 ➢ 5.4 激光雷达的原理 ➢ 5.5 激光雷达的类型 ➢ 5.6 激光雷达的技术参数 ➢ 5.7 激光雷达的标定 ➢ 5.8 激光雷达的产品及应用
第1页
第5章 激光雷达
第2页
第5章 激光雷达
第3页
第 14 页
5.5 激光雷达的类型
第 15 页
5.5 激光雷达的类型
第 16 页
5.5 激光雷达的类型
第 17 页
5.6 激光雷达的技术参数
第 18 页
5.6 激光雷达的技术参数
第 19 页
5.7 激光雷达的标定
第 20 页
5.7 激光雷达的标定
第 21 页
5.7 激光雷达的标定
第 22 页
第4页
5.1 激光雷达的定义
第5页
5.1 激光雷达的定义
第6页
5.2 激光雷达的组成
第7页
第8页
5.3 激光雷达的特点
第9页
5.4 激光雷达的原理
第 10 页
5.4 激光雷达的原理
第 11 页
5.4 激光雷达的原理第 12页5.4 激光雷达的原理
第 13 页
5.4 激光雷达的原理
5.7 激光雷达的标定
第 23 页
5.7 激光雷达的标定
第 24 页
5.8 激光雷达的产品及应用
第 25 页
5.8 激光雷达的产品及应用
第 26 页
5.8 激光雷达的产品及应用
第 27 页
5.8 激光雷达的产品及应用
第 28 页
5.8 激光雷达的产品及应用
第 29 页

激光雷达与应用.PPT课件

激光雷达与应用.PPT课件

手术操作名称未统一 主要手术漏填、不准确 其他手术或操作漏填、不准确
出院状态不正确
不能正确理解离院方式(医嘱离院、转院、非 医嘱离院、其他、死亡)
有手术操作、手术费用为0 分项费用加起来不等于总费用 入院时间大于出院时间
编码选择错误 编码库未统一
首页信息主要涉及部门:临床科室 病案科 财务科 信息科
例1 -主要诊断:心肌梗塞 -DRG F 60B 价格 2900欧元 例2 -主要诊断:心肌梗塞 -其他诊断:肺炎、心衰 -DRG F 60A 价格 4400欧元 例3 -主要诊断:心肌梗塞 -其他诊断:肺炎、心衰、败血症 -操作PCI术 心脏导管 - DRG F 24A 价格 7800欧元 -机械通气10天 价格 18300欧元
激光雷达的应用---农林业
激光雷达
激 光 雷 达 探 测 农 耕 地 形
激光雷达的应用—电网
激光雷达
❖在电力、通信网络建设与维护中,利用 激光雷达的数据,可以了解整个线路设 计区域的地形与地面上物的情况,以资 评估建设方案的可行性与建设成本;在 线路发生灾难时,可以及时发现倒塌的 部位,便于抢修和维护。

首颗激光测高试验卫星ICESat于2003年1月13日在美国

地球观测 GLAS系统
Vandenberg空军基地成功发射。ICESat轨道高度约600 km。周期约183天,可覆盖地表86°N~86°S即两极的大 部分区域。GLAS是第一个用于连续全球观测的星载激光测
高系统。其主要任务是监测南极洲和格陵兰冰盖的高程变
首页多项内容无明确定义,无统一标准 诊断、手术操作名称未规范统一 缺手术分级目录
无全国统一的首页质控标准和评价标准
基本信息漏项、填写不准确 主要诊断的准确选择 其他诊断漏填 手术及操作项目漏填、漏项 诊断及手术操作的正确编码 医师签名、其他管理项目漏填、不准确等

《机载激光雷达》课件

《机载激光雷达》课件
发展趋势
随着技术的不断进步和应用需求的不断增加,机载激光雷达技术将不断向更高精 度、更高效率、更安全可靠的方向发展。
THANKS
感谢观看
《机载激光雷达》PPT课件
目 录
• 机载激光雷达简介 • 机载激光雷达技术 • 机载激光雷达应用案例 • 机载激光雷达的挑战与未来发展
01 机载激光雷达简 介
定义与特点
总结词
机载激光雷达是一种集激光测距、全球定位系统(GPS)和惯性测量单元( IMU)于一体的遥感技术。
详细描述
机载激光雷达通过向地面发送激光脉冲并接收反射回来的信号,能够获取高精 度的三维地形数据。它具有高分辨率、高精度、快速获取数据等优点,广泛应 用于地形测绘、城市规划、资源调查等领域。
地震灾害评估
利用机载激光雷达技术,评估地震灾害对建筑物 和基础设施的影响,为灾后重建提供技术支持。
考古探测
遗址区地形测绘
通过机载激光雷达技术,获取遗址区高精度、高分辨率的地形数 据,为考古研究提供基础资料。
遗址区建筑物结构分析
利用机载激光雷达数据,分析遗址区建筑物的结构特点,为文物修 复和保护提供依据。
激光发射与接收
激光发射器根据不同的应用需求 ,发射不同波长的激光束,常见 的波长有近红外、中红外和远红
外等。
接收器通常使用光电倍增管或雪 崩二极管等光电传感器,用于接 收反射回来的光束,并将其转换
为电信号。
激光雷达通过测量反射回来的光 束与发射光束的时间差,计算出
目标的距离信息。
数据处理与分析
1
遗址区植物种类鉴定
通过分析机载激光雷达数据,鉴定遗址区植物种类,为环境考古和 生态研究提供数据支持。
04 机载激光雷达的 挑战与未来发展

激光雷达简介PPT优秀课件

激光雷达简介PPT优秀课件
接收光 学天线
目标 物体
伺服 系统
前置放 主放 大器 大器
信号 模数 处理 转换
主处 理器
距离 速度 角度 目标图 信息 信息 信息 像信息
通信 系统
屏幕 显示
理论 发射 基础 系统
接收 系统
信息 处理
运载 体积 平台 重量
工作 模式
第 一 代
经典理 论
气体激光, 传统光学
系统
单元探测器, 脉冲体制, 直接接收
D电非P子S扫S扫发描描射,,面外阵差探接测收器,
集成模块, DSP芯片, 成像显示
车/机载, 弹/星载
功能部 件, MOEM S,小
多波长复合, 多功能模块, 智能化模块
第 四 代
光子探 测,纳 米物理
阵列发射, 微光学系

微光学系统, 焦平面阵列 探测器,光
纤导光
硬软件融 合,系统 级芯片, 高分辨率, 成像显示
以激光为载波,以 光电探测器为接收 器件,以光学望远 镜为天线,俗称“ 激光雷达”。
本质相同
1.工作原理:
传感器发射激光束打到目标物体上并反射回来,接收器准确地测量出 光脉冲从发射到被反射回的传播时间,光速已知,就可得到从激光雷达到目 标点的距离。
若激光束不断地扫描目标物,就可以得到目标物上全部目标点的数据, 用此数据进行成像处理后,就可得到精确的三维立体图像。
(c)Weak feedback C≈1, vertical scale 10 mV div−1.
(d) Moderate feedback C>1, vertical scale 20 mV div−1.
Velocity:Doppler Frequency

《激光雷达成像技术》课件

《激光雷达成像技术》课件
《激光雷达成像技术》ppt课 件
CONTENTS
• 激光雷达简介 • 激光雷达系统组成 • 激光雷达数据处理技术 • 激光雷达成像技术 • 激光雷达技术发展与展望
01
激光雷达简介
激光雷达的定义与特点
总结词
激光雷达是一种利用激光技术进行探测和测距的雷达系统,具有高精度、高分辨率和高速度的优点。
详细描述
干涉成像的特点
干涉成像具有高分辨率和高精度,能够提供目标的微小变化和细节信息。然而, 干涉成像对实验条件要求较高,需要稳定的实验环境和精密的测量设备。
成像质量评价
成像质量评价方法
成像质量评价是评估激光雷达成像系统 性能的重要手段。评价方法包括图像的 分辨率、对比度、噪声水平、畸变等指 标。通过对这些指标的测量和分析,可 以评估成像系统的性能和成像质量。
激光雷达通过向目标发射激光束,然后接收反射回来的光信号,并通过对光信号的处理和分析,获取 目标的位置、距离、速度和形状等信息。由于激光雷达采用激光作为探测手段,因此具有高精度、高 分辨率和高速度的优点,能够实现远距离、高精度的探测和测量。
激光雷达的工作原理
总结词
激光雷达通过发射激光束,并接收反射回来的光信号,通过对光信号的处理和分析,获取目标的距离和角度信息 ,从而实现目标的探测和定位。
01
02
03
接收光学系统
用于收集反射回来的激光 束,并将其聚焦在光电探 测器上。
光电探测器
将反射回来的光信号转换 为电信号,常见的光电探 测器有硅光电倍增管和雪 崩光电二极管。
信号处理器
对光电探测器输出的电信 号进行处理,提取出目标 物体的距离、速度、方位 等信息。
数据处理系统
信号处理算法
用于提取目标物体的特征信息, 如距离、速度、方位等。常见的 算法包括脉冲压缩、动目标检测 和跟踪、多普勒频移分析等。

哈工大激光雷达课件一——激光雷达基本知识

哈工大激光雷达课件一——激光雷达基本知识

激 光 成 像 雷 达

100mrad
发射机和接收机共用一个孔径和分辨率 4mrad的灵活的光束控制反射镜。 在P-3C试验机上进行了飞行试验,可以利 用目标表面的变化、距离剖面、高分辨率红
外成像和三维激光雷达图像,识别目标。
④ 美国雷锡昂公司研制的ILR100激光雷达,
激光器采用GaAs半导体激光器,成像方式
微弱信号检测、数字化处理与算法
数据处理方法 数据反演、显示
1. 学时安排:20,1~5周
一、基本知识
1.

激光雷达的概念及内涵
“雷达”(RADAR-Radio Detection And Ranging)。传统的雷达是以微波和毫米波
一 基 本 知 识
作为载波的雷达,大约出现1935年左右。

最早公开报道提出激光雷达的概念是: 1967年美国国际电话和电报公司提出的,
代末进入装备应用。
1991年11月,美国通用动力公司和休斯公司 研制成ATLAS’CO2成像激光雷达制导系统。 1992吊舱式结构的ATLAS’CO2成像激光雷达系 统吊挂在试验飞机上完成了第一阶段的飞行 试验。
1993年又吊挂在美国空军的F-15飞机上进行
了第二阶段的高速飞行试验,获得高分辨率的
⑤ 大气环境监测
⑥ 主动遥感
7. 研究内容及关键技术
① 激光器技术
一 基 本 知 识
② 探测器及探测技术 ③ 大气传输特性 ④ 激光雷达理论
⑤ 信号处理技术
⑥ 数据处理技术 ⑦ 控制技术 ⑧ 光学系统设计与加工技术 ⑨ 机械设计与加工技术
二、应用前景
1. 侦察用成像激光雷达
2. 障碍回避激光雷达
该激光雷达驾驶员报警系统使用ophir公司的低截获概率激光发射机和激光接收机探测突然出现的凝结尾流向乘员报106myag相干激光多普勒测风雷达1993年clawscoherentatmosphericwindsounder计划已装备肯尼迪航天中心claclawsws相干相干激光激光风雷风雷达达claclawsws相干相干激光激光风雷风雷达达技术参数技术指标波长m106脉冲能量mj1000脉冲宽度ns脉冲重复频率hz10扫描器望远镜mm200距离分辨率径向速度精度ms最远作用距离km271990年美国相干技术公司cti研制出世界上第一台2m相干激光多普勒测风雷todwltwinotterdopplerwindlidargwolfgroundbasedwindobservinglidarfacilityvalidarvalidationlidarwintracejemcdljapaneseexperimentmodulechherentdopplerlidartodtodwlwl相干相干激光激光风雷风雷达达技术参数技术指标波长m205脉冲能量mj脉冲宽度ns500脉冲重复频率hz200扫描器望远镜mm100距离分辨率m径向速度精度gwgwolfolf相干相干激光激光风雷风雷达达技术参数技术指标波长m205人眼安全脉冲能量mj23脉冲重复频率hz500扫描器望远镜双轴120

激光雷达LIDAR-PPT精选文档

激光雷达LIDAR-PPT精选文档
IMU:惯性测量装置(RpIMU-Inertial Measurement Unit)
手段:IMU有姿态量测功能,具有完全自主、无信号传播、 既能定位、测速,又可快速量测传感器瞬间的移动,输出 姿态信息等优点,但主要缺点是误差随时间迅速积累增长。 目的:获取机载LiDAR的姿态信息,即滚动、俯仰和航偏 角。
LiDAR的工作原理——POS系统:
DGPS与IMU对比:
DGPS系统:量测传感器的位置和速率,具有高精度,误差不随时间积累 等优点,但其动态性能差(易失锁)、输出频率低,不能两侧瞬间快速 的变化,没有姿态量测功能。 IMU系统:有姿态量测功能,具有完全自主、无信号传播、既能定位、 测速,又可快速量测传感器瞬间的移动,输出姿态信息等优点,但主 要缺点是误差随时间迅速积累增长。
侦察用成像激光雷达 障碍回避激光雷达 大气监测激光雷达 制导激光雷达 化学/生物战剂探测激光雷达 水下探测激光雷达 空间监视激光雷达 机器人三维视觉系统 其他军用激光雷达 弹道导弹防御激光雷达 靶场测量激光雷达 振动遥测激光雷达 多光谱激光雷达
LiDAR应用举例:
(一)激光成像雷达 激光雷达分辨率高,可以采集三维数据,如方位角俯仰角-距离、距离-速度-强度,并将数据以图像的形式显 示,获得辐射几何分布图像、距离选通图像、速度图像等 ,有潜力成为重要的侦察手段。
LiDAR的分类:
按不同功能:
①跟踪雷达(测距和测角); ②测速雷达(测量多普勒信息); ③动目标指示雷达(目标的多普勒信息); ④成像雷达(测量目标不同部位的反射强度和距离等信 号); ⑤差分吸收雷达(目标介质对特定频率光的吸收强度) 等。
LiDAR的应用前景:

因此,最优化的方法是对两个系统获得的信息进行综 合,这样可得到高精度的位置、速率和姿态数据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光雷达成像技术
成像技术要点
1. 距离测量技术 – 直接飞行时间“Direct Time-of-Flight (TOF)” – 连续波振幅调制的相位“Phase-Based AM-CW” – 连续波振幅啁啾调制“Chirped AM-CW “ – 连续波频率啁啾调制“Frequency chirp (FM-CW)”
外差探测信噪比受相干长度影响。对于洛伦兹型光源线宽:
考虑散焦和相干长度等因素,其效噪比SNR表示为 including the losses due to the defocusing and coherence, the equation becomes:
啁啾激光雷达1个正弦信号测距精度
距离精度range accuracy,
PLCC Engineering
sample
PF210012 21 kHz
1.2 kHz 0.9 mm Circular
±15o / ±15o
sinusoidal
sinusoidal < 0.1% > 80% @
450~650nm < /8 @ 635nm
0o~60oC 10%~85%
< 30dB electrostatic < 100 mW
< 30dB electrostatic < 100 mW
连续波频率啁啾调制测量法
Frequency chirp (FM-CW) used in the Metric Vision MV-200 coherent Ladar.
相干激光雷达距离精度
外差等效噪声功率heterodyne noise equivalent power (NEP) 信噪比 signal-to-noise ratio (SNR) 散焦损耗defocusing loss
脉冲飞行时间测量法(1)
图-1纯脉冲飞行时间物理过程
连续波幅度调制相位测量法
图-2 飞行时间决定相位的物理过程
相位差与距离关系
模糊距离 信噪比与测距精度
举例1
r AM c
2 2FAM
连续波啁啾幅度调制测量法
F-调制深度 T-调制周期 fif -中频
啁啾调制信号与中频信号图示
Block diagram for an experimental single channel (2-D) chirped-AM/cw LADAR
PE100011 10 kHz
1.15 kHz 1.2 mm Circular
±15o / ±12o
sinusoidal
sinusoidal < 0.1% > 80% @
450~650nm < /8 @ 6lt; 30dB electrostatic
< 40 mW 10x10 mm2
先進微系統科技(股)公司2D-MEMS
Preliminary Spec's Scan speed (fast axis) Scan speed (slow axis) Mirror plate size Optical scanning angle Scan trajectory (fast axis) Scan trajectory (slow axis) Scan jitter
dres—探测器面元尺寸
扫描时脉冲积累数:
n B fr 6 m
其中:B-天线3dB光束宽度(deg);fr-重频;m-天线每分转数
瞄准误差与滞后角效应:
.
d
2
d
dt
nr
dt
c
其中:-滞后角;d/dt-扫描速率;-往返时间;r-到目标距离;c-光 速;n-传播介质平均折射率
Model 6400 Moving Coil Capacitive Position Detector Optical Scanner
2. 成像方式 – 扫描成像(X-Y扫描、线扫描、MEMS或DMD扫描) – FLASH成像(焦平面成像) – 条纹相机成像 – 距离选通成像 – 相控阵成像 – 合成孔径成像
激光雷达常见的性能指标
1. 最大辐射功率 2. 水平视场“ horizontal Field of View (FOV)” 3. 垂直视场“ vertical FOV” 4. 光源波长“Wavelength of optical source” 5. 最远测量距离“Maximum distance to be measured” 6. 测量时间/帧频“ Measurement time / frame rate” 7. 纵向分辨率“depth resolution “ 8. 角分辨率“angular resolution” 9. 测距精度“Range Measurement accuracy”
8x8 mm2 PLCC
Engineering sample
PE200012 20kHz
1.2 kHz 1.0 mm Circular
±15o / ±15o
sinusoidal
sinusoidal < 0.1% > 80% @
450~650nm < /8 @ 635nm
0o~60oC 10%~85%
Reflectivity
Mirror flatness Operating temperature Operating humidity Acoustic noise Driving principle Power consumption Package footprint Package
Status
Typical parameters for the Metric Vision MV-200 CLR
Theoretical Range Accuracies for Different Targets for the sensor as described
扫描成像
平行光束扫描 2
会聚光束扫描
2(bc)
abc
脉冲重复频率 fr:
fr NF
其中:N (m n)-像素;F-帧频
总的扫描时间:
Tto stscst
bteoat
Td m
well
其中:tot-总扫描角; tot-光束发散角;Tdwell=1/fr-光束滞留时间
飞行时扫描频率:
V fscan dresN
V—高度H(m)的飞行速度;N=mn—探测器单元数量;
相关文档
最新文档