期末总复习(电磁学)
期末复习 电磁学部分(选择和填空)

物理复习 :电磁学部分 (附解)一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 . [ ]2. 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206aQ επ. (C) 203a Q επ. (D) 20a Q επ. [ ] 3. 一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2.(C) 2πR 2E .(D) 0. [ ]4. 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) 03εq .(B) 04επq (C) 03επq. (D) 06εq [ ] 5. 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ ] 6. 静电场中某点电势的数值等于(A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能.(C)单位正电荷置于该点时具有的电势能.(B) 把单位正电荷从该点移到电势零点外力所作的功[ ]7. 在点电荷+q 的电场中,若取图中P 点处为电势零点 ,则M 点的电势为 (A) a q 04επ. (B) a q 08επ. q E O r (D) E ∝1/r 2(C) a q 04επ-. (D) aq 08επ-. [ ] 8. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷.(B) 顶点a 、b 处是正电荷,c 、d 处是负电荷.(C) 顶点a 、c 处是正电荷,b 、d 处是负电荷.(D) 顶点a、b 、c 、d 处都是负电荷. []9. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=. (C) 204r Q E επ=,rQ U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 10. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C .(B) E A <E B <E C ,U A <U B <U C .(C) E A >E B >E C ,U A <U B <U C .(D) E A <E B <E C ,U A >U B >U C . [ ]11. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ]12. 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: (A) 204r Q E επ=,rQ U 04επ=. (B) 0=E ,104r Q U επ=. (C) 0=E ,rQ U 04επ=. 13.两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大. b a(C) 两球电容值相等. (D) 大小关系无法确定. [ ](D) 0=E ,204r Q U επ=. [ ] 14. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化:(A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大.(C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. [ ]15. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. [ ]16. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1= B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2.(D) B 1 = B 2 /4. [ ] 17. 边长为l 的正方形线圈中通有电流I ,此线圈在A点(见图)产生的磁感强度B 为(A)l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 18. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]19. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R120πμ.(C) 0. (D) R 140μ. [ ] C q20. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A)I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .[ ] 21. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v .[ ]22. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I a B π=0μ. [ ]23. 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) R I π20μ. (B) RI 40μ. (C) 0. (D) )11(20π-R I μ. (E) )11(40π+R I μ. [ ] 24. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]二、填空25. 真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0=__________________,电势U 0= __________________.(选无穷远处电势为零)26. 如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点的过程中电场力作功为________________;从d点移到无穷远处的过程中,电场力作功为____________. 4I a27. 一均匀静电场,电场强度()j i E 600400+= V ²m -1,则点a (3,2)和点b (1,0)之间的电势差U ab =__________________. (点的坐标x ,y 以米计)28.如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,电场力所作的功A =______________.29. 空气平行板电容器的两极板面积均为S ,两板相距很近,电荷在平板上的分布可以认为是均匀的.设两极板分别带有电荷±Q ,则两板间相互吸引力为____________________.30.一半径为R 的均匀带电细圆环,带有电荷Q ,水平放置.在圆环轴线的上方离圆心R 处,有一质量为m 、带电荷为q 的小球.当小球从静止下落到圆心位置时,它的速度为 v = _______________________. 31.一质点带有电荷q =8.0³10-10 C ,以速度v =3.0³105 m ²s -1在半径为R =6.00³10-3m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π³10-7 H ²m -1)32. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i ,则圆筒内部的磁感强度的大小为B =________,方向_______________.33. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R 1处磁感强度大小为________________. (2) 在r > R 3处磁感强度大小为________________. 34. 两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是____________,运动轨迹半径之比是______________.35.如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的 作用力的大小为____________,方向_________________.B答案一、选择题1. C2. C3. D4. D5. B6. C7. D8. C9. B10. D 11. B 12. D 13. C 14. C 15. B 16. C 17. A 18. D 19. D20. D 21. B 22. C 23. D 24. B二、填空题25 0λ / (2ε0)26. 0qQ / (4πε0R )27. -2³103 V28. ⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε29. Q 2 / (2ε0S )30. 2/1021122⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-π-R m Qq gR ε31. 6.67³10-7 T7.20³10-7 A ²m 232. μ0i沿轴线方向朝右 33. )2/(210R rI πμ34. 1∶2 35.B I R 2 沿y 轴正向。
中科大电磁学期末复习答案

期末复习一、填空题1.电荷q均匀分布在半径为r的圆环上,圆环绕圆环的旋转轴线以角速度ω转动,圆环磁矩=ωqr2/2。
轴线上一点A与圆心相距x,则A点磁场强度=ωqr2(r2+x2)−3/2/(4π)。
2.一电子在0.002T的磁场里沿螺旋线运动,半径为5.0mm,螺距20mm。
则电子速度的大小为2.08×106m/s,与磁场的夹角为arctan(π/2)或57.5°。
3.利用霍尔效应可判断半导体载流子的正负性。
4.空心螺绕环的自感为L0,加入铁芯后自感为L1,在铁芯上锯开一个断口后自感为L2,则这三个自感的大小关系为L0<L2<L1。
5.磁化强度为常数M的细条形永久磁铁长l,横截面积A,则N、S极间的磁力=μ0A2M2/(4πl2)。
6.两线圈串联,顺接时总电感为1.0H,保持位置不变,逆接时总电感为0.4H,则互感=0.15H。
7.RLC电路的固有频率f0=[2π(LC) 1/2]−1。
当f0不变时,在临界阻尼(欠阻尼、过阻尼和临界阻尼三选一)情形下,RLC暂态电路能最快地趋于平衡。
8.简谐交流电的描述方法有函数描述、矢量描述和复数描述,其中函数描述是忠实表述。
9.一材料电导率为5S/m,相对介电常数为1,电场强度为250sin(1010t)V,则传导电流密度和位移电流密度分别为1250sin(1010t)A/m2和22.2 sin(1010t) A/m2。
10.太阳光正入射到半径相同的球面和圆盘面上,均发生全反射,若球面所受光压为P,则圆盘面所受光压为2P。
二、判断题1.(×) 与电场线可起始于电荷类似,磁感应线可起始于电流。
2.(×) 由毕-萨定律推导高斯定理时,需要利用B∝1/r2的性质。
3.(√) 洛伦兹力对带电粒子不作功。
4.(√) 缓变磁场中带电粒子的回旋磁矩守恒。
5.(√) 均匀磁场中通以稳恒电流的一任意线圈由ABC和ADC两段不同材料组成,则二者所受磁场作用力大小相同。
光学与电磁学期末复习试题(含答案)

大学物理(电磁学)综合复习资料一.选择题:l.(本题3分)真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图应是(设场强方向向右为正、向左为负)[ ]2.(本题3分)在静电场中,下列说法中哪一个是正确的?(A)带正电荷的导体,其电势一定是正值.(B)等势面上各点的场强一定相等.(C)场强为零处,电势也一定为零.(D)场强相等处,电势梯度矢量一定相等.[ ]3.(本题3分)电量之比为1:3:5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的位置使B所受电场力为零时,AB与BC比值为(A)5.(B)l/5.(C )5. (D )5/1 [ ] 4.(本题3分)取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的∑I 不变, L 上各点的B不变. (B )回路L 内的∑I 不变, L 上各点的B改变.(C )回路L 内的∑I 改变, L 上各点的B不变.(D )回路L 内的∑I 改变, L 上各点的B改变.[ ] 5.(本题3分)对位移电流,有下述四种说法,请指出哪一种说法正确. (A )位移电流是由变化电场产生的. (B )位移电流是由线性变化磁场产生的. (C )位移电流的热效应服从焦耳—楞次定律. (D )位移电流的磁效应不服从安培环路定理. 6.(本题3分)将一个试验电荷q 0(正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则 (A )0/q F 比P 点处原先的场强数值大. (B )0/q F 比P 点处原先的场强数值小. (C )0/q F 等于原先P 点处场强的数值.(D )0/q F 与P 点处场强数值关系无法确定. [ ]7.(本题3分)图示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(A)半径为R的均匀带电球面.(B)半径为R的均匀带电球体.(C)半径为R的、电荷体密度为Arρ(A为常数)的非均匀带=电球体.(D)半径为R的、电荷体密度为rρ(A为常数)的非均匀=A/带电球体.[ ]8.(本题3分)电荷面密度为σ-的两块“无限大”均匀带电的平行平板,+和σ放在与平面相垂直的X轴上的+a和-a位置上,如图所示.设坐标原点O处电势为零,则在-a<x<+a区域的电势分布曲线为[ ]9.(本题3分)静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所作的功. 10.(本题3分)在图(a )和(b )中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b )图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A )2121,P P L L B B l d B l d B =⋅=⋅⎰⎰.(B )2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰.(C )2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰.(D )2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰. [ ]11.(本题3分)电位移矢量的时间变化率dt dD /的单位是 (A )库仑/米2. (B )库仑/秒.(C )安培/米2. (D )安培²米2. [ ] L2.(本题3分)有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距.设无穷远处电势为零,则原点O 处电场强度和电势均为零的组态是 [ ]13.(本题3分)如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A ) A <0且为有限常量. (B ) A >0且为有限常量. (C ) A =∞. (D ) A =0. [ ]14.(本题3分)一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A )0,0==M F. (B )0,0≠=M F.(C )0,0=≠M F.(D )0,0≠≠M F.[ ]15.(本题3分)当一个带电导体达到静电平衡时: (A )表面上电荷密度较大处电势较高.(B )表面曲率较大处电势较高.(C )导体内部的电势比导体表面的电势高.(D )导体内任一点与其表面上任一点的电势差等于零. [ ]16.(本题3分)如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向(A )向外转90O . (B )向里转90O . (C )保持图示位置不动. (D )旋转180O .(E )不能确定. [ ]17.(本题3分)如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A ),0=⋅⎰Ll d B且环路上任意一点 B =0.(B ),0=⋅⎰Ll d B且环路上任意一点0≠B .(C ),0≠⋅⎰Ll d B且环路上任意一点 0≠B .(D ),0≠⋅⎰Ll d B且环路上任意一点B=常量.[ ]I18.(本题3分)附图中,M、P、O为由软磁材料制成的棒,三者在同一平面内,当K闭合后,(A)M的左端出现N极.(B)P的左端出现N极.(C)O右端出现N极.(D)P的右端出现N极.[ ]二.填空题:1.(本题3分)如图所示,在边长为a的正方形平面的中垂线上,距中心O点a12处,有一电量为q的正点电荷,则通过该平面的电场强度通量为.2.(本题3分)电量分别为q1,q2,q3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R,则b点处的电势U=3.(本题3分)在静电场中,场强沿任意闭合路径的线积分等于零,即0=⋅⎰Ll d E,这表明静电场中的电力线 .4.(本题3分)空气的击穿电场强度为m V /1026⨯,直径为0.10m 的导体球在空气中时的最大带电量为 . (22120/1085.8m N C ⋅⨯=-ε) 5.(本题3分)长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H = ,磁感应强度的大小B = . 6.(本题3分)一“无限长”均匀带电的空心圆柱体,内半径为a ,外半径为b ,电荷体密度为ρ.若作一半径为r (a <r <b ),长度为L 的同轴圆柱形高斯柱面,则其中包含的电量q = . 7.(本题3分)一静止的质子,在静电场中通过电势差为100V 的区域被加速,则此质子的末速度是 . (leV =1.6³10-19J ,质子质量m P =1.67³l0-27kg ) 8.(本题3分)两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差电容器1极板上的电量 .(填增大、减小、不变) 9.(本题3分)磁场中任一点放一个小的载流试验线圈可以确定该点的磁感应强度,其大小等于放在该点处试验线圈所受的 和线圈的 的比值. 10.(本题3分)在点电荷系的电场中,任一点的电场强度等于 ,这称为场强叠加原理. 11.(本题3分)一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):=)(r E)(R r <,=)(r E)(R r >. 12.(本题3分)在静电场中,电势不变的区域,场强必定为 .三.计算题: l .(本题10分)一空气平行板电容器,两极板面积均为 S ,板间距离为 d ( d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为 t (< d )的金属片.试求: (l )电容C 等于多少?(2)金属片放在两极板间的位置对电容值有无影响?2.(本题10分)计算如图所示的平面载流线圈在P 点产生的磁感应强度,设线圈中的电流强度为I .3.(本题10分)图中所示为水平面内的两条平行长直裸导线LM 与L ’M ’,其间距离为l 其左端与电动势为0 的电源连接.匀强磁场B垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab 将从静止开始向右运动起来.求(1) ab 能达到的最大速度V .(2) ab 达到最大速度时通过电源的电流I .4.(本题10分)两电容器的电容之比为2:1:21 C C(l )把它们串联后接到电压一定的电源上充电,它们的电能之比是多少?(2)如果是并联充电,电能之比是多少?(3)在上述两种情形下电容器系统的总电能之比又是多少? 5.(本题10分)在一平面内有三根平行的载流直长导线,已知导线1和导线2中的电流I 1=I 2且方向相同,两者相距 3³10-2m ,并且在导线1和导线2之间距导线1为10-2m 处B =0,求第三根导线放置的位置与所通电流I 3之间的关系.6.(本题10分)一圆柱形电容器,内圆柱的半径为R 1,外圆柱的半径为R 2,长为L )]([12R R L ->>,两圆柱之间充满相对介电常数为r ε的各向同性均匀电介质.设内外圆柱单位长度上带电量(即电荷线密度)分别为λ和λ-,求:(l )电容器的电容; (2)电容器储存的能量. 7.(本题10分)从经典观点来看,氢原子可看作是一个电子绕核作高速旋转的体系.已知电子和质子的电量为-e 和e ,电子质量为m e ,氢原子的圆轨道半径为r ,电子作平面轨道运动,试求电子轨道运动的磁矩m p的数值?它在圆心处所产生磁感应强度的数值B 0为多少? 8.(本题10分)一无限长直导线通有电流t e I I 30-=.一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示.求:(l )矩形线圈中感应电动势的大小及感应电流的方向; (2)导线与线圈的互感系数.四.证明题:(共10分) 1.(本题10分)一环形螺线管,共N 匝,截面为长方形,其尺寸如图,试证明此螺线管自感系数为:ab h N L ln 220πμ=大学物理(电磁学)参考答案 一.选择题:1.(D ) 2.(D ) 3.(D ) 4.(B ) 5.(A )6.(A ) 7.(B ) 8.(C ) 9.(C ) 10.(C ) 11.(C )12.(D ) 13.(D ) 14.(B ) 15.(D ) 16.(C ) 17.(B ) 18.(B )二.填空题:(共27分) 1.(本题3分) )6/(0εq 2.(本题3分))22(813210q q q R++πε3.(本题3分) 不可能闭合 4.(本题3分) 5.6³10-7C 5.(本题3分))2/(r I π )2/(r I H πμμ= 6.(本题3分))(22a r L -ρπ 7(本题3分)1.38³105m 8.(本题3分)增大 增大 9.(本题3分)最大磁力矩 磁矩10.(本题3分)点电荷系中每一个点电荷在该点单独产生的电场强度的矢量和 11.(本题3分)r rR 302εσ12.(本题3分)零三.计算题: 1.(本题10分)解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε= 金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为0'=E 则两极板间的电势差为 d E d E U U B A 21+=-))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.2.(本题10分)解:如图,CD 、AF 在P 点产生的 B =0 EF D E BC AB B B B B B+++= )sin (sin 4120ββπμ-=a IB AB ,方向⊗其中0sin ,2/1)2/(sin 12===ββa a aIB AB 240μ=∴,同理:aIB BC 240μ=,方向⊗.同样 aIB B EF DE 280μ==,方向⊙.a IaI a I B 8224242000μμμ=-=∴3.解:(1)导线ab 运动起来时,切割磁感应线,产生动生电动势。
大学物理期末复习习题-电磁学.docx

电磁学:(20学时,44题)弟一早1.两个点电荷分別带电q和2g,相距/,试问将第三个点电荷方在何处它所受的合力为零?2.两个带电都是q的点电荷,相距/,连线中点为O;现将另一点电荷Q放置在连线中垂面上距O点x处。
(1)试求点电荷Q所受的力;(2)若点电荷Q开始是静止的,然后让它自由运动,试问它将如何运动?分别就0和g同号以及异号两种情况加以讨论。
3.如图,把电偶极矩为p二/的电偶极子放在点电荷Q的电场中,电偶极子的中心O 到Q的距离为r,设「》1。
试求:p//QO(图(a))和卩丄QO (图(b))时电偶极子所受的力和力矩。
% ----- 丄。
2_ ----- ,H --- -- 1 H ----- r-- H<•>(b)第3题4.如图为一种电四极子,它由两个相同的电偶极子卩二"组成,这两个电偶极子在同一直线上,但方向相反,他们的负电荷重合在一起。
试证明在它们的延长线上离中心(即负电荷所在处)厂出卩点的场强为E = ^—(当厂>>/时),式中的Q = 2ql24码厂叫做电四极矩。
卄一为p•••具T -----------第4题5.半径为/?的半球面上均匀带电,电荷面密度为(7。
试求面心处的电场强度。
6.一无限大均匀带电平面,电荷的面密度为(T,其上挖去一半径为R的圆洞。
试求洞的轴线上离洞心为厂处的电场强度。
7.如图,电荷分布在内半径为d外半径为b的球壳体内,电荷体密度为p = A/r f式中4是常数,厂是壳体内某一点到球心的距离。
今在球心放一个点电荷Q,为使球壳体内各处电场强度的大小都相等试求4的值。
第7题8.如图为一无限长带电体系,其横截面由两个半径分别为&和R2的圆相交而成,两圆中心相距为a, a<(R1+R2),半径为&的区域内充满电荷体密度为p的均匀正电荷,半径为R2的区域内充满电荷体密度为-P的均匀负电荷,试求重叠区域内的电场强度。
(完整版)电磁学期末考试试题

电磁学期末考试一、选择题。
1. 设源电荷与试探电荷分别为、,则定义式对、的要求为:[ C ]Q q qFE=Q q (A)二者必须是点电荷。
(B)为任意电荷,必须为正电荷。
Q q (C)为任意电荷,是点电荷,且可正可负。
Q q (D)为任意电荷,必须是单位正点电荷。
Q q 2. 一均匀带电球面,电荷面密度为,球面内电场强度处处为零,球面上面元的一σdS 个带电量为的电荷元,在球面内各点产生的电场强度:[ C ]dS σ(A)处处为零。
(B)不一定都为零。
(C)处处不为零。
(D)无法判定3. 当一个带电体达到静电平衡时:[ D ](A)表面上电荷密度较大处电势较高。
(B)表面曲率较大处电势较高。
(C)导体内部的电势比导体表面的电势高。
(D)导体内任一点与其表面上任一点的电势差等于零。
4. 在相距为2R 的点电荷+q 与-q 的电场中,把点电荷+Q 从O 点沿OCD 移到D 点(如图),则电场力所做的功和+Q 电位能的增量分别为:[ A ](A),。
R qQ06πεR qQ06πε-(B),。
RqQ04πεR qQ 04πε-(C),。
(D),。
RqQ04πε-RqQ 04πεRqQ 06πε-RqQ 06πε5. 相距为的两个电子,在重力可忽略的情况下由静止开始运动到相距为,从相距到1r 2r 1r 相距期间,两电子系统的下列哪一个量是不变的:[ C ]2r(A)动能总和; (B)电势能总和;(C)动量总和; (D)电相互作用力6. 均匀磁场的磁感应强度垂直于半径为的圆面。
今以该圆周为边线,作一半球面,Br s 则通过面的磁通量的大小为: [ B ]s (A)。
(B)。
B r 22πB r 2π(C)。
(D)无法确定的量。
07. 对位移电流,有下述四种说法,请指出哪一种说法正确:[ A ](A)位移电流是由变化电场产生的。
(B)位移电流是由线性变化磁场产生的。
(C)位移电流的热效应服从焦耳—楞次定律。
物理复习题电磁学重点梳理

物理复习题电磁学重点梳理在物理复习中,电磁学是一个非常重要的部分。
电磁学涉及电荷、电场、电势、电流、磁场等内容,是理解电磁现象和应用的基础。
为了帮助大家进行复习,本文将对电磁学的重点内容进行梳理和总结。
1. 电荷和电场1.1 电荷的性质电荷是物质的一种基本性质,分为正电荷和负电荷。
同性电荷相互排斥,异性电荷相互吸引。
电荷守恒定律指出,在封闭系统中,电荷的总量保持不变。
1.2 电场的描述电场是由电荷产生的一种力场。
电场的描述通过电场强度来实现,电场强度的定义是单位正电荷所受到的力。
电场强度与距离的平方成反比。
2. 电势和静电能2.1 电势能和势能差电势能是电荷由于位置而具有的能量,与电荷的位置和电场强度有关。
电势能差指的是两个位置上电荷的电势能之差。
2.2 电势差和电位电势差是电场中两点之间的电势能差,与路径无关,只与起点和终点有关。
电位是单位正电荷在某一点的电势值。
电势差等于两点之间的电场强度沿路径的线积分。
3. 电流和电路3.1 电流的定义电流指的是单位时间内电荷通过某一截面的数量,常用安培(A)作为单位。
3.2 电流的方向和电流密度电流的方向约定为正电荷流动的方向,但实际电流方向与正电荷的运动方向相反。
电流密度指的是单位截面上的电流值。
3.3 电路中的电阻和电压电阻是电路中对电流流动的阻碍,单位是欧姆(Ω)。
电压是单位电荷通过元件时所做的功。
4. 磁场和安培环路定理4.1 磁场的描述和磁感应强度磁感应强度描述了磁场的强弱,是单位磁力所受的力。
磁感应强度与距离的平方成反比。
4.2 安培环路定理安培环路定理描述了磁场中闭合回路上的磁感应强度与该回路内电流之间的关系。
根据安培环路定理,磁感应强度的环路积分等于该回路内电流的代数和乘以真空中的磁导率。
5. 法拉第电磁感应定律和自感现象5.1 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化时感生电动势的产生,电动势的大小与磁场的变化率和回路的面积有关。
《电磁学与电动力学》期末考试试题及答案

四、(简答题):(每小题5分,共10分)1、 写出真空中的麦克斯韦方程组,并简要说明各式的物理意义2、试简述狭义相对论的两个基本原理的内容。
六、(计算题):(每小题5分,共20分3、设有两根互相平行的尺,在各自静止的参考系中的长度均为0l ,它们以相同速率v 相对于某一参考系运动,但运动方向相反,且平行于尺子,求站在一根尺上测量另一根尺的长《电磁学与电动力学》期末考试试题参考答案四、(简答题):(每小题5分,共10分)1、答:B E t∂∇⨯=-∂,说明变化的磁场产生电场(1分); D H J t∂∇⨯=+∂,说明传导电流与位移电流均可产生磁场(1分); D ρ∇•=,电场为有源场,电场线起于正电荷,止于负电荷(1分);0B ∇•=,磁场为无源场或说磁荷不存在,磁感应线是闭合曲线;(1分);0D E ε= ,0B H μ= (1分)2、答(1)相对性原理:所有惯性参考系都是等价的,物理规律对于所有惯性参考系都可以表为相同形式;(2.5分)(2)光速不变原理(或坐标变换线性和间隔不变),即真空中的光速对任何惯性参考系沿任一方向恒为c ,并与光源的运动无关。
(2.5分)六、(计算题):(每小题5分,共20分)3、解:设地面为S 系,固定在车厢上的惯性系为S '系。
设小球由后壁(事件1)运动到前壁(事件2)在S '系中的空时坐标为()11,x t ''、()22,x t '',它们之间的关系为: 2102100,/x x l t t l u ''''-=-= (1分) 设小球由后壁(事件1)运动到前壁(事件2)在S 系中的空时坐标为()11,x t 、()22,x t ,小球由后壁运动到前壁的时间是21t t t ∆=-。
(1分)洛仑兹变换:2,x y y z z vx t t ⎧''===⎪⎪'⎨'+⎪=⎪⎩(2分)因此:00220021201l vl v x t l vu t t t u c γ'∆+'∆+⎛⎫∆=-===+ ⎪⎝⎭。
物理电磁学重点复习

物理电磁学重点复习物理电磁学是大学物理学中的重要分支,涵盖了电场、磁场、电磁感应、电磁波等内容。
下面将对物理电磁学的重点进行复习。
一、电场1. 电荷与电场电荷是物质带有的性质,存在正电荷和负电荷。
而电场是电荷周围的一种物理场,具有方向和大小。
2. 布尔定律和库仑定律布尔定律描述了电场中电荷所受到的力的方向规律。
库仑定律则确定了电荷之间相互作用力的大小。
3. 高斯定律高斯定律描述了电场通过一个闭合曲面的总通量与包围在该曲面内的电荷量之间的关系。
4. 电势与电势能电势是单位正电荷所具有的能量,电势能则是带电物体由于所处电场而具有的能量。
二、磁场1. 磁场与磁力磁场是一个区域内的磁物质所受到的力的集合,磁力是磁场对运动带电粒子或磁物质的作用力。
2. 洛伦兹力定律洛伦兹力定律描述了带电粒子在磁场中所受到的力的大小和方向。
3. 毕奥-萨伐尔定律毕奥-萨伐尔定律描述了通过一根通电导线所产生的磁场。
4. 安培环路定理安培环路定理描述了磁场沿一条闭合回路的总磁通量与通过该回路内电流之间的关系。
三、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场的变化所引起的感应电动势的大小和方向。
2. 楞次定律楞次定律描述了电磁感应现象中感应电流的存在和方向。
3. 自感与互感自感指的是一根导线中电流的改变所引起的电动势,互感指的是两根相邻导线间电流的变化所引起的电动势。
四、电磁波1. 电磁波的介质与传播电磁波是由电场和磁场通过垂直传播而组成的波动现象,具有电磁特性。
电磁波可以在真空或特定介质中传播。
2. 麦克斯韦方程组麦克斯韦方程组描述了电场和磁场之间的关系以及它们与电荷和电流之间的相互作用。
3. 光的电磁理论光是电磁波的一种,波长范围在可见光区域。
光的速度在真空中是恒定的,并且有一系列的光学现象。
以上是物理电磁学的重点复习内容,通过巩固这些知识点,相信能够对电磁学有更深入的理解。
希望本篇复习能够对你的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑤电极化强度矢量
P
pe
V
⑥电位移矢量 D o E P, 对各向同性介质D 0 r E E
静电场部分
二、基本规律
①库仑定律 ②电荷守恒定律
F
q1q2 r 2 4 0 r 1
③静电场力、场强、电势叠加原理
F Fi ,
点电荷E
q r, 2 4 0 r
1
1 点电荷系E= 4 0 电荷连续分布E
i
qi r 2 i ri
dq r2 r 4 0
1
静电场部分
②电势
UP
P0 (零点)
P
WP E dl = q0
是从带电体在电场力作用下移动时,电场力对它做功而 引入的描述电场性质的物理量。
P1=0 ,P2=ε0E|R=R1=ε0(εr-1) 则:
'
Q 4 0 r R1
( r 1)Q ( P2 P ) n21 1 4 r R1
Q 4 0 r R2
在r=R2分界面上:令金属壳层为1介质,电介质为2介质,则 P1=0 ,P2=ε0E|R=R2=ε0(εr-1) 则:
c 场强与电势的微分关系。 ②电势的计算(包括真空和介质) a 已知电荷分布求电势; b 已知场强分布求电势。
③电通量的计算。
④电容的计算 ⑤电场能量的计算。
静电场部分
四、几种特殊的带电体的电场 ①点电荷
E q
2
②无限长直线
y
dE
dE x
dE y
4 0 r E , 2 0 r
, U
- +
-a
0
+a
X
(A)
-a 0
U
(B)
+a X -a 0
U
(C)
+a X
√
-a
U
(D)
-a 0
U
+a X
0
+a X
3、在一个带有正电荷的均匀带电球面外,放臵一个电偶极子, 其电矩 p 的方向如图所示。当释放后,该电偶极子的运动 主要是 (A) 沿逆时针方向旋转,直至电矩 p 沿径向指向球面而停止。 (B) 沿顺时针方向旋转,直至电矩 p 沿径向朝外而停止。 (C) 沿顺时针方向旋转至电矩 p 沿径向朝外,同时沿电力线 远离球面移动。 (D) 沿顺时针方向旋转至电矩 p 沿径向朝外,同时逆电力线方 向向着球面移动。
点电荷U q 1 ,点电荷系U= 4 0 r 4 0 1 1
i
qi ri
dq 电荷连续分布 U 4 0 r E与U的关系和电场线与等势 面 P0 积分关系U P E dl ,微分关系E gradU U
P
静电场部分
③电通量 ④电容
E0 ( r R) 1 q ˆ E r ( r R) 2 4 0 r
U ( x 2 R 2 | x |) 2 0
U
q
⑥ 均匀带电球面:
4 0 R q U 4 0 r
1、 有两个点电荷电量都是+q,相距为2a。今以左边的点电荷所在 处为球心,以a为半径作一球形高斯面。在球面上取两块相等 的小面积 S1 和 S 2 ,其位臵如图所示。设通过 S1 和 S 2 的电场强 度通量分别为 1 和 2 ,通过整个球面的电场强度通量为 s , 则
'
( r 1)Q ( P2 P ) n21 1 4 r R2
2.一无限大带电平面(σ),在其上挖掉一个半径为R的圆洞,求 通过圆心O并垂直圆面轴线上一点P(OP=x)处的场强。
解:采用挖补法,总场看成由无限大带 电平面(电荷面密度为σ)与带电圆盘 (面密度为-σ)叠加的结果:
r
倍。
7两个电容器的电容之比C1:C2=1:2,把它们串联起 2:1 来接电源充电,它们的电场能量之比W1:W2=————; 如果把它们并联起来接电源充电,它们的电场能量之比 W1:W2=————。 1:2
8、图中所示为静电场的等势线图,已知U1< U2< U3,在图上画 出a、b两点的电场强度的方向,并比较它们的大小。Ea Eb 9、一金属球壳的内外半径分别为R1和R2,带电量为Q,在球 壳内距球心为r处有一电量为q的点电荷。则球心处的电势为: q 1 1 1 Q —————— 4π ε [r R R ] 4π ε R 0 2 1 0 2 10、一平行板电容器,上极板带正电,下极板带负电,其间充满相 对介电常数εr=2的各向同性均匀电介质,如图所示。在 图上大致标出电介质内任一点P处自由电荷产生的电场 E 0 U3 束缚电荷产生的电场 E 和总电场 E
b 导体内部无净电荷,电荷只分布在导体表面上;
c 导体表面附近点的场强垂直导体表面,且与该处电 荷面密度成正比。 E n
0
静电场部分
⑦.电介质的极化: A、无极分子的位移极化和有极分子的取向极化。 B、极化的宏观效果: a 在介质的某些区域出现了束缚电荷; b 在介质中有未被抵消的电矩; c 介质内部存在电场。
q
4 0 r U ln r 2 0
(U 0)
(U (1) 0)
一般情Байду номын сангаас下:
E
r
a
1
O
2
l
x
ˆ (sin 2 sin 1 )i 4 0 r ˆ (cos 1 cos 2 ) j 4 0 r
dl
静电场部分
③ 无限大平面 E , 2 0 ④ 细圆环轴线上
R1 ⅠⅡ
R1 R2 Q U1 E dl E1 dl E2 dl E3 dl
r R2 r R1 R3
R2
Q
b
P2
R2 R2 U 2 E dl E2 dl E3 dl
R
0
x E (1 ) 2 0 2 0 x 2 R2 σx 2 0 x 2 R 2
x 2rdr dE 4 0 ( x 2 r 2 ) 3 / 2 1
x
P
x
另解:(利用圆环中心轴线上一点场强公式积分即可)
2 x rdr x 1 E R ( x 2 R 2 )3 / 2 2 ( 2 2 ) 4 0 x r R 0
√
r
p
4、一半径为 R 的均匀带电圆盘,电荷面密度为σ.设无穷远 处为电势零点,则圆盘中心O点的电势 Uo = R 2 0 .
5、静电场中,电力线与等势面总是
电力线的方向总是沿着方向
正交
电势降落
;
。
6、空气电容器充电后切断电源,电容器储能W0,若此时灌入 相对介电常数为 ε r 的煤油,电容器储能变为W0的 1 r 倍, 如果灌煤油时电容器一直与电源相连接,则电容器储能将是 W0的
qi 0
静电场
感应电场
D dS q
S
D dS 0
v v v v B ÑE d l S t d S L
S
v v Ñ E d l 0
L
静电场部分
一、基本概念
①电场强度矢量
F E q0
是从静电场对臵于场中的电荷有力的作 用而引入的描述电场性质的物理量。
LOGO
大学物理(2-2)期末总复习 (电磁学)
知识框架结构
真空中的静电场
静电场中的导体和电介质
电磁学
恒定磁场 恒定磁场中的磁介质 电磁感应 电磁场理论
电 场
电场高斯定理
电场环路定理
S D dS ( E1 E2 ) d S
S
B LE d l L ( E1 E2 ) d l 0 S t d S
i
E Ei ,
i
U Ui
i
④高斯定理
1 真空 E dS
S
介质 D dS q0
S
0
q, 有源场
S内
⑤静电场的环路定理
L
E dl =0, 无旋场
静电场部分
⑥静电平衡下的导体
A、静电平衡条件:
a 导体内部场强为零;b 导体表面场强处处与表面垂直。 B、静电平衡条件下导体性质: a 导体是等势体,导体表面是等势面;
R2
s
b
P2
P3
D1 0 Q D2 4r D3 0
(r R1 )
E1 0 Q
(r R1 ) ( R1 r R2 )
( R1 r R2 ) E2 (r R2 )
40 r r
E3 0
(r R2 )
Ⅲ
D dS q0
Q
a P1
r
P3
r
R2
r
qdr q 1 1 ( ) 2 40 r r 40 r r R2
U 3 E dl E3 dl 0
r r2
(2)
1 1 U12 U1 U 2 ( ) 40 r R1 R2
Q
Ⅲ
qdr q 1 1 ( ) 2 40 r r 40 r R1 R2 R1
2
R1
或者根据球形电容器:
4 0 R1 R2 C R2 R1
1 1 R R 2 1
Q2 Q2 R2 R1 Q2 W 2C 2 4 0 r R1 R2 8 0 r
(4)束缚电荷面密度 在r=R1分界面上:令金属球为1介质,电介质为2介质,则