单片机串口通信发送、接收C语言编程程序

合集下载

单片机串口通信的发送与接收(可编辑修改word版)

单片机串口通信的发送与接收(可编辑修改word版)

51 单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。

当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。

无论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。

在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。

看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。

接收数据时,基本上都是使用“中断方式”,这是正确合理的。

即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数,收到了新数据。

发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来等待发送完毕。

这时,处理不好的话,就可能带来问题。

看了一些网友编写的程序,发现有如下几条容易出错:1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。

这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。

这种处理方法,就会遗漏收到的数据。

2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。

但是,却在中断函数中,将TI 清零!这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。

3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收中断的程序。

对此,做而论道发表自己常用的方法:接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。

发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。

这样一来,收、发两者基本一致,编写程序也很规范、易懂。

更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。

实例:求一个PC 与单片机串口通信的程序,要求如下:1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。

51单片机的串口通信程序(C语言)

51单片机的串口通信程序(C语言)

51单片机的串口通信程序(C语言) 51单片机的串口通信程序(C语言)在嵌入式系统中,串口通信是一种常见的数据传输方式,也是单片机与外部设备进行通信的重要手段之一。

本文将介绍使用C语言编写51单片机的串口通信程序。

1. 硬件准备在开始编写串口通信程序之前,需要准备好相应的硬件设备。

首先,我们需要一块51单片机开发板,内置了串口通信功能。

另外,我们还需要连接一个与单片机通信的外部设备,例如计算机或其他单片机。

2. 引入头文件在C语言中,我们需要引入相应的头文件来使用串口通信相关的函数。

在51单片机中,我们需要引入reg51.h头文件,以便使用单片机的寄存器操作相关函数。

同时,我们还需要引入头文件来定义串口通信的相关寄存器。

3. 配置串口参数在使用串口通信之前,我们需要配置串口的参数,例如波特率、数据位、停止位等。

这些参数的配置需要根据实际需要进行调整。

在51单片机中,我们可以通过写入相应的寄存器来配置串口参数。

4. 初始化串口在配置完串口参数之后,我们需要初始化串口,以便开始进行数据的发送和接收。

初始化串口的过程包括打开串口、设置中断等。

5. 数据发送在串口通信中,数据的发送通常分为两种方式:阻塞发送和非阻塞发送。

阻塞发送是指程序在发送完数据之后才会继续执行下面的代码,而非阻塞发送是指程序在发送数据的同时可以继续执行其他代码。

6. 数据接收数据的接收与数据的发送类似,同样有阻塞接收和非阻塞接收两种方式。

在接收数据时,需要不断地检测是否有数据到达,并及时进行处理。

7. 中断处理在串口通信中,中断是一种常见的处理方式。

通过使用中断,可以及时地响应串口数据的到达或者发送完成等事件,提高程序的处理效率。

8. 串口通信实例下面是一个简单的串口通信实例,用于在51单片机与计算机之间进行数据的传输。

```c#include <reg51.h>#include <stdio.h>#define BAUDRATE 9600#define FOSC 11059200void UART_init(){TMOD = 0x20; // 设置定时器1为模式2SCON = 0x50; // 设置串口为模式1,允许接收TH1 = 256 - FOSC / 12 / 32 / BAUDRATE; // 计算波特率定时器重载值TR1 = 1; // 启动定时器1EA = 1; // 允许中断ES = 1; // 允许串口中断}void UART_send_byte(unsigned char byte){SBUF = byte;while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志位}unsigned char UART_receive_byte(){while (!RI); // 等待接收完成RI = 0; // 清除接收完成标志位return SBUF;}void UART_send_string(char *s){while (*s){UART_send_byte(*s);s++;}}void main(){UART_init();UART_send_string("Hello, World!"); while (1){unsigned char data = UART_receive_byte();// 对接收到的数据进行处理}}```总结:通过以上步骤,我们可以编写出简单的51单片机串口通信程序。

单片机NFC点对点通信接收端C语言程序

单片机NFC点对点通信接收端C语言程序

error:
nfc_close(pnd);
nfc_exit(context);
return EXIT_SUCCESS;
}
if(nfc_target_send_bytes(pnd, abtTx, sizeof(abtTx), 0) < 0) {
nfc_perror(pnd, "nfc_target_send_bytes");
goto error;
}
printf("Data sent.\n");
print_nfc_target(nt, false);
printf("Waiting for initiator request...\n");
if((szRx = nfc_target_init(pnd, &nt, abtRx, sizeof(abtRx), 0)) < 0) {
pnd = nfc_open(context, connstrings[1]);
} else {
printf("No device found.\n");
return EXIT_FAILURE;
}
if(argc > 1) {
printf("Usage: %s\n", argv[0]);
return EXIT_FAILURE;
}
printf("NFC device: %s opened\n", nfc_device_get_name(pnd));
signal(SIGINT, stop_dep_communication);

用c语言实现串口读写程序

用c语言实现串口读写程序

用c语言实现串口读写程序一、前言串口通信是一种常见的通信方式,它可以实现单片机与计算机之间的数据传输。

在嵌入式系统中,使用串口通信可以方便地进行调试和数据传输。

本文将介绍如何使用C语言实现串口读写程序。

二、硬件准备在进行串口通信之前,需要准备好相应的硬件设备。

一般来说,需要一台计算机和一个串口转USB模块(或者直接使用带有串口接口的计算机)。

同时,在单片机端也需要连接一个串口模块。

三、C语言编程实现1. 打开串口在C语言中,可以通过打开文件的方式来打开串口设备。

下面是一个示例代码:```#include <stdio.h>#include <fcntl.h>#include <termios.h>int open_serial_port(const char *device_path, int baud_rate) {int fd;struct termios options;fd = open(device_path, O_RDWR | O_NOCTTY | O_NDELAY); if (fd == -1) {perror("open_serial_port: Unable to open device");return -1;}fcntl(fd, F_SETFL, 0);tcgetattr(fd, &options);cfsetispeed(&options, baud_rate);cfsetospeed(&options, baud_rate);options.c_cflag |= (CLOCAL | CREAD);options.c_cflag &= ~PARENB;options.c_cflag &= ~CSTOPB;options.c_cflag &= ~CSIZE;options.c_cflag |= CS8;options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);options.c_oflag &= ~OPOST;tcsetattr(fd, TCSANOW, &options);return fd;}```在上述代码中,open_serial_port函数用来打开串口设备,并设置相应的参数。

单片机指令的串口通信实现方法

单片机指令的串口通信实现方法

单片机指令的串口通信实现方法串口通信是指通过串行通信接口实现的数据传输方式。

在单片机系统中,串口通信是一种重要的通信方式,可以实现与外部设备(如PC 机、传感器等)的数据交互。

本文将介绍单片机指令的串口通信实现方法,包括硬件连接和软件编程两方面。

一、硬件连接串口通信需要通过发送器和接收器两个设备来完成数据的发送和接收。

在单片机系统中,可使用通用异步收发器(UART)作为串行通信接口。

下面是串口通信的硬件连接步骤:1. 将单片机与UART连接:首先,确保单片机具有UART接口,并根据其引脚定义将UART的发送线(TXD)连接到单片机的接收引脚,接收线(RXD)连接到单片机的发送引脚。

2. 选择波特率:波特率指每秒钟传送的位数,通常使用的波特率有9600、115200等。

在发送和接收数据时,单片机和外部设备需要使用相同的波特率,以保证数据的正确传输。

3. 连接外部设备:根据实际需求,将UART的发送线和接收线分别连接到外部设备的接收引脚和发送引脚。

二、软件编程实现单片机指令的串口通信需要编写相应的软件程序。

下面是基于C语言的软件编程实现方法:1. 初始化串口:在程序开始时,需要对串口进行初始化设置。

通过设置寄存器来配置波特率、数据位、停止位等参数。

2. 发送数据:使用发送指令将待发送的数据写入UART的数据寄存器,等待数据传输完成。

3. 接收数据:通过接收指令读取UART接收到的数据,并进行相应的处理。

可以使用中断或轮询方式进行数据接收。

4. 错误处理:在数据传输过程中,可能会出现错误,例如帧错误、奇偶校验错误等。

需要进行相应的错误处理操作,例如重新发送数据或发出错误提示。

5. 通信协议:根据通信需求,可以制定相应的通信协议。

通信协议包括数据帧结构、数据格式、数据校验等内容,用于确保数据的可靠传输。

三、实例演示下面通过一个简单的示例来演示单片机指令的串口通信实现方法。

假设我们需要实现从单片机向PC机发送一条消息,并接收PC机返回的确认信息。

STM8单片机 UART发送完成中断C语言程序

STM8单片机 UART发送完成中断C语言程序

STM8S105发送完成中断#define TXRXBUF_SIZE 128uchar UART_RxTx[TXRXBUF_SIZE];volatile uchar UART_OutLen=0;volatile uchar TXRX_IndexR=0;volatile uchar TXRX_IndexW=0;void UART2_Init(void){//485 CS1控制PA_DDR |=1 << 6;PA_CR1 |=1 << 6;PA_CR2 &= ~( 1 <<6 );RS485_TX_EN=0; //设置为接收模式UART2_CR1=0x00;UART2_CR2=0x00;UART2_CR3=0x00;// 设置波特率,必须注意以下几点:// (1) 必须先写BRR2// (2) BRR1存放的是分频系数的第11位到第4位,// (3) BRR2存放的是分频系数的第15位到第12位,和第3位// 到第0位// 例如对于波特率位9600时,分频系数=2000000/9600=208// 对应的十六进制数为00D0,BBR1=0D,BBR2=00//UART2_BRR2=0x30;//UART2_BRR1=0xE8; //1K//UART2_BRR2=0x35;//UART2_BRR1=0x41; //1200UART2_BRR2=0x1B;UART2_BRR1=0xA0; //2400UART2_CR2=0x2c;//允许接收,发送,开接收中断//UART2_CR2=0x08; //发送使能}//------------方式二发送结束中断--------------------------------------#pragma vector=UART2_T_TC_vector__interrupt void UART2_T_TC(void){UART2_SR&= ~(1<<6); //清除送完成状态位if(UART_OutLen>0){UART2_DR=UART_RxTx[TXRX_IndexR];--UART_OutLen;if(++TXRX_IndexR >= TXRXBUF_SIZE){TXRX_IndexR=0;//FIFO回头}}else //发送结束{//UART_OutLen=TXRX_IndexR=TXRX_IndexW=0;//UART2_CR2 &= ~(1<<TCIEN);//关闭发送完成中断UART2_CR2 &= ~(1<<6);//关闭发送完成中断}}/************************************************************名称:Uart_IntSentBuf*功能:从串口UART0发送一组字节数据*入口参数:*p:待发的首个字节数据,len 发送个数*出口参数:返回1:发送成功* 返回0:发送失败*说明:在发送过程中,不阻塞CPU的运行。

STM8的C语言编程-UART应用

STM8的C语言编程-UART应用

STM8的C语言编程(8)-- UART应用串口通讯也是单片机应用中经常要用到,今天的实验就是利用STM8的UART资源,来进行串口通讯的实验。

实验程序的功能是以中断方式接收串口数据,然后将接收到的数据以查询方式发送到串口。

程序代码如下,首先要对STM8的UART进行初始化,初始化时要注意的是波特率寄存器的设置,当求出一个波特率的分频系数(一个16位的数)后,要将高4位和低4位写到BRR2中,而将中间的8位写到BRR1中,并且必须是先写BRR2,再写BRR1。

同样也是利用ST的开发工具,生成一个C语言的框架,然后修改其中的main.c,同时由于需要用到中断服务,因此还要修改stm8_interrupt_vector.c。

修改后,编译连接,然后下载到开发板上,再做一根与PC机相连的线,把开发板的串口与PC机的串口连接起来,注意,2、3脚要交叉。

在PC机上运行超级终端,设置波特率为9600,然后每按下一个按键,屏幕上就显示对应的字符。

修改后的main.c和stm8_interrupt_vector.c如下:// 程序描述:初始化UART,以中断方式接收字符,以查询方式发送// UART通讯参数:9600bps,8位数据,1位停止位,无校验#include "STM8S207C_S.h"// 函数功能:初始化UART// 输入参数:无// 输出参数:无// 返回值:无// 备注:无void UART3_Init(void){LINUART_CR2 = 0; // 禁止UART发送和接收LINUART_CR1 = 0; // b5 = 0,允许UART// b2 = 0,禁止校验LINUART_CR3 = 0; // b5,b4 = 00,1个停止位// 设置波特率,必须注意以下几点://(1) 必须先写BRR2//(2) BRR1存放的是分频系数的第11位到第4位,//(3) BRR2存放的是分频系数的第15位到第12位,和第3位到第0位// 例如对于波特率位9600时,分频系数=2000000/9600=208// 对应的十六进制数为00D0,BBR1=0D,BBR2=00LINUART_BRR2 = 0;LINUART_BRR1 = 0x0d; // 实际的波特率分频系数为00D0(208) // 对应的波特率为2000000/208=9600 LINUART_CR2 = 0x2C; // b3 = 1,允许发送// b2 = 1,允许接收// b5 = 1,允许产生接收中断}// 函数功能:从UART3发送一个字符// 输入参数:ch -- 要发送的字符// 输出参数:无// 返回值:无// 备注:无void UART3_SendChar(unsigned char ch){while((LINUART_SR & 0x80) == 0x00); // 若发送寄存器不空,则等待 LINUART_DR = ch; // 将要发送的字符送到数据寄存器}main(){// 首先初始化UART3UART3_Init();_asm("rim"); // 允许CPU全局中断while(1) // 进入无限循环{}}// 函数功能:UART3的接收中断服务程序// 输入参数:无// 输出参数:无// 返回值:无@far @interrupt void UART3_Recv_IRQHandler (void){unsigned char ch;ch = LINUART_DR; // 读入接收到的字符 UART3_SendChar(ch); // 将字符发送出去}/* BASIC INTERRUPT VECTOR TABLE FOR STM8 devices* Copyright (c) 2007 STMicroelectronics*/typedef void @far (*interrupt_handler_t)(void);struct interrupt_vector {unsigned char interrupt_instruction;interrupt_handler_t interrupt_handler;};@far @interrupt void NonHandledInterrupt (void){/* in order to detect unexpected events during development,it is recommended to set a breakpoint on the following instruction */return;}extern void _stext(); /* startup routine */extern @far @interrupt void UART3_Recv_IRQHandler();struct interrupt_vector const _vectab[] ={0x82, (interrupt_handler_t)_stext}, /* reset */{0x82, NonHandledInterrupt}, /* trap */{0x82, NonHandledInterrupt}, /* irq0 */{0x82, NonHandledInterrupt}, /* irq1 */{0x82, NonHandledInterrupt}, /* irq2 */{0x82, NonHandledInterrupt}, /* irq3 */{0x82, NonHandledInterrupt}, /* irq4 */{0x82, NonHandledInterrupt}, /* irq5 */{0x82, NonHandledInterrupt}, /* irq6 */{0x82, NonHandledInterrupt}, /* irq7 */{0x82, NonHandledInterrupt}, /* irq8 */{0x82, NonHandledInterrupt}, /* irq9 */{0x82, NonHandledInterrupt}, /* irq10 */{0x82, NonHandledInterrupt}, /* irq11 */{0x82, NonHandledInterrupt}, /* irq12 */{0x82, NonHandledInterrupt}, /* irq13 */{0x82, NonHandledInterrupt}, /* irq14 */{0x82, NonHandledInterrupt}, /* irq15 */{0x82, NonHandledInterrupt}, /* irq16 */{0x82, NonHandledInterrupt}, /* irq17 */{0x82, NonHandledInterrupt}, /* irq18 */{0x82, NonHandledInterrupt}, /* irq19 */{0x82, NonHandledInterrupt}, /* irq20 */{0x82, UART3_Recv_IRQHandler}, /* irq21 */{0x82, NonHandledInterrupt}, /* irq22 */{0x82, NonHandledInterrupt}, /* irq23 */{0x82, NonHandledInterrupt}, /* irq24 */{0x82, NonHandledInterrupt}, /* irq25 */{0x82, NonHandledInterrupt}, /* irq26 */{0x82, NonHandledInterrupt}, /* irq27 */{0x82, NonHandledInterrupt}, /* irq28 */{0x82, NonHandledInterrupt}, /* irq29 */};2010-8-6程序备份/* MAIN.C file** Copyright (c) 2002-2005 STMicroelectronics*/#include "STM8S103f3p.h"/////////////////////////////////////////void Init_UART1(void){UART1_CR1=0x00;UART1_CR2=0x00;UART1_CR3=0x00;// 设置波特率,必须注意以下几点:// (1) 必须先写BRR2// (2) BRR1存放的是分频系数的第11位到第4位,// (3) BRR2存放的是分频系数的第15位到第12位,和第3位// 到第0位// 例如对于波特率位9600时,分频系数=2000000/9600=208// 对应的十六进制数为00D0,BBR1=0D,BBR2=00UART1_BRR2=0x00;UART1_BRR1=0x0d;UART1_CR2=0x2c;//允许接收,发送,开接收中断}///////////////////////////////////////////void UART1_sendchar(unsigned char c){while((UART1_SR&0x80)==0x00);UART1_DR=c;}////////////////IO初始化////////////////////void init_gpio(void){//将pb5设置成推挽输出PB_DDR = 0x20; //数据方向PB_CR1 = 0x20; // 上拉、悬空PB_CR2 = 0x00;}/////////////////////////////////////////////main(){unsigned char i=0;init_gpio();Init_UART1();_asm("rim");//开中断,sim为关中断while (1);}//将收到的数据再发送出去@far @interrupt void UART1_Recv_IRQHandler (void) {unsigned char ch;ch=UART1_DR;UART1_sendchar(ch);PB_ODR^=0x20;return;}/*/////////////////////////////////////串口发送程序///////////////////////////////////////#include "STM8S103f3p.h"void delay(unsigned int ms){unsigned char i;while(ms != 0){for(i=0;i<250;i++){}for(i=0;i<75;i++){}ms--;}}/////////////uart初始化///////////////////void init_uart1(void){UART1_CR1=0x00;UART1_CR2=0x00;UART1_CR3=0x00;// 设置波特率,必须注意以下几点:// (1) 必须先写BRR2// (2) BRR1存放的是分频系数的第11位到第4位,// (3) BRR2存放的是分频系数的第15位到第12位,和第3位// 到第0位// 例如对于波特率位9600时,分频系数=2000000/9600=208// 对应的十六进制数为00D0,BBR1=0D,BBR2=00UART1_BRR2=0x00;UART1_BRR1=0x0d;UART1_CR2=0x2c; //允许接收,发送,开接收中断}//////////////uart发送程序//////////////////////void uart1_sendchar(unsigned char c){while((UART1_SR & 0x80)==0x00);UART1_DR=c;}//////////////初始化A/D模块/////////////////////void init_ad(void){ADC_CR2 = 0x00; // A/D结果数据左对齐ADC_CR1 = 0x00; // ADC时钟=主时钟/2=1MHZ// ADC转换模式=单次// 禁止ADC转换ADC_CSR = 0x03; // 选择通道3ADC_TDRL = 0x20;}///////////////读AD值/////////////////////unsigned char read_ad(void){unsigned char i=0;ADC_CR1 = 0x01; // CR1寄存器的最低位置1,使能ADC转换for(i=0;i<100;i++);// 延时一段时间,至少7uS,保证ADC模块的上电完成ADC_CR1 = ADC_CR1 | 0x01;// 再次将CR1寄存器的最低位置1// 使能ADC转换while((ADC_CSR&0x80)==0); // 等待ADC结束i = ADC_DRH; // 读出ADC结果的高8位return(i);}////////////////IO初始化////////////////////void init_gpio(void){//将pb5设置成推挽输出PB_DDR = 0x20; //数据方向PB_CR1 = 0x20; // 上拉、悬空PB_CR2 = 0x00;}/////////////////////////////////////////////main(){unsigned char i=0;init_uart1();init_ad();init_gpio();while (1){delay(1000);i=read_ad();uart1_sendchar(i);PB_ODR^=0x20;}}/////////////////////////////////////////////////*/友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

c51单片机c语言常用指令 -回复

c51单片机c语言常用指令 -回复

c51单片机c语言常用指令-回复C51单片机C语言常用指令导语:C51单片机是一种非常常用的微控制器,它广泛应用于许多嵌入式系统和电子设备中。

在单片机的开发过程中,C语言是一种非常常用的编程语言。

本文将介绍C51单片机常用的指令,帮助读者了解这些指令的功能和使用方法。

第一部分:常用的I/O口控制指令I/O口控制指令是C51单片机中非常重要的一部分,因为它们用于控制单片机与外部设备之间的数据交互。

以下是一些常用的I/O口控制指令:- P0:将P0口设置为输入或输出,可以用于与外部设备进行数据通信。

- P1:将P1口设置为输入或输出,可以用于与外部设备进行数据通信。

- P2:将P2口设置为输入或输出,可以用于与外部设备进行数据通信。

- P3:将P3口设置为输入或输出,可以用于与外部设备进行数据通信。

第二部分:常用的中断控制指令中断是C51单片机中实现实时响应的重要机制之一。

以下是一些常用的中断控制指令:- EA:使能所有中断。

- EX0:外部中断0的控制指令,用于外部设备产生中断信号。

- EX1:外部中断1的控制指令,用于外部设备产生中断信号。

- IT0:外部中断0的触发方式,可以设置为电平触发或边沿触发。

- IT1:外部中断1的触发方式,可以设置为电平触发或边沿触发。

第三部分:常用的定时器控制指令定时器是C51单片机中实现时间计数和定时任务的重要模块。

以下是一些常用的定时器控制指令:- TMOD:设置定时器模式,可以选择定时器0/1的工作模式。

- TL0、TL1:定时器0/1的低8位计数器,用于保存定时值的低8位。

- TH0、TH1:定时器0/1的高8位计数器,用于保存定时值的高8位。

- TR0、TR1:定时器0/1的运行控制位,用于启动和停止计时器。

- TF0、TF1:定时器0/1的溢出标志位,用于判断定时器是否溢出。

第四部分:常用的串口通信指令串口通信是C51单片机中常用的通信方式之一,用于与其他设备进行数据交互。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档