线代1-5xin .

合集下载

线性代数(同济大学应用数学系第四版)1-5 行列式的性质

线性代数(同济大学应用数学系第四版)1-5 行列式的性质

等于下列两个行列式之和: 则D等于下列两个行列式之和: 等于下列两个行列式之和 ′ a11 ⋯ a1i ⋯ a1n a11 ⋯ a1i ⋯ a1n ′ a 21 ⋯ a 2 i ⋯ a 2 n a 21 ⋯ a 2 i ⋯ a 2 n D= + ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ′ a n1 ⋯ a ni ⋯ a nn a n1 ⋯ a ni ⋯ a nn 按第i 按第i列拆分
性质2 性质2 例如
互换行列式的两行( 互换行列式的两行(列),行列式变号. 行列式变号.
1 7 5 1 7 5 6 6 2 = − 3 5 8, 3 5 8 6 6 2
如果行列式有两行( 完全相同, 推论 如果行列式有两行(列)完全相同,则 此行列式为零. 此行列式为零.
D = − D,∴ D = 0

0 b11 ⋯ b1n ⋮ ⋮ bn1 ⋯ bnn
b11 ⋯ b1n D2 = ⋮ ⋮ , bn1 ⋯ bnn
例3
a k 1 ⋯ a kk 设D= c11 ⋯ c1k ⋮ ⋮ c n1 ⋯ c nk
a11 ⋯ a1k D1 = ⋮ ⋮ , ak1 ⋯ akk
证明
D = D1 D2 .
证明
对 D1 作运算ri + krj,把 D1 化为下三角形行列式
P.12 例 c+z a+x b+ y d +w
y
w a c
=
a+x b
c+z a b d d +
+
a+x
c+z +
x z y w
= c
x b z d
y w
+

性质6 把行列式的某一列( 性质6 把行列式的某一列(行)的各元素乘以 同一数然后加到另一列(行 对应的元素上去 对应的元素上去, 同一数然后加到另一列 行)对应的元素上去,行 列式不变. 列式不变. a11 ⋯ a1i ⋯ a1 j ⋯ a1n a21 ⋯ a2i ⋯ a2 j ⋯ a2 n 例如 k× ⋮ ⋮ ⋮ ⋮ an1 ⋯ ani ⋯ anj ⋯ ann

(完整版)线性代数笔记

(完整版)线性代数笔记

等行变换,则得到的是 。
对于第二类的可先转化为第一类的 ,即由
两边转置得
按上例的方法求出 进而求出 X
二.初等变换的性质
定理 2.5.1 设线性方程组的增广矩阵 经有限次的初等行变换化为 ,则以 与
为增广矩阵的方程组同解。 定理 2.5.2 任何矩阵都可以经有限次初等行变换化成行最简形式,经有限次初等变换 (包括行及列)化成等价标准形。且其标准形由原矩阵惟一确定,而与所做的初等变换无
3、矩阵的乘法 设 A=(aij)m×n,B=(bjk)n×l,则 A*B=C=(cik)m×l 其中 C=Σaijbjk(j=1,n) 注意;两个矩阵相乘必须第一个矩阵的列数等于第二个矩阵的行数;矩阵乘法不满足交换 律,即 AB 不一定等于 BA;矩阵乘法有零因子,即 A≠0(零矩阵),B≠0(零矩阵),但 有可能 A*B=0(零矩阵) 矩阵的乘法适合以下法则: (1)结合律:(AB)C=A(BC) (2)分配律(A+B)C=AC+BC
hing at a time and All things in their being are good for somethin
此处 0 表示与 A 同型的零矩阵,即 A=(aij)m×n ,0=0m×n (4)矩阵 A=(aij)m×n,规定-A=(-aij)m×n,(称之为 A 的负矩阵),则有 A+(-A)=(A)+A=0
如果 n 个未知数,n 个方程的线性方程组的系数行列式 D≠0,则方程组
定理 1.4.3 如果 n 个未知数 n 个方程的齐次方程组的系数行列式 D≠0,则该方程组只有零 解,没有非零解。 推论 如果齐次方程组有非零解,则必有系数行列式 D=0。
第二章 矩阵
一、矩阵的运算

线性代数课后习题答案第1——5章习题详解

线性代数课后习题答案第1——5章习题详解

前言解肖斌因能力有限,资源有限,现粗略整理了《工程数学 线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。

第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a a a(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-∙-∙-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-= 112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--= 51100650000601000051001653=D 展开按第三列5100650006100051650061000510065+6100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵. 证明 因为A T=A , 所以(B TAB)T=B T(B TA)T=B T A TB =B TAB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T=A , B T=B , 且AB =BA , 所以 (AB)T=(BA)T=A T B T=AB ,即AB 是对称矩阵.必要性: 因为A T=A , B T=B , 且(AB)T=AB , 所以AB =(AB)T =B T A T=BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+Ak -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(Ak -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E , 或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E , 或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2, 即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O , 所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E , 即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1=4(E +A)-1 =4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1. |P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1 *)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1, 而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C , 所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D , 所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

(完整版)线性代数课后习题答案第1——5章习题详解

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数1----5

线性代数1----5

相当于对矩阵 A 施行第一种初等列变换 : 把 A 的第 i 列与第 j 列对调 (ci ↔ c j ).
2、以数 k ≠ 0 乘某行或某列
以数k ≠ 0乘单位矩阵的第 i行( ri × k ),得初等 矩阵E ( i ( k )).
1 O 1 E ( i ( k )) =P E = A ,
−1
−1 l −1
−1 1
−1

Pl P L P
−1
= (Pl −1 Pl −1 L P1−1 A Pl −1 Pl −1 L P1−1 E ) −1 −1
−1 l −1
−1 1
(A E)
= (E A − 1 )
施行初等行变换, 即对 n × 2n 矩阵 ( A E ) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A−1 .
相当于对矩阵 A 施行第一种初等行变换 : 把 A 的第 i 行与第 j 行对调 ( ri ↔ r j ).
类似地, 类似地, 以n 阶初等矩阵 En(i, j) 右乘矩阵 A,
a11 L a1 j L a1i a21 L a2 j L a2 i AE n ( i , j ) = L L L a m 1 L amj L ami L a1n L a2 n L L amn
对于任何矩阵Am×n ,总可经过有限次初等行 和行最简形. 变换把他变为行阶梯形
行最简形矩阵再经过初等列变换, 行最简形矩阵再经过初等列变换,可化成标 准形. 准形.
1 0 例如, 例如, B 5 = 0 0
0 −1 0 1 −1 0 0 0
4 3 0 1 − 3 0 0 0
初等逆变换
初等逆矩阵

线代第一章

线代第一章
如:31245 就是一个 5 级排列。 例1 写出所有的 3 级排列: 123 132 213 231 312 321
上一页 下一页
可见,第一个位置有 3 种选择,第二个位置 有 2 种选择,第三个位置有 1 种选择,所以所有 的 3 级排列一共有
3 2 1 3! 6
个。显然,所有的 5 级排列一共有 5!= 120 个。 容易得出,n 级排列一共有 n! 个。而在 n
第一章
行列式
第一节 二阶与三阶行列式 第二节 n 阶行列式
第三节 行列式的性质
第四节 行列式的按行(列)展开 第五节 克莱姆法则
上一页 下一页
第一节 二阶与三阶行列式


一、二阶行列式
二、三阶行列式 三、小结
一、二阶行列式
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
上一页 下一页
a11 a12 a13 D a21 a22 a23 列标 a31 a32 a33 行标 三阶行列式的计算 a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a21 a22 a31 a32 a33 a31 a32
D a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31 .
记 a11
a31
a21 a31
a12 a13 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a a a a a a a a a 11 23 32 12 21 33 13 22 31, a32 a33
(6)式称为数表(5)所确定的三阶行列式.

大一上线性代数知识点总结

大一上线性代数知识点总结

大一上线性代数知识点总结线性代数是数学的一个重要分支,也是大一上学期的一门重要课程。

通过学习线性代数,我们可以掌握向量、矩阵、线性方程组等基本概念和运算,为后续数学和工程学科的学习奠定了坚实基础。

在本文中,我将对大一上线性代数的知识点进行总结和归纳。

一、向量及其运算在线性代数中,向量是最基础的概念之一。

向量是有大小和方向的量,通常用有序数对来表示。

在向量的运算中,主要包括向量的加法、减法、数乘等。

1. 向量的定义:向量是一种有大小和方向的量。

2. 向量的表示:通常使用有序数对来表示一个向量,如(a, b)。

3. 向量的加法:向量的加法满足交换律和结合律,即(a, b)+(c, d)=(a + c, b + d)。

4. 向量的减法:向量的减法可以转化为加上相反向量,即(a, b)-(c, d)=(a - c, b - d)。

5. 向量的数乘:数乘是指一个向量与一个实数的乘积,即k(a, b)=(ka, kb)。

二、矩阵及其运算矩阵是线性代数中另一个重要的概念,它是一个由数构成的矩形阵列。

矩阵可以进行加法、减法、数乘以及矩阵乘法等运算。

1. 矩阵的定义:矩阵是由数构成的矩形阵列。

2. 矩阵的表示:通常用大写字母加粗表示一个矩阵,例如A。

3. 矩阵的加法:矩阵的加法满足交换律和结合律,即A + B =B + A。

4. 矩阵的减法:矩阵的减法可以转化为加上相反矩阵,即A -B = A + (-B)。

5. 矩阵的数乘:数乘是指一个矩阵与一个实数的乘积,即kA。

6. 矩阵的乘法:矩阵的乘法是指按照一定规则进行的运算,结果是一个新的矩阵。

两个矩阵相乘的条件是第一个矩阵的列数等于第二个矩阵的行数。

三、线性方程组线性方程组是线性代数中的重要应用之一,它由一系列线性方程组成。

解线性方程组等价于求出使方程组成立的变量值。

1. 线性方程组的定义:线性方程组是由一系列线性方程组成的方程组。

2. 线性方程组的解:线性方程组的解是指使方程组成立的变量值集合。

线性代数(同济大学第五版)行列式讲义、例题

线性代数(同济大学第五版)行列式讲义、例题

第1页 第2页第一章 行列式行列式是研究线性方程组的一个有力工具,本章给出了行列式的定义、性质及其计算方法.§1 全排列及其逆序数一、排列及其逆序数定义对于n 个不同的元素,可以给它们规定一个次序,并称这规定的次序为标准次序.例如1,2,,n 这n 个自然数,一般规定由小到大的次序为标准次序.定义 1 由n 个自然数n ,,2,1 组成的一个有序数组n i i i ,,,21 ,称为一个n 元全排列,简称为排列.例如由1,2,3这三个数组成的123,132,213,231,312,321都是3元(全)排列.定义 2 在一个排列里,如果某一个较大的数码排在一个较小的数码前面,就说这两个数码构成一个逆序(反序),在一个排列里出现的逆序总数叫做这个排列的逆序数,用),,,(21n i i i τ表示排列n i i i ,,,21 的逆序数.根据定义2,可按如下方法计算排列的逆序数: 设在一个n 级排列12n i i i 中,比(1,2,,)t i t n =大的且排在t i 前面的数共有i t 个,则t i 的逆序的个数为i t ,而该排列中所有数的逆序的个数之和就是这个排列的逆序数.即12121().nn n i i i i i t t t t τ==+++=∑例1 计算排列45321的逆序数.解 因为4排在首位,故其逆序数为0;比5大且排在5前面的数有0个,故其逆序数为0; 比3大且排在3前面的数有2个,故其逆序数为2; 比2大且排在2前面的数有3个,故其逆序数为3; 比1大且排在1前面的数有4个,故其逆序数为4. 可见所求排列的逆序数为(45321)002349τ=++++=.定义 3 逆序数为偶数的排列叫做偶排列, 逆序数为奇数的排列叫做奇排列.),,,(21n i i i τ=2i 前面大于2i 的元素个数+3i 前面大于3i 的元素的个数++ n i 前面大于n i 的元素的个数,例如:3300)2341(=++=τ, 逆序数为3,)2341(τ为奇排列. 6321)4321(=++=τ, 逆序数为6,)4321(τ为偶排列.定义4 把一个排列中某两个数码i 和j 互换位置,而其余数码不动,就第3页 第4页得到一个新排列.对一个排列所施行的这样一个变换叫做一个对换.例如排列2341经过元素2,4对换变成排列4321,可记为43212341)4,2(−−→−定理1 对换改变排列的奇偶性. 证明 先证相邻对换设排列为m l b b ab a a 11对换a 与b .m l b b ba a a 11 当b a <时, 经对换后a 的逆序数增加1 ,b 的逆序数不变; 当b a >时, 经对换后a 的逆序数不变,b 的逆序数减少1. 因此对换相邻两个元素,排列改变奇偶性.再证非相邻对换,现设排列为 n m l c bc b ab a a 111现来对换a 与bn m l m n m l c c b abb a a c bc b ab a a 111111−−−−→−次相邻对换nm l m n m l c ac b bb a a c bc b abb a a 1111111−−−−→−+次相邻对换nm l m n m l c ac b bb a a c bc b ab a a 11112111−−−−−→−∴+次相邻对换因此对换两个元素,排列改变奇偶性.也就是说,只要经过一次对换,奇排列变成偶排列,而偶排列变成奇排列.推论 奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数.二、排列及其逆序数性质与定理性质1设n i i i 21和n j j j 21是n 个数码的任意两个排列,那么总可以通过一系列对换由n i i i 21得出n j j j 21.引理1 对换的可逆性——即对同一排列连续施行两次同一对换排列还原.所以任意n 元排列n i i i 21可经过一系列对换变为自然排列n 12.而自然排列n 12可经一系列对换变为任意一个n 元排列n j j j 21.事实上,由引理1可知:任意一个n 元排列n j j j 21可经一系列对换变为自然排列n 12,由引理1对换的可逆性,故自然排列可经(同样的)一系列对换变为任一排列.定理2 2≥n 时,n 个数码的排列中,奇排列与偶排列的个数相等,均为2!n 个. 证明:设n 个数的排列中,奇排列有p 个,偶排列有q 个,则!n q p =+,对p 个奇排列,施行同一对换,则由定理1得到p 个偶排列.(而且是p 个不同的偶排列)因为总共有q 个偶排列,所以q p ≤.同理 p q ≤.第5页 第6页所以 2!n q p ==.§2行列式的定义引言 三阶行列式的构成规律为:322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---其中:符号333231232221131211a a a a a a a a a 是由23个元素ij a 构成的三行、三列方表,横排叫行,纵排叫列;在上述形式下元素ij a 的第一个下标叫行下标,第二个下标叫列下标.从形式上看,三阶行列式是上述特定符号表示的一个数,这个数由一些项的和而得:1)项的构成:由取自不同的行又于不同的列上的元素的乘积; 2)项数:三阶行列式是3!=6项的代数和;3)项的符号:每项的一般形式可以写成321321j j j a a a 时,即行标为自然排列时,该项的符号为)(321)1(j j j τ-,即由列标排列321j j j 的奇偶性决定.一、n 阶行列式的定义 定义5 n 阶行列式定义为∑+-==nn nn n n j j j i i i j i j i j i i i i j j j nnn n nna a a a a a a a a a a a A212122112121)()(212222111211)1(ττ用符号nnn n nn a a a a a a a a a 212222111211表示由2n 个数ij a 所组成的n 阶行列式,简记为A 或D ,这是一个数,其中n i i i 21和n j j j 21都是n 级排列,∑表示对所有的n 级排列求和.由定义可以看出,n 阶行列式的值等于所有取自不同的行、不同的列上的n 个元素的乘积n n j i j i j i a a a 2211的代数和,共有!n 项,每一项前面的符号由排列n i i i 21和n j j j 21的逆序数)(21n i i i τ+)(21n j j j τ决定.第7页 第8页另外行列式的还可以定义为∑-==nn nj j j j j j nnn n nna a a a a a a a a a a a A 212121)(212222111211)1(τ或∑-==n i i i i i i nnn n nnn n a a a a a a a a a a a a A 21)(2122221112112121)1(τ以上两个定义式分别以行列的排列为标准序列,其每一项前面的符号有n j j j 21和n i i i 21的逆序数决定.例2 在四阶行列式中,21321443a a a a 应带什么符号?解 1)按行列式定义5计算,因为2132144314213243a a a a a a a a =,而4123的逆序数为 (4123)01113τ=+++=,所以21321443a a a a 的前面应带负号. 2)按行列式定义5计算,因为21321443a a a a行指标排列的逆序数为 (2314)00202τ=+++=,列指标排列的逆序数为 (1243)00011τ=+++=. 所以21321443a a a a 的前面应带负号.例3 计算行列式44322321121100000000a a a a a a .分析 按行列式定义,每一项都是取自不同行不同列的4个元素的乘积,共有!4项.但此行列式中有很多零元素,因此有的项为零,故只需找出不含零元素的项,不妨设各个字母表示的都是非零元素.于是在第一行中只有两个非零元素11a 和12a .当第一行取11a 时,第二行只能取23a (21a 与11a 同列,故不能取),第三行只能取32a ,第四行只能取44a ,即44322311a a a a 是其中的一项.另外,当第一行取12a 时,第二行可以取21a 和23a ,但当第二行取23a ,第三行只能取零元素,故第二行只可以取21a ,第三行取33a ,第四行取44a ,即另一非零项为44332112a a a a .解 44332112)2134(44322311)1324()1()1(a a a a a a a a D ττ-+-= 4433211244322311a a a a a a a a --=第9页 第10页例4 证明n 行列式(1)nn nnnnnnn n a a a a a a a a a a a a a a a 22112221121121222111000==,(2)11,212)1(1,121,21)1(n n n n n nn n n n n n na a a a a a a a a-----=证 (1) 记nnn n a a a a a a D21222111100=nnnna a a a a a D 0222112112=由于当i j >时,0=ij a ,故1D 中可能不为0的元素i ip a ,其下标应有i p i ≤,即,11≤p ,22≤p .,n p n ≤在所有排列n p p p 21中,能满足上述关系的排列只有一个自然排列n 12,所以1D 中可能不为0的项只有一项nn a a a 2211)1(τ-,此项的符号所以,1)1()1(0=-=-τnn a a a 22111D =.由于当i j <时,0=ij a ,故2D 中可能不为0的元素i ip a ,其下标应有i p i ≥,即,11≥p,22≥p .,n p n ≥在所有排列n p p p 21中,能满足上述关系的排列只有一个自然排列n 12,所以2D 中可能不为0的项只有一项nn a a a 2211)1(τ-,此项的符号所以,1)1()1(0=-=-τnn a a a 22112D = 得证.(2) 根据行列式定义11,211,121,21)1(n n n t nnn n n n n n a a a a a a a a a----=其中t 为排列21)1( -n n 的逆序数,故2)1(210-=++++=n n n t 证毕. 二、子式、余子式与代数余子式第11页 第12页(1)k 阶子式:设nij a D =,在D 中取定某k 行k 列,位于这些行列相交处的元素构成的k 阶行列式,叫做D 的一个k 阶子式.(2)余子式:设nija D =)1(>n ,将元素ij a 所在的行、所在的列的元素划掉后余下的1-n 阶子式,叫做元素ij a 的余子式,记为ij M .nnj n j n n n ni j i j i i i n i j i j i i i n j j n j j ij a a a a a a a a a a a a a a a a a a a a a a a a a M1,1,21,11,11,12,11,1,11,11,12,11,121,21,2222111,11,11211+-+++-+++-+-----+-+-= (3)代数余子式:设nija D =)1(>n ,元素ij a 的余子式ij M 附以符号ji +-)1(后,叫做元素ij a 的代数余子式,记为ij A .即ij A =ji +-)1(ij M .三、行列式展开式定理定理3 设nij a D =,则D 等于它的任意一行(列)的所有元素与各自对应的代数余子式的乘积的和.即⎩⎨⎧++++++=nj nj j j jj inin i i i i A a A a A a A a A a A a D 22112211 ),,2,1,(n j i =.例5 已知,3256411222245233355554321=A求(1)55545552515432A A A A A ++++,(2)333231A A A ++及3534A A +.解:由行列式的性质可知(1) 55545552515432A A A A A ++++=05432111222245233355554321=(2) 5A 31+5A 32+5A 33+3A 34+3A 35 =03256411222335553355554321=第13页 第14页2A 31+2A 32+A 33+A 34+A 35 =03256411222112223355554321=解出A 31+A 32+A 33=0,A 34+A 35 =0 .§3行列式的性质设行列式nnn n n n a a a a a a a a a D212222111211=nnn nn n Ta a a a a a a a a D 212221212111=行列式TD 叫做行列式D 的转置行列式. 性质1 行列式与它的转置行列式相等,即TD D =.证明 用数用归纳法证明,对于二阶行列式性质1显然成立,假设对于n-1阶行列式性质1成立,把n 阶行列式D按第一行展开,依据归纳法假设可得∑∑=+=+=-=-=nj T j T j j nj j j jD M a M a D 11111111)1()1(右端恰为T D 按第一列的展开式.性质2 互换行列式的两行(列),行列式变号.证:先证明邻行互换时行列式变号,设1D 是由n 阶行列式D 的第i 行与第1+i 行互换得到的行列式:行行1,1,,11,1,11,11+=++--i i a a a a a a D n i i ni i n i i把1D 按第1+i 行展开∑∑=+=++-=--=-=nj ij ij j nj ij ij ji D M a M a D 11111)1()1(设2D 是由n 阶行列式D 的第i 行与第j 行互换得到的行列式,不妨设j i <,于是2D 可看成D 的第i 行依次经过i j -个邻行互换后到第j 行位置,而原第j 行又依次经过1--i j 邻行互换后到第i 行位置,因此D D D i j i j -=-=--+-)1()(2)1(推论:如果行列式有两行(列)完全相同,那么此行列式为零.第15页 第16页性质3:行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.即111211112112121212.n n i i in i i in n n nnn n nna a a a a a ka ka ka k a a a a a a a a a = 第i 行(或列)乘以k ,记为k i ⨯γ(或i c k ⨯).推论:行列式中某一行(列)所有元素的公因子可以提到行列式符号的外面.性质4:行列式中如果有两行(列)元素成比例,则此行列式为零. 性质5:若行列式的某一行(列)的元素都是两数之和.nnn inin i i n a a a a a a a a D111111'+'+= 那么D 等于下列两个行列式之和nnn ini n nn n in i n a a a a a a a a a a a a D1111111111''+= 若n 阶行列式每个元素都表示成是两数之和,则它可分解成2n个行列式.如a xb y a b yx b yc zd w c d w z d w ++++=+++++a b ayx b xyc dc wz dz w=+++性质6 把行列式的某一行(列)各元素乘以同一数后加到另一行(列)对应元素上去,行列式的值不变,即j i ≠时nnn in i nnn n jn in j i n a a a a a a a a ka a ka a a a 11111111111=++性质7 行列式任一行(列)各元素与另一行(列)对应元素的代数余子式乘积之和等于零,即第17页 第18页)(02211j i A a A a A a jn in j i j i ≠=+++或)(02211j i A a A a A a nj ni j i j i ≠=+++§4行列式的计算在计算三阶以上的行列式时,一般要注意观察其结构特点,利用行列式的有关性质,结合使用定义法、数学归纳法、递推法、换元法、析因子法、加边法等方法简化计算.一、直接利用行列式定义的证明 例6 证明行列式000000000055544544353425242322211514131211==a a a a a a a a a a a a a a a a D 证 按行列式定义,每一项都是取自不同行不同列的5个元素的乘积,在第一列中只有两个非零元素11a 和21a ,当第一列取元素11a ,第二列只能取22a ,而第三列所能够取的元素只有零元素,故这一项为零.同理,当第一列取21a 时,这一项也为零.行列式其它项也都为零因子,所以.0=D注 (1) 用n 阶行列式的定义直接计算行列式是相当麻烦的,因此仅当一个行列式的每一行(列)上n 个元素中有少数元素不为零,才用定义计算.其关键是处理好每一项前的符号,求出逆序数.一般方法是按行序排好,计算列排列的逆序数.(2) 结论:在一个n 阶行列式中,等于零的元素如果比)(2n n -还多,那么这个n 阶行列式必为零.二、利用行列式的性质化成三角形行列式计算例7 计算n 阶行列式ab b b b abbb b a bb b b aD=.解 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,从第2列开始到第n 列都加到第1列上得ab b b n a babbn a b b a b n a b b b b n a D)1()1()1()1(-+-+-+-+=第19页 第20页ab b b abb b a b b b b n a1111])1([-+=ba b a b b a b bbb n a ----+=0001])1([1)]()1([---+=n b a b n a注 行列式每行(列)元素的和相等时,可将行列式的各行(列)加至第一行(列),利用行列式性质提取公因子后化简计算.三、降阶法:利用行列式按行(列)展开定理,化成较低行列式的计算例8 计算n 阶行列式)1(10)2(00000220000111321--------=n n n n n D n.解 注意到第2,3n ,, 行的元素之和都是零,将第2,3n ,, 列都加到第1列上去,然后按第1列展开,得:)1(10)2(00000220000101322)1(--------+=n n n n n n n D n)1(10)2(0000033000022000012)1(--------+=n n n n n)!1()1(211+-=-n n 四、递推公式法:应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式的线性关系式,再根据此关系式递推得n 阶行列式的值.第21页 第22页例9 计算n 阶行列式xyx y x ya a a a xa D n ---+= 0000000. 解: 将行列式按第n 列展开,可得yx xyx ya xD D nn n ----+=+-11)1(11--+=n n ay xD=++=+=∴-----12211)(n n n n n n ay ay xD x ay xD D22111----++++=n n n n ayx x ay ay D x )(221---++++=n n n n yx x y y a x注:此题可按第一行展开即得结果.例10 计算n 阶行列式312300000310023100023=n D .解: 将行列式按第1列展开,可得2123---=n n n D D D (1)设)(211----=-n n n n xD D y xD D …….……(2) 比较(1)式与(2)式系数得⎩⎨⎧==+23xy y x所以⎩⎨⎧==⎩⎨⎧==12212211y x y x 或. 分别代入(2)式得⎩⎨⎧=-==-=-=-==-=--------1)2()2(22)(2)(212211122211D D D D D D D D D D D D n n n n nn n n n n (3)其中7,321==D D消去(3)式中的1-n D 得:.121-=+n n D第23页 第24页注 (1) 若行列式的某一行(列)至多有两个非零元素一般按此行(列)展开计算.(2) 递推法是计算或证明高阶行列式的惯用方法,有时和数学归纳法结合使用.五、用数学归纳法进行计算或证明. 例11 用数学归纳法证明θθθθθθθsin )1sin(cos 211cos 200000cos 210001cos 210001cos 2+==n D n证明 当1=k 时,θθθθθθsin 2sin sin sin cos 2cos 21===D 等式成立. 假设1-≤n k 时,等式成立,则只需证明当n k =时,等式也成立. n D 按第一行展开有θθθθθθcos 211cos 200000cos 210001cos 210001cos 2cos 2=n Dθθθθcos 211cos 200000cos 210001cos 2000011)1(21+-+21cos 2---=n n D D θ.根据归纳假设得:θθθθθθθsin )1sin(sin ]1)2sin[(sin sin cos 2+=---=n n n D n . 例12 证明n 阶行列式)(1000001000100011βαβαβαβααββαβααββααββα≠--=+++++=++n n n D证明 当1=n 时,βαβαβαβα--=+=+=221D 结论成立.当2=n 时,第25页 第26页βαβααββαβααββα--=-+=++=3322)(1D 结论成立. 假设k n <时,等式成立,则只需证明当k n =时,把k D 按其第1行展开,有βααββαβααββααββα+++++=100000010001000k D110000010001000)(-++++++=k βααββαβααββααββαβα210000010001000-+++++=k βααββαβααββααββααβ21)(---+=k k D D αββαβαβααββαβαβα-----+=--11)(k k k kβαβα--=++11k k故对一切自然数n ,结论都成立.六、 利用已知行列式,进行计算,其中最重要的已知行列式是范德蒙行列式.例13计算n 阶行列式1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+. 解:把D n+1的第n+1行换到第1行,第n 行换到第2行,…,同时将D n+1的第n+1列换到第1列,第n 列依次换到第2列,…,再有范德蒙行列式,得第27页 第28页nn nn a n a n a a n a n a D)1()(11111+--+--=+)(!2)!1(!11j i n n n i j -=-=∏+≤<≤ .七、加边升阶法,即不改变行列式的值的前提下适当增加一行一列或m 行m 列,以便容易求值.例14计算n 阶行列式1112212221212121+++=n n n nn n x x x x x x x x x x x x x x x D.解 1010101221222121212121+++=n n n n nnn x x x x x x x x x x x x x x x x x x D从第二行开始依次减去第一行的),,2,1(n i x i =倍,得10001000112121 nn x x x x x x ---=上式从第二列开始依次乘),,2,1(n i x i =倍加到第1列上的,得1010000112112n nj jx x x x ∑=+=上式∑=+=n j j x 121 例15计算n 阶行列式nn n n n n n n D n n n n n n n n -------------=----2313131311244444463333332222222 . 解: 对原行列式加边,增加第1行全为1,第一列除11a 外全为0,构造新的行列式为:第29页 第30页nn n n n n D n n n n n n -------=---211106333302222201111将第1行乘以i 加到第),,3,2(n i i =行,第i 行提取因数),,3,2(n i i =,得:nn n n D n n n n n n 2121211333122211111!------=将第n 列逐列移到第2列,第1-n 逐列移到第3列,等等,即得范德蒙德行列式,故∏=---=nk n n k D 12)2)(1()!()1(.例16 计算n 阶行列式).0(,212121≠+++=x a x a a a a x a a a a x D nnn解:nn nn a x a a a a x a a a a x a a a D +++=212121210001 xx x a a a i i n100100111n ,2,3,121---+=行行减第第 xx x a a a xa i xi n nj j100000011n ,2,3,11211-++=∑=列上加到第列乘以第 ⎪⎪⎭⎫⎝⎛+=∑=n j jn x a x 11. 八、析因子法,若行列式D 中一些元素是x (或某个参变量)的多项式常用析因子法.第31页 第32页例17 计算行列式 229132513232213211x x D --=解 D 可以看作关于x 的多项式)(x f .观察D 的一次因式, 当1±=x 时,08132513232113211)1(==±f当2±=x 时,05132513232213211)2(=-=±f可见)(x f 有因子:2,2,1,1+-+-x x x x另外,从行列式定义可知,D 中含有x 的最高次数为4. 故)2)(2)(1)(1(+-+-=x x x x C D 令0=x ,直接计算得,12-=D 于是3-=C故)2)(2)(1)(1(3+-+--=x x x x D .例18 计算行列式 11111321321121121221nn n n a a a a x a a a a x a a a a x a a a a x D---=解 观察行列式的特点,当x 取n a a a ,,,21 时,行列式都有两行相同,且此时的行列式值为零.故可将行列式看作关于x 的多项式,且此多项式有因子n a x a x a x ---,,,21 .故可设)())((21n a x a x a x C D ---=D 中最高项为n x ,系数为1.故1=C即行列式为)())((21n a x a x a x D ---= .以上方法,前三种方法是最基本的,需要指出的是:行列式的计算方法往往不是唯一的,有时需要多种方法交叉使用.由于行列式的计算方法很多,但具体到一个题目用什么方法去解往往不是一件容易决定的事情,必须首先观察行列式的具体特征,根据行列式的具体特征选择方法.第33页 第34页§5 克莱姆(Cramer )法则本节作为行列式的应用,完满地解决了含n 个未知量n 个方程的线性方程组,在其系数行列式不为零时,其解的存在性、个数及求解(公式)问题;理论完整且重要,定理的证明可按消元法的思想运用行列式的依行依列展开公式为之.设给定一个含n 个未知量n 个方程的线性方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 其系数构成的行列式nnn n in i i n a a a a a a a a a D212111211=叫做方程组(1)的(系数)行列式.克莱姆(Cramer 法则)对线性方程组(1),当它的(系数)行列式0≠D 时有且仅有一个解:DD x D Dx D D x n n ===,,,2211 .其中j D 是把D 的第j 列的元素换以方程组的常数项n b b b ,,21 而得到的n 阶行列式.推论 含有n 个未知数n 个方程的齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (2) 当它的(系数)行列式0≠D 时仅有零解. 例19求一个一元二次多项式f (x ),使满足,0)1(=f ,3)2(=f .28)3(=-f解:设所求多项式为c bx ax x f ++=2)(, 由条件,0)1(=f ,3)2(=f .28)3(=-f可知⎪⎩⎪⎨⎧=+-=++=++28393240c b a c b a c b a,401328123110,201391241111-=-=-=-=D A 20283932411,60128913410132-=-===D D由克莱姆法则,得,1,3-,2===c b a 知13-2)(2+=x x x f .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 3 0 0
1 1 1 4 0
1 = 1 1 1 5
1
1 0 1 1 + 0 0 1 5 0
1
1 1 0 0 0
1 1 3 0 0
1 1 1 4 0
1 1 1 1 5
= 0 + 60 = 60
线性代数
第一章 行列式
5
性质6 性质6 如
把行列式的某一行(列)的各元素乘以同一数,然后加到 把行列式的某一行( 的各元素乘以同一数,
对 D的前 k 行作运算 ri + krj , 对后 n 列作运算 ci + kcj , 把 D 化 为下三角行列式
D= p11 M O pk1 L pkk c11 L c1k M M cn1 L cnk
qn1 L qnn
0
q11 M O qn1 L qnn
12
D = p11 p22 Lpkk q11q22 Lqnn= D D2. 1
1 2 n
b21 b22 L b2n D = , M M M bn1 bn2 L bnn
T
= ∑(−1) ap11ap2 2 L pnn a
t
D 由定理2知, = ∑(−1)t ap 1ap 2 Lap n
1 2 n
则 bij = aji (i, j =1,2,L, n), 线性代数
所以
DT = D
线性代数
第一章 行列式
8
a b c 例11. 计算 D = a a + b a +b + c a 2a + b 3a + 2b + c
a b c
d a +b + c + d 4a + 3b + 2c + d
d
a 3a + b 6a + 3b + c 10a + 6b + 3c + d
a +b +c a +b + c + d r4 − r3 a a + b 解 D a 2a + b 3a + 2b + c 4a + 3b + 2c + d
线性代数
第一章 行列式
2 3
1 2 2 9 6
0 0 3 2 0
0 0 1 3 2
0 0 2. 0 1
例13 计算 D = 1
7 8

2 1 D= ⋅ 2 3 0 = ( 4 − 3) ⋅ (9 + 8 − 2) = 15. 3 2 0 2 1
3 1 2
线性代数
第一章 行列式
13
4.(2)
2 1 4 1 5 0 6 2 1 3 −1 2 1 r + r2 3 −1 2 1 = 0. 1 2 3 2 1 2 3 2 5 0 6 2 5 0 6 2
b r + r2 a + c b + d 1 −d d r2 − r − a c d 1
线性代数
第一章 行列式
10
a11 L a1k M M
0
b L bn 11 1 M M bn1 L bnn
ak1 L akk 例12 证明 设 D = 证明:设 c11 L c1k M M cn1 L cnk
a11 L a1k D = det(aij ) = M M , 1 ak1 L akk
线性代数
第一章 行列式
14
a2 5.(3). 2 b c2
(a +1 2 ) (b +1 2 ) (c +1 2 )
(a + 2)2 (b + 2)2 (c + 2)2
d 2 (d +1 2 (d + 2)2 ) a2 c4 − c3 b2 c3 − c2 c2 d2 2a +1 2 2b +1 2 2c +1 2 2d +1 2
§5 行列式的性质

D= a11 a12 L a1n , D =
T
a11 a12 M a1n
a21 L an1 a22 L an2 M M a2n L ann ,
a21 a22 L a2n M M M an1 an2 L ann
说明 转置行列式. 行列式 DT 称为 D的转置行列式 性质1 行列式与它的转置行列式相等. 行列式中行、列地位等同. 性质1 行列式与它的转置行列式相等. 行列式中行、列地位等同 证明: 证明 记 D = det(aij ) 的转置行列式为 由定义 DT = ∑(−1)t b1p b2p Lbnp b b L bn 11 12 1
b 变换 i、j两行得到的, 即当 k ≠ i, j 时, kp = akp ; b 当 k = i, j 时, ip = ajp , bjp = aip , 因此
D = ∑(−1) b1p1 L ipi L jpj L npn = ∑(−1)t a1p1 Lajpi Laipj Lanpn b b b 1
线性代数
第一章 行列式
4
2 1
1 1 0 0 0
1 1 3 0 0
1 1 1 4 0
1 1 1 1 5
例8. 计算行列式 D = 1
1 1
解 将行列式的第一列拆开.
1+1 1+ 0 D = 1+ 0 1+ 0 1+ 0 1 1 0 0 0 1 1 3 0 0 1 1 1 4 0 1 1
1 1
1 1 0 0 0
b
c
d
a a +b a +b + c a 2a + b 3a + 2b + c a 3a + b 6a + 3b + c d a +b +c = a4 2a + b a
9
线性代数
第一章 行列式
注意 (1)若把几个运算写在一起,要注意各个运算的次序不能颠倒. 如 a b
c a c d b r2 − r 1 d
b11 L b1n D2 = det(bij ) = M M , bn1 L bnn
则 D= D D2. 1 结论
线性代数
第一章 行列式
11
证 对 D作运算 ri + krj , 把 D 化为下三角形行列式: 1 1
p11 D= M 1 O
0
= p11 p22 Lpkk
pk1 L pkk 对 D2作运算ci + kcj , 把 D2化为下三角形行列式: q11 0 = q11q22 Lqnn D2 = M O
乘此行列式. 于用数 k 乘此行列式. 或列) 第 i 行(或列)乘以 k, 记作 ri ×k(或 ci ×k ). 推论 行列式中某一行(列)的所有元素的公因子可以提到行列 行列式中某一行( 式符号外面。 式符号外面。 或列)提出公因子k, 第 i 行(或列)提出公因子 记作 ri ÷ k(或 ci ÷ k ). 例7.
另一行( 另一行(列)对应的元素上去,行列式不变.. 对应的元素上去,行列式不变
a11 L a1i L a1j L a1n a21 L a2i L a2 j L a2n M M M M an1 L ani L anj L ann a11 L (a1i + ka j ) L a1j L a1n 1 a21 L (a2i + ka2 j ) L a2 j L a2n M M M M an1 L (ani + kanj ) L anj L ann
4 0 D = 8 1 3 1 6 3 2 3 4 4
4 1 0 0 r3 ÷ 2 2 2 4 5 1
3 1 3 3
2 3 2 4
1 0 1 5
= 0.
线性代数第一章ຫໍສະໝຸດ 行列式3性质4 性质4 于零. 于零 性质5 性质5
行列式如果有两行(列)元素成比例,则此行列式的值等 行列式如果有两行( 元素成比例, 若行列式的某一行(列)的元素都是两数之和,如 若行列式的某一行( 的元素都是两数之和,
a11 D= a12 L a21 a22 L ′ (a1i + a1i ) (a2i + a′i ) 2 L a1n L a2n ,
M M M M an1 an2 L (ani + a′ ) L ann ni
则 D 等于下列两个行列式之和: 等于下列两个行列式之和:
a11 a12 L a1i L a1n a11 a21 a22 L a2i L a2n a21 D= + M M M M M an1 an2 L ani L ann an1 ′ a12 L a1i L a1n ′ a22 L a2i L a2n . M M M ′ an2 L ani L ann
1
第一章 行列式
性质2 性质2 证
互换行列式的两行( ),行列式变号. 互换行列式的两行(列),行列式变号. 行列式变号
b b L bn 11 12 1
a11
a12 L a1n
设行列式 D1 = b21 b22 L b2n , M M M
bn1 bn2 L bnn
a21 a22 L a2n , 是由行列式 D = M M M an1 an2 L ann
a2 ab b 2 a 2 − b 2 b(aabb) b 2 − c1 − c3 5.(1). 2a a + b 2b 2(a − b) a − b 2b a+b c −c 1 1 1 2 3 0 1 1 0 a + b b b2 a − b b b2 c1 ÷ (a − b) c1 − 2c2 2 2 = (a−b)3 (a−b) 2 (a−b) 0 1 2b 1 2b c2 ÷(a −b) 0 0 1 0 0 1
相关文档
最新文档