同济大学线代(第六版)新PPT课件
合集下载
高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
线性代数(第六版)课件:矩阵

30
a b c d
于是得
B
0 0 0
a 0 0
b a 0
c b a
,其中a ,
b,
c,
d
为任意数。
31
从前例
2 3
46
2 1
42
0 0
00 ,
还可看出,矩阵乘法不满足消去律:
AB O A O 或 B O ;
A(B C) O
AB AC , A O B C . 左消去律不成立;
9 3
84 ,
显然, AB BA 。
23
矩阵乘法的运算规律:
(1) ( AB)C A(BC) ; 矩阵乘法满足结合律! (2) A(B C) AB AC , (B C)A BA CA ; 分配律
(3) k( AB) (kA)B A(kB) (其中k为数);
(4) AO O, OA O ; (5) AE EA A . 注意:交换律不成立。
4
例如 1 0 3 5 是一个 2 4 矩阵, 9 6 4 3
2 3 5 9 是一个 1 4 矩阵,
1 2
是一个 3 1 矩阵。
4
3 4
6 2
2 2
是一个 3 3 矩阵。
5
0
2
5
如果矩阵A=(aij)的行数与列数都等于n,则称A为 n 阶 矩阵 (或称 n 阶方阵 ) 。
.
kam1 kam2 kamn
14
数乘矩阵的运算规律: (设A、B 为 m n矩阵,k, l 为数)
(1) k( A B) kA kB ; (2) (k l)A kA lA ; (3) k(lA) (kl)A ; (4) 1A A,0A O . 加法和数乘合称为矩阵的线性运算。
同济大学线性代数__第一章PPT课件

20
例2: 计算四阶行列式
a0 0 b 0cd 0 D 0e f 0 g0 0 h
D = acfh + bdeg – adeh– bcfg
2021/3/21
21
重要结论:
(1) 上三角形行列式
a11 a12 a1n
0 D
a22
a2n
a a11 22 ann
0 0 ann
2021/3/21
第一章 行列式
2021/3/21
1
§1 二阶与三阶行列式
1. 二阶行列式 二元线性方程组
aa2111
x1 x1Leabharlann a12 x2 a22 x2
b1 b2
(1) (2)
2021/3/21
2
用消元法 (1) a22 (2) a12 得
(a11a2a2 21xa112aa2122)xx12
b1a22 b2
为三阶行列式, 记作
a11 a12 a13 a21 a22 a23 a31 a32 a33
2021/3/21
9
对角线法则:
a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31
22
(2) 下三角形行列式
a11 0 0
D
a21
a22
0
a a11 22 ann
an1 an2 ann
2021/3/21
23
(3) 对角行列式
a 11
D
a22
a a11 22 ann
ann
2021/3/21
高等数学同济第六版第四章第2节.ppt

x
dx
d(sec x tan x) sec x tan x
第四章第二节
同样可证
csc xdx ln csc x cot x C
或
ln tan x C (P196 例16 )
2
13
例11.
求
(
x2
x3 a2
3
)2
dx
.
第四章第二节
解:
原式
=
1 2
(
x2 dx2
x
2
a
2
3
)
2
1 2
(x2 a2)
例8. 求 sec6 xdx .
解: 原式 = (tan2 x 1)2dsteacn2 xd x
(tan4 x 2tan2 x 1)dtan x
1 tan5 x 2 tan3 x tan x C
5
3
第四章第二节
10
例9.
求
1
dx e
x
.
解法1
第四章第二节
(1 e x ) e x
1 e2x
(P203 公式 (22) )
34
例24. 求
第四章第二节
解:
令
x
1 t
,得
原式
t dt a2t2 1
1 2a2
d (a2t2 a 2t 2
1) 1
1 a2
a2t2 1 C
35
例25. 求
第四章第二节
解: 原式 ( x 1)3
dx ( x 1)2 1
令
x
1
1 t
t3
(1) 分项积分: 利用积化和差; 分式分项; 1 sin2 x cos2 x等
同济大学线代(第六版)新

请观察,此公式有何特点? ➢分母相同,由方程组的四个系数确定. ➢分子、分母都是四个数分成两对相乘再
相减而得.
二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 b2
我们引进新的符号来表示“四个 数分成两对相乘再相减”.
a11 a12 数表 a21 a22
a11 a12 记号 a21 a22
在十九世纪下半叶,因若当的工作而达 到了它的顶点。1888年,意大利数学家皮亚 诺(1858-1932)以公理的方式定义了有限 维或无限维线性空间。托普利茨将线性代数 的主要定理推广到任意体(domain)上的最 一般的向量空间中。
“代数”这个词在中文中出现较晚,在清代 时才传入中国,当时被人们译成“阿尔热巴 拉”,直到1859年,清代著名的数学家、翻译 家李善兰( 1811-1882 )才将它翻译成为(linear)指量与量之间按比例、成直 线的关系,在数学上可以理解为一阶导数为常数 的函数。
非线性(non-linear)则指不按比例、不成 直线的关系,一阶导数不为常数。
线性代数
研究对象: 线性空间、线性变换和有限维的线性方程组。
研究工具: 行列式、矩阵与向量。
线性代数(第六版)
原则:横行竖列
2. 二阶行列式的计算 ——对角线法则
主对角线 副对角线
a11 a21
a12 a22
a11a22
a12a21
即:主对角线上两元素之积-副对角线上两元素之积
根据定义 x1,x2 的分子也可以写成行列式形式如下:
b1 b2
a12 a22
b1a22 a12b2,
a11 a21
b1 b2
线性代数 Linear Algebra
线性代数同济六版共五章全课件-PPT

b11 b12 b1n
D1
b21
b22
b2 n
,
bn1 bn2 bnn
其中,当 k≠ i , j 时, bkp = akp ;当 k = i , j 时,bip = ajp,, bjp = aip ,
于是
D (1) 1
t(
pppp )
1
i
j
n
b1
p1
bipi
bjpj
bnpn
(1)
t(
经对换1与4 得排列 53412
求这两个排列的逆序数. 解 t(5314 2) = 0+1+2+1+3=7
t(53412) = 0+1+1+3+3=8
练习
1. 选择 i 与 k 使 (1)2 5 i 1 k 成偶排列; (2)2 5 i 1 k 成奇排列.
2. a14a21a33a44和a12a43a31a24是否为四阶行列式中项 的,
易知,向量组与它的最4大无关组是等价的.
m×s s×n m×n
例 7 向量组
例5 n 阶行列式 我们也可以证明,如果把矩阵 A 的第 j 行的 k 倍加到第 i 行
为矩阵 A 的秩,矩阵 A 的秩记成 R(A).
假设 r > s, 看齐次线性方程组
一般来说,向量组的最大无关组不是唯一的.
若 x1 = c1 , x2 = c2 , ……, xn = cn 是 ⑴ 的解,记1
一元一次方程 ax = b
一元二次方程 二元 、三元线性方程组
行列式 矩阵及其运算 矩阵的初等变换与线性方程组 向量组的线性相关性 矩阵的特征值和特征向量
第一章 行列式
《线性代数》(同济第六版)演示精品PPT课件

11 2
1
b
21
a
xba
=
2 a11a22 a12a21
原则:横行竖列
我们引进新的符号来表示“四个 数分成两对相乘再相减”.
a11 a12 数表 a21 a22
a11 a12 记号 a21 a22
表达式 a11a22 a12a21 称为由该
数表所确定的二阶行列式,即
a11 a12 D=
a21 a22
=
a11b 2
ba 1
21
2 a11a22 a12a21
�分母相同,由方程组的四个系数确定. �分子、分母都是四个数分成两对相乘再
相减而得.
7
二元线性方程组
a11x1 +a12x2 = b1 21 1 x +a22 x2 = b2 a
其求解公式为
b1a22 a12b2
x1 = a11a22 a12a21
= a11a22a33 +a12a23a31 +a13a21a32 a13a22a31 a12a21a33 a11a23a32
注意:对角线法则只适用于二阶与三阶行列式.
13
1 2 -4
例2 计算行列式 D = -2 2 1
-3 4 -2
解 按对角线法则,有
D = 1×2×( 2)+ 2×1×( 3)+ ( 4)×( 2)×4 1×1×4 2×( 2)×( 2) ( 4)×2×( 3)
副对角线 a31 a32 a33
a13a22a31 a12a21a33 a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
12
三阶行列式的计算 ——对角线法则
线性代数(第六版)课件:线性方程组

《线性代数》
(第六版)
1
线性方程组
2
本章讨论关于线性方程组的两个问题: 一、探讨 n 个未知数 m 个方程的线性方程组的解法 (即下面介绍的高斯消元法)。 二、从理论上探讨线性方程组解的情况:何时有解, 何时无解。若有解,则有多少组解;若有无穷多解, 如何表示。
运用 n 维向量的理论可全面地解决第二个方面的 问题。
3
第一节 线性方程组的消元解法
例 用高斯消元法解线性方程组
2 x1 x2 x3 x4 2
1
4x1x1x62
2x3 x2 2
x3
x4
4 2 x4
4
2 3
(1)
3x1 6 x2 9 x3 7 x4 9 4
解
x1 x2 2 x3 x4 4
1
(1)
12 3 2
2 2
x1 x1
a11 x1 a12 x2 a1n xn 0 ,
a21
x1
a22 x2
a2n xn
0,
am1 x1 am2 x2 amn xn 0 .
显然零向量必为它的解,称为零解。
定理 若 r( A) n ,则齐次线性方程组只有零解;
若 r(A) n ,则齐次线性方程组有非零解. 推论 若 m n ,则齐次线性方程组必有非零解。
0
b
1 0
1
,
ba2 x1 a 1 ,
x2
a
2b a1
3
,
b1 x3 a 1 ,
x4 0 ;
当 a 1 , b 1 时, r( A) 2 r( A) 3 ,方程组无解;
当 a 1 , b 1 时, r( A) r( A) 2 4 ,方程组有无穷多组解,
(第六版)
1
线性方程组
2
本章讨论关于线性方程组的两个问题: 一、探讨 n 个未知数 m 个方程的线性方程组的解法 (即下面介绍的高斯消元法)。 二、从理论上探讨线性方程组解的情况:何时有解, 何时无解。若有解,则有多少组解;若有无穷多解, 如何表示。
运用 n 维向量的理论可全面地解决第二个方面的 问题。
3
第一节 线性方程组的消元解法
例 用高斯消元法解线性方程组
2 x1 x2 x3 x4 2
1
4x1x1x62
2x3 x2 2
x3
x4
4 2 x4
4
2 3
(1)
3x1 6 x2 9 x3 7 x4 9 4
解
x1 x2 2 x3 x4 4
1
(1)
12 3 2
2 2
x1 x1
a11 x1 a12 x2 a1n xn 0 ,
a21
x1
a22 x2
a2n xn
0,
am1 x1 am2 x2 amn xn 0 .
显然零向量必为它的解,称为零解。
定理 若 r( A) n ,则齐次线性方程组只有零解;
若 r(A) n ,则齐次线性方程组有非零解. 推论 若 m n ,则齐次线性方程组必有非零解。
0
b
1 0
1
,
ba2 x1 a 1 ,
x2
a
2b a1
3
,
b1 x3 a 1 ,
x4 0 ;
当 a 1 , b 1 时, r( A) 2 r( A) 3 ,方程组无解;
当 a 1 , b 1 时, r( A) r( A) 2 4 ,方程组有无穷多组解,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们先讨论未知量的个数与方程 的个数相等的特殊情形.
在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
第一章 行列式(De•数t行e的r列一m式种是in工线a具性n!代t)
•学习行列式主要
内容提要
就是要能计算行列 式的值.
§1 二阶与三阶行列式
§2 全排列与对换
行列式的概念.
§3 n 阶行列式的定义
什么是线性关系?
线性(linear)指量与量之间按比例、成直 线的关系,在数学上可以理解为一阶导数为常数 的函数。
非线性(non-linear)则指不按比例、不成 直线的关系,一阶导数不为常数。
线性代数
研究对象: 线性空间、线性变换和有限维的线性方程组。
研究工具: 行列式、矩阵与向量。
线性代数(第六版)
三、有重要贡献的数学家
• 17世纪,德国数学家-莱布尼兹 ——历史上最早使用行列式概念。
• 1750年,瑞士数学家-克莱姆(克莱姆法则) ——用行列式解线性方程组的重要方法。
• 1772年,法国数学家-范德蒙 ——对行列式做出连贯的逻辑阐述,行列
式的理论脱离开线性方程组。
• 1841年,法国数学家-柯西 ——首先创立了现代的行列式概念和符号。
学术地位及应用
线性代数在数学、物理学和技术学科中有各种 重要应用,因而它在各种代数分支中占居首要地位。 在计算机广泛应用的今天,计算机图形学、计算机 辅助设计、密码学、虚拟现实等技术无不以线性代 数为其理论和算法基础的一部分。线性代数所体现 的几何观念与代数方法之间的联系,从具体概念抽 象出来的公理化方法以及严谨的逻辑推证、巧妙的 归纳综合等,对于强化人们的数学训练,增益科学 智能是非常有用的。
随着科学的发展,我们不仅要研究单个 变量之间的关系,还要进一步研究多个变量 之间的关系,各种实际问题在大多数情况下 可以线性化,而由于计算机的发展,线性化 了的问题又可以计算出来,线性代数正是解 决这些问题的有力工具。
线性代数的含义随数学的发展而不断扩 大。线性代数的理论和方法已经渗透到数学 的许多分支,同时也是理论物理和理论化学 所不可缺少的代数基础知识。
二、历史与发展
线性代数作为一个独立的分支在20世纪才 形成,而它的历史却非常久远。“鸡兔同笼” 问题就是一个简单的线性方程组求解的问题。 最古老的线性问题是线性方程组的解法,在中 国古代东汉年初成书的数学著作《九章算术· 方程》章中,已经作了比较完整的叙述,其中 所述方法实质上相当于现代的对方程组的增广 矩阵的行施行初等变换,消去未知量的方法。
德国数学家--高斯(1777-1855) ——提出行列式的某些思想和方法
英国数学家--西勒维斯特(1814-1897) ——首次提出矩阵的概念(矩型阵式)
英国数学家--凯莱(1821-1895) ——矩阵论的创立
向量概念的引入,形成了向量空间的概念。 凡是线性问题都可以用向量空间的观点加以讨 论。因此,向量空间及其线性变换,以及与此 相联的矩阵理论,构成了线性代数的中心内容。
由于法国数学家费马(1601-1665)和笛 卡儿(1596-1650)的工作,现代意义的线性 代数基本上出现于十七世纪。直到十八世纪末, 线性代数的领域还只限于平面与空间。十九世 纪上半叶才完成了到n维线性空间的过渡。
随着研究线性方程组和变量的线性变换问 题的深入,在18~19世纪期间先后产生行列式 和矩阵的概念,为处理线性问题提供了有力的 工具,从而推动了线性代数的发展。
a11x1 a12x2 b1 a21x1 a22x2 b2
由消元法,得
( a 1 a 2 1 2 a 1 a 2 2 ) x 1 1 b 1 a 2 2 a 1 b 2 2
( a 1 a 2 1 2 a 1 a 2 2 ) x 1 2 a 1 b 2 1 b 1 a 21
第一章 行列式 第二章 矩阵及其运算 第三章 矩阵的初等变换与线性方程组 第四章 向量组的线性相关性 第五章 相似矩阵及二次型 第六章 线性空间与线性变换(选学)
在以往的学习中,我们接触过二 元、三元等简单的线性方程组.
但是,从许多实践或理论问题里 导出的线性方程组常常含有相当 多的未知量,并且未知量的个数 与方程的个数也不一定相等.
在十九世纪下半叶,因若当的工作而达 到了它的顶点。1888年,意大利数学家皮亚 诺(1858-1932)以公理的方式定义了有限 维或无限维线性空间。托普利茨将线性代数 的主要定理推广到任意体(domain)上的最 一般的向量空间中。
“代数”这个词在中文中出现较晚,在清代
时才传入中国,当时被人们译成“阿尔热巴 拉”,直到1859年,清代著名的数学家、翻译 家李善兰( 1811-1882 )才将它翻译成为“代 数学”,之后一直沿用。
§4 行列式的性质 §5 行列式按行(列)展开
行列式的性质及计算.
§1 二阶与三阶行列式 ( Determinent of order two or three)
我们从最简单的二元线性方程组出发,探 求其求解公式,并设法化简此公式.
一、二元线性方程组与二阶行列式
1. 二阶行列式的定义
二元线性方程组
“以直代曲”是人们处理很多数学问题 时一个很自然的思想。很多实际问题的处理, 通常把非线性模型近似为线性模型,最后往 往归结为线性问题,它比较容易处理。因此, 线性代数在工程技术、科学研究以及经济、 管理等许多领域都有着广泛的应用,是一门 基本的和重要的学科。线性代数的计算方法 是计算数学里一个很重要:黄月梅
基础介绍
一、研究对象 线性代数是代数学的一个分支,主要处理
线性关系问题,即线性空间、线性变换和有限 维的线性方程组。线性关系意即数学对象之间 的关系是以一次形式来表达的。例如,在解析 几何里,平面上直线的方程是二元一次方程; 空间平面的方程是三元一次方程,而空间直线 视为两个平面相交,由两个三元一次方程所组 成的方程组来表示。含有 n个未知量的一次方 程称为线性方程。关于变量是一次的函数称为 线性函数。线性关系问题简称线性问题。解线 性方程组的问题是最简单的线性问题。