波分复用技术(WDM)

合集下载

光信息专业实验报告WDM光波分复用器

光信息专业实验报告WDM光波分复用器

光信息专业实验报告WDM光波分复用器实验报告:WDM光波分复用器(13)一、实验目的:1.了解WDM光波分复用器的原理和工作方式;2.学习WDM光波分复用器的搭建方法及调试过程;3.掌握WDM光波分复用器的性能测试方法和参数分析。

二、实验设备:1.光信号发生器;2.WDM光波分复用器;3.光功率计;4.光接收器。

三、实验原理:WDM(Wavelength Division Multiplexing, 波分复用)技术是一种将多个不同波长的光信号复用在一个光纤上的技术。

WDM光波分复用器是用于实现WDM技术的关键设备之一、它能够将多个不同波长的光信号通过一个光纤传输,并在接收端将其分离出来。

WDM光波分复用器一般由光栅、耦合器、偏振分束器等光学元件组成。

当多个光信号输入到WDM光波分复用器时,光信号首先被光栅进行分光处理,然后通过耦合器和偏振分束器进行耦合和分束。

最后,不同波长的光信号分别被传输到不同的目的地。

四、实验步骤:1.连接实验设备:将光信号发生器与WDM光波分复用器的输入端连接,将光功率计与WDM光波分复用器的输出端连接,将光接收器与光功率计连接。

2.设置光信号发生器:根据实验要求设置光信号发生器的波长、功率等参数。

3.调试WDM光波分复用器:调节WDM光波分复用器的输入端和输出端的光纤连接,确保光信号能够正确传输。

4.测试光功率:使用光功率计测量WDM光波分复用器的输出端的光功率,并记录数据。

五、实验结果分析:根据实验数据,我们可以得到WDM光波分复用器的输出端的光功率以及不同波长的光信号之间的光功率差。

通过对比不同波长的光信号的光功率,我们可以判断WDM光波分复用器的性能是否良好。

六、实验总结:本次实验通过搭建和调试WDM光波分复用器,学习了WDM光波分复用器的原理和工作方式,掌握了WDM光波分复用器的性能测试方法和参数分析。

光纤波分复用器原理

光纤波分复用器原理

光纤波分复用器原理
光纤波分复用器(WDM)是一种利用光子技术将多个不同波长的
光信号同时传输在同一根光纤中的设备。

其原理基于光的波长分立
特性,允许在同一光纤中传输多个不同波长的光信号,从而实现了
光纤通信的高密度和高带宽传输。

光纤波分复用器的原理主要包括两个方面,波长选择和波长复用。

首先,波长选择是指通过一定的光学元件(如光栅、滤波器等)选择特定波长的光信号,然后将这些不同波长的光信号合并在一起。

这样的波长选择过程可以通过光栅等光学元件实现,光栅可以分散
不同波长的光信号,并将它们聚焦到不同的位置上,从而实现波长
的选择。

其次,波长复用是指将多个不同波长的光信号合并在一起传输
到光纤中。

这一过程可以通过光学耦合器实现,光学耦合器可以将
多个不同波长的光信号合并成一个复合的光信号,然后通过光纤传
输到目的地。

总的来说,光纤波分复用器的原理是利用波长选择和波长复用技术,将多个不同波长的光信号合并在一起传输到光纤中,从而实现了光纤通信的高密度和高带宽传输。

这种技术在光纤通信中得到了广泛的应用,极大地提高了光纤通信系统的传输容量和效率。

WDM是什么?举例说明,通俗易懂

WDM是什么?举例说明,通俗易懂

WDM是什么?举例说明,通俗易懂
WDM 是将一系列载有信息、但波长不同的光信号合成一束,沿着单根光纤传输;在发送端经复用器(亦称合波器,MulTIplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,DemulTIplexer)将各种不同波长的光信号分开,然后由光接收机作进一步处理以恢复原信号。

在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。

复杂难懂?不要着急,看下面简单例子你就明白了。

一年一度春运来了,小明准备开车回家,结果由于经济发展,大家都奔了小康,都准备开车回家。

但道路没法拓宽车越来越多,回去路上缓如乌龟(这里小明就像一个光信号,主道路就像光通信中铺设好的主干光纤,因为数量有限,单根光纤传输信号已经无法满足日益增长的通信需求了)。

这个时候小明想起来大家可以一起去坐高铁啊,又快又方便(高铁始发站就像WDM波分复用技术中的合波,把光信号汇聚在一起,并耦合到同一根光线中进行传输)。

高铁跑了一段距离后,补给不足,中途停下增加补给后再次驱动前行,不久后就到达了目的地,所有的乘客就此分流各回各家。

(中途的补给相当于光信号经过长距离传输后,信号变弱;增加补给,相当于EDFA对变弱后的光信号增强;高铁的终点站相当于WDM波分复用技术中的分波,将各种光信号进行分离)
WDM波分复用技术可以显著提高光纤的传输容量,提高对光纤资源的利用率。

给生活最直接的影响就是我们上网、看电视、打电话更快速、更畅通了。

WDM波分复用技术,你get到了吗?。

光纤波分复用980

光纤波分复用980

光纤波分复用980
光纤波分复用(Wavelength Division Multiplexing,简称WDM)是一种光通信技术,通过在光纤中传输多个不同波长的光信号,实现多路复用。

其中,980nm波长是一种常用的波长之一。

980nm波长通常用于光纤放大器的泵浦光源,例如光纤光放大器(EDFA)和拉曼光纤放大器(Raman Amplifier)。

光纤波分复用980技术可以同时传输多个不同波长的光信号,其中包括使用980nm波长的泵浦光源。

光纤波分复用980技术的优点包括高带宽、低损耗、抗干扰能力强等。

它可以提高光纤传输的容量和效率,满足大容量、高速率的通信需求。

同时,使用980nm波长的光纤波分复用技术还可以实现光放大和光信号传输的一体化,简化系统结构,降低成本。

光纤波分复用980技术是一种基于980nm波长的光通信技术,通过多路复用不同波长的光信号,提高光纤传输的容量和效率。

它在光纤放大器等领域有着广泛的应用。

WDM波分复用器详解

WDM波分复用器详解

WDM波分复用器详解波分的概念波分复用,指在同一根光纤中,同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。

简介波分复用波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。

这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

概述光纤通信飞速发展,光通信网络成为现代通信网的基础平台。

光纤通信系统经历了几个发展阶段,从80年代末的PDH系统,90年代中期的SDH系统,WDM系统,光纤通信系统快速地更新换代。

双波长WDM(1310/1550nm)系统80年代在美国AT&T网中使用,速率为2×17Gb/s。

90年代中期,WDM系统发展速度并不快,主要原因在于:(1)TDM(时分复用)技术的发展,155Mb/s-622Mb/s-2.5Gb/sTDM技术相对简单。

据统计,在2.5Gb/s系统以下(含2.5Gb/s系统),系统每升级一次,每比特的传输成本下降30%左右。

因此在系统升级中,人们首先想到并采用的是TDM技术。

(2)波分复用器件不成熟。

波分复用器/解复用器和光放大器在90年代初才开始商用化,1995年开始WDM技术发展很快,特别是基于掺铒光纤放大器EDFA的1550nm窗口密集波分复用(DWDM)系统。

Ciena推出了16×2.5Gb/s系统,Lucent公司推出8×2.5Gb/s系统,目前试验室已达Tb/s速率。

发展迅速的主要原因在于:(1)光电器件的迅速发展,特别是EDFA的成熟和商用化,使在光放大器(1530~1565nm)区域采用WDM技术成为可能;(2)利用TDM 方式已接近硅和镓砷技术的极限,TDM已无太多的潜力,且传输设备价格高;(3)已敷设G.652光纤1550nm窗口的高色散限制了TDM10Gb/s系统的传输,光纤色散的影响日益严重。

光纤波分复用技术及WDM工作原理

光纤波分复用技术及WDM工作原理

在WDM系统中理想的光源应能够按照需要调节到不同的波长上。温 度的调节只能实现微调。当这种微调不能使LD工作在需要的波长上时,这 个激光器就不能在WDM系统中应用。如果激光器可调谐,且调谐范围足够 宽,可工作在1550nm窗口任意一个波长上,这样的可调谐激光器就成为 理想的光源。实现宽的调谐范围有以下几种方法。 采用分段式DBR LD 图8.3.2为一个三段式DBR LD的示意图。三段分别为有源段﹑相位段 和布拉格段,各段之间彼此电隔离,并且通过各自独立的电极来提供电流, 三段作为一个整体形成一个光学谐振腔。有源段为高掺杂区,为激光器提 供增益。相位段为无源区,为光波提供相位移。只有那些在谐振腔内往返 一次相位移等于2π的整数倍的光波才能形成震荡。若改变相位段的电流I2, 就改变了相位,也就等效于改变了谐振腔的光学长度,因而改变了谐振波 长。布拉格段也为无源区,电流的改变引起该段材料的有效折射率发生改 neff 变,从而引起布拉格波长的改变。调谐范围可用下式进行计算: neff 其中,为波长调谐范围,neff 为有效折射率的改变量,和neff分别表 示激光器的工作波长和有效折射率。实际中,折射率的最大改变量约为1%, 因此,波长最大可调谐范围在10nm量级。
2. 可作为WDM系统光源的激光器件
WDM系统对激光器有如此严格的要求,那么,如何使LD发射的波长恰 好满足ITU-T的规定呢?我们从半导体激光器的工作原理知道,LD发射的光波 波长范围取决于半导体材料的带隙,而精确的波长则由LD的谐振腔决定。在 设计制作器件时,通过调节DFB LD中布拉格光栅的周期来调节中心波长,使 其工作在规定的波长上。同时由于材料的折射率随着电流和温度的变化而变 化,导致等效腔长发生变化。通过改变电流和温度参数可实现工作波长的精 细调节。但是,调节工作电流无疑会改变激光器的输出功率。实际WDM系统 中常通过微调各个分立的LD的温度来实现波长的调谐。也可将这些分立的LD 集成在一个芯片上,形成激光器阵列。但是,如何将这样的阵列所发出的光 耦合到一根光纤中是一个必须解决的问题。采用阵列波导光栅AWG作复用器, 与激光器阵列集成在一个芯片上,将有可能解决上述问题。关于激光器阵列 以及与AWG集成的研究正在进行之中。

光波分复用和时分复用异同

光波分复用和时分复用异同

光波分复用和时分复用异同光波分复用(Wavelength Division Multiplexing,WDM)和时分复用(Time Division Multiplexing,TDM)是两种常见的复用技术。

它们都是将多个信号合并在一起,通过一个通道传输,从而提高传输效率。

虽然它们都是复用技术,但是它们的实现方式和应用场景有所不同。

光波分复用是一种利用不同波长的光信号在同一光纤中传输的技术。

它将多个光信号通过不同的波长进行区分,然后将它们合并在一起,通过同一根光纤传输。

在接收端,再通过光解复用器将不同波长的光信号分离出来,恢复成原来的多个信号。

光波分复用技术可以大大提高光纤的传输容量,从而满足高速数据传输的需求。

它广泛应用于光通信、数据中心、云计算等领域。

时分复用是一种利用时间片的方式将多个信号合并在一起的技术。

它将多个信号按照时间顺序依次发送,每个信号占用一个时间片。

在接收端,再按照时间顺序将多个信号分离出来。

时分复用技术可以在有限的带宽内传输更多的信号,从而提高传输效率。

它广泛应用于电话、广播、电视等领域。

光波分复用和时分复用的异同主要体现在以下几个方面:1. 实现方式不同:光波分复用是利用不同波长的光信号进行区分,而时分复用是利用时间片进行区分。

2. 应用场景不同:光波分复用主要应用于高速数据传输领域,如光通信、数据中心、云计算等;而时分复用主要应用于电话、广播、电视等领域。

3. 传输效率不同:光波分复用可以大大提高光纤的传输容量,从而满足高速数据传输的需求;而时分复用可以在有限的带宽内传输更多的信号,从而提高传输效率。

4. 技术难度不同:光波分复用技术相对较为复杂,需要使用光解复用器等专业设备;而时分复用技术相对简单,可以使用普通的电子设备实现。

光波分复用和时分复用虽然都是复用技术,但是它们的实现方式、应用场景、传输效率和技术难度都有所不同。

在实际应用中,需要根据具体的需求选择合适的复用技术,以达到最佳的传输效果。

波分复用器的作用

波分复用器的作用

波分复用器的作用介绍波分复用器(Wavelength Division Multiplexer,简称WDM)是一种关键的光传输技术,用于实现光纤通信中信号的同时传输与复用。

它通过将不同波长的光信号发送到同一条光纤上,实现多路复用的功能。

波分复用器在现代通信网络中发挥着重要的作用,本文将详细讨论波分复用器的作用。

提高传输容量波分复用器的一个主要作用是提高传输容量。

传统的光纤通信系统采用时分复用(Time Division Multiplexing,简称TDM)技术,即将多个信号按时间顺序划分为不重叠的时隙,并通过光纤依次发送。

然而,随着通信需求的增加,传统的TDM技术无法满足高带宽的要求。

波分复用器通过将不同波长的光信号发送到同一条光纤上,实现了多个信号的同时传输与复用。

相比于TDM技术,WDM技术使得多个信号可以在相同的时间内传输,大大提高了传输的容量。

例如, 通过使用32个不同波长的光信号,每个信号传输10Gbps的数据,波分复用器可以实现320Gbps的传输容量。

节省光纤资源波分复用器的另一个重要作用是节省光纤资源。

在传统的光纤通信系统中,通过增加光纤的数量来增加传输容量,这不仅占用了大量的空间,还增加了网络建设和维护的成本。

通过波分复用器的技术,多个信号可以通过不同波长的光信号在同一条光纤上传输,大大减少了所需的光纤数量。

相比于传统方法,WDM技术可以在不增加光纤数量的情况下提供更大的传输容量。

这样不仅减少了光纤线路的铺设,也降低了光纤传输的成本。

提高网络的可靠性波分复用器还具有提高网络可靠性的作用。

在传统的光纤通信系统中,如果一条光纤出现故障,会导致整个通信链路中断,造成严重的服务中断。

而通过使用波分复用器,多个信号可以通过不同波长的光信号分别传输,一旦某根光纤出现故障,其他信号依然可以正常传输。

这种冗余设计可以大大提高网络的可靠性,保证通信服务的连续性。

引领光通信技术发展波分复用器作为光通信的核心设备之一,它的发展与应用,推动了光通信技术的进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波分复用技术(WDM)介绍
--------密集波分复用(DWDM)和稀疏波分复用(CWDM)
波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。

这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

WDM本质上是光域上的频分复用FDM技术。

每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。

WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。

通信系统的设计不同,每个波长之间的间隔宽度也有不同。

按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。

CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。

1 DWDM技术简介
WDM和DWDM是在不同发展时期对WDM系统的称呼。

在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。

随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。

为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。

所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。

密集波分复用技术其实是波分复用的一种具体表现形式。

如果不特指1310nm、1550nm的两波分WDM系统外,人们谈论的WDM系统
就是DWDM系统。

实现光波分复用和传输的设备种类很多,各个功能模块都有多种实现方法,具体采用何种设备应根据现场条件和系统性能的侧重点来决定。

总体上看,在DWDM系统当中有光发送/接收器、波分复用器、光放大器、光监控信道和光纤五个模块。

光纤的非线性效应是影响WDM传输系统性能的主要因素。

光纤的非线性效应主要与光功率密度、信道间隔和光纤的色散等因素密切相关;光功率密度越大、信道间隔越小,光纤的非线性效应就越严重;色散与各种非线性效应之间的关系比较复杂,其中四波混频随色散接近零而显著增加。

随着WDM技术的不断发展,光纤中传输的信道数越来越多,信道间距越来越小,传输功率越来越大,因而光纤的非线性效应对DWDM传输系统性能的影响也越来越大。

克服非线性效应的主要方法是改进光纤的性能,如增加光纤的有效传光面积,以减小光功率密度;在工作波段保留一定量的色散,以减小四波混频效应;减小光纤的色散斜率,以扩大DWDM系统的工作波长范围,增加波长间隔;同时,还应尽量减小光纤的偏振模色散,以及在减小四波混频效应的基础上尽量减小光纤工作波段上的色散,以适应单信道速率的不断提高。

DWDM复用系统中的光源应具有以下4点要求:(1)波长范围很宽;(2)尽可能多的信道数;(3)每信道波长的光谱宽度应尽可能窄;(4)各信道波长及其间隔应高度稳定。

因此,在波分复用系统中使用的激光光源,几乎都是分布反馈激光器(DFB-LD),而且目前多为量子阱DFB激光器。

随着科学技术的发展与进步,用在波分复用系统中的光源除了分立的DFB-LD、可调谐激光器、面发射激光器外,还有两种形式。

其一是激光二极管的阵列,或是阵列的激光器与电子器件的集成,实际是光电集成回路(OEIC),与分立的DFB-LD相比,这种激光器在技术上前进了一大步,它体积缩小、功耗降低、可靠性高,应用上简单、方便。

另一种新的光源——超连续光源。

确切地说应该是限幅光谱超连续光源(Spectrum Sliced Supercontinuum Source)。

研究表明,当具有很高峰值功率的短脉冲注入光纤时,由于非线性传播会在光纤中产生超连续(SC)宽光谱,它能限幅成为许多波长,并适合于作波分复用的光源,这就是所谓的限幅光谱超连续光源。

2 CWDM技术简介
DWDM(密集波分复用)无疑是当今光纤应用领域的首选技术,但其昂贵的价格令不少手头不够宽裕的运营商颇为踌躇。

为了能够以较低的成本享用波分复用技术,CWDM(稀疏波分复用)应运而生。

稀疏波分复用,顾名思义,是密集波分复用的近亲,CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。

冷却激光采用温度调谐,非冷却激光采用电子调谐。

由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。

CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。

CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。

在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。

CWDM用很低的成本提供了很高的接入带宽,适用于点对点、以太网、SONET环等各种流行的网络结构,特别适合短距离、高带宽、接入点密集的通信应用场合,如大楼内或大楼之间的网络通信。

尤其值得一提的是CWDM与PON(无源光网络)的搭配使用。

PON是一种廉价的、一点对多点的光纤通信方式,通过与CWDM相结合,每个单独波长信道都可作为PON的虚拟光链路,实现中心节点与多个分布节点的宽带数据传输。

CWDM是成本与性能折衷的产物,不可避免地存在一些性能上的局限。

业内专家指出,CWDM目前尚存在以下4点不足:一、CWDM在单根光纤上支持的复用波长个数较少,导致日后扩容成本较高;二、复用器、复用解调器等设备的成本还应进一步降低,这些设备不能只是DMDM相应设备的简单改型;三、CWDM不适用于城域网,城域网节点间距离较短,运营商用在CWDM设备扩容上的钱完全可以用来埋设更多的光缆,得到更好的效果;
四、CWDM还未形成标准。

相关文档
最新文档