热冰实验
天宫实验,不只是好玩

天宫实验,不只是好玩作者:本刊综合来源:《发明与创新·小学生》2022年第08期摘“星星”的妈妈回来了!2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场预定区域成功着陆,航天员翟志刚、王亚平、叶光富平安“回家”。
出差半年,神舟十三号航天员乘组圆满完成任务,创造了中国航天员连续在轨飞行时长新纪录,在星辰大海留下了最难忘的记忆。
在轨飞行期间,他们先后进行2次出舱活动,开展多项科学实(试)验,验证了航天员长期驻留保障、再生生保、舱外操作、在轨维修等关键技术,还进行了太空授课,以及一系列别具特色的科普教育和文化传播活动。
而且,他们首次在太空过春节,首次举办天宫画展。
这些活动中,你们印象最深、最感兴趣的是什么活动呢?相信很多同学的答案是“太空授课”。
太空授课的内容包括2次“天宫实验”,它们呈现了与地面上的实验完全不一样的实验效果。
现在,我们一起来回顾第二次天宫实验,再一次体验奇妙的实验之旅。
实验选择有讲究条件一实验所需的材料和设备必须安全,质量小、体积小、功耗小,不能影响中国空间站运行,不能有任何安全隐患,要对航天员的健康无影响。
条件二实验创意新颖,可以很好地激发人们的好奇心和探究兴趣,实验现象要和地面上的形成鲜明对比。
条件三实验操作简单可行,不会给航天员带来太多负担。
神舟十三号航天员乘组“名场面”王亚平头顶“冲天辫”,翟志刚表示“我已出舱,感觉良好”,叶光富化身天宫课堂“最强工具人”,三人为我们送上来自遥远太空的新春祝福……半年来,我們共同见证了神舟十三号航天员乘组许多太空精彩时刻。
成功“接头”,入住“天宫”时间:2021年10月16日2021年10月16日,神舟十三号载人飞船与空间站组合体成功交会对接,神舟十三号航天员翟志刚、王亚平、叶光富先后进入天和核心舱,中国空间站迎来第二个航天员乘组。
首次出舱,感觉良好时间:2021年11月7日航天员翟志刚、王亚平先后出舱。
翟志刚向地面汇报情况:“我已出舱,感觉良好!”王亚平成为中国首位进行出舱活动的女航天员,迈出了中国女性舱外太空行走的第一步。
冰的熔解热实验报告

用混合热量法测定冰的熔化热实验报告一、实验目的:1.正确使用热量器,熟练使用温度计。
2.用混合热量法测定冰的熔解热。
3.进行实验安排和参量选取。
4.学会一种粗略修正散热的方法——抵偿法。
二、实验用具:热量器、数字温度计、电子天平、秒表、干抹布、保温桶、冰以及热水等。
关于实验仪器的说明:1.电子天平使用前,请将电子天平放置于稳固、平坦的台面上,利用四只调整脚,使仪器保持平衡(勿放于摇动或振动台架上)。
注意水平仪内气泡应位于圆圈中央。
使用时应避免将其至于温度变化较大或者空气流动剧烈的场所,如日光直射或冷气机的出风口。
打开电源时,秤盘上请勿防止任何物品。
建议开机预热1~5分钟,以确保测量的精确度。
使用时,称量物品重心须位于称盘的中心点,且称量物不可超出称量范围,以确保准确度。
2.量热器量热器的构造如下图所示。
由铜质内筒、塑料外筒、绝热盖、环形绝热架、橡皮塞和铜质搅拌器组成。
绝热盖上附有中空橡皮塞,用于实验时插入温度计。
搅拌器通过绝热盖上的细孔置于内筒中,试验时上下搅动,使桶内各处温度迅速均匀。
内筒置于外筒内部的环形绝热架上,外筒又用胶木圆盖盖住。
因此,内部空气夹层与外界对流很小。
又因空气是热的不良导体,故外、内筒之间由传导所传递的热量可减到很小。
同时,内筒的外壁电镀得十分光亮,使得它们辐射或吸收热量的本领变得很小。
所以,因辐射而产生的热量传递也可以减至最小。
由上所述,量热器的这种结构,使将热量传递的三种方式:传导、对流及辐射都尽可能地减到最小;因而,他成为量热实验的常用仪器。
使用时,通常是先注入适量的水(约为容量的二分之一到三分之二),并将温度计、搅拌器等通过绝热盖的小孔插入,构成所谓已知热容的系统。
但上述量热器的绝热条件并不十分完善,因此在进行精确的量热实验时还必须据牛顿冷却定律进行散热修正。
三、实验原理:质量为m i,温度为θ0′的冰块与质量为m、温度为θ1的水相混合,冰全部熔化为水后,测得平衡温度为θ2。
冰的熔解热实验报告doc

冰的熔解热实验报告篇一:冰的熔解热的测定冰的熔解热的测定摘要:用混合法测定冰的熔解热是把冰和一个容量已知的系统混合起来达到热平衡,在与外界没有热交换条件下冰吸收的热量等于系统在实验过程中放出的热量,放出的热量可由温度的改变和热容量计算出来,冰的熔解热可根据条件计算出来。
关键词:冰的比熔解热、吸热、放热、散热修正引言:将一定质量的冰和一定质量的水混合,当混合后的系统达到一定的温度后,冰全部熔解为同温度的水,根据热力学第一定律,冰熔解所吸收的热量与水降温所放出的热量相等.只要测量出系统与外界的换热量、水的质量、冰的质量等,就可以求出冰的熔解热.文中采用混合法测量冰的熔解热,实验中并未考虑系统环境的散热损失.本实验研究方法中采用测量系统中水的质量变化来测量冰的质量。
实验用混合法来测定冰的熔解热,即把待测的系统个已知其热容的系统(和一混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统(或)所放出的热量,全部为(或)所吸收。
因为已知和热容C计算出来的,)。
这样热容的系统在实验过程中所传递的热量是可以由其温度的改变即Q??TC。
因此,待测系统在实验过程中所传递的热量也就知道了。
由此可见,保持系统为孤立系统,是混合量热法所要求的基本实验条件,这要从仪器装置、测量方法及实验操作等各方面去保证。
如果实验过程中与外界的热交换不能忽略,就要做散热或吸热修正。
温度是热学中的一个基本物理量,量热实验中必须测量温度。
一个系统的温度,只有在平衡态时才有意义,因此计温时必须使系统温度达到稳定而均匀。
用温度计的指示值代表系统温度,必须使系统与温度计之间达到热平衡。
1.1实验原理:一定压强下的晶体开始熔解时的温度称为该晶体在此压强下的熔点,质量为1g的某种物质的晶体熔解为相同温度的液体所吸收的热量叫做该晶体的熔解热。
本实验采用混合量热测定冰的熔解热,其基本原理是:把待测系统和一个已知其热容的系统混合起来,并使它们形成一个与外界没有热量交换的孤立系统。
热冰实验流程

热冰实验
1、溶解
用100ml烧杯,将20g无水醋酸钠溶解在20ml纯净水中。
注意:需要水浴。
溶解需要一定时间,注意耐心。
2、静置
溶解完之后,静置2-3分钟。
观察。
3、将上清液注入50ml小烧杯
上述液体静置之后,一般会在烧杯底部看到些许杂质。
此时把上清液倒入干净的50ml 的烧杯中即可。
4、等待液体降到常温
这个过程非常重要。
如果一切顺利,液体降温到常温不会出现结晶。
如果不顺利,在降温过程中会出现结晶。
此时解决办法:水浴加热-重新降温
5、玻璃棒轻轻一点
如果上述溶液降温到了常温,还没有出现晶体。
说明我们的过饱和溶液已经制作完成。
接下来,用玻璃棒轻轻一点,造成液体扰动,液体就会迅速结晶。
这就是热冰实验啦!
结果很震撼,过程很漫长,一定要耐心!。
测定冰的熔解热实验报告

测定冰的熔解热实验报告测定冰的熔解热实验报告引言:熔解热是物质从固态转变为液态所需吸收的热量。
在日常生活中,我们经常接触到冰,因此了解冰的熔解热对于理解物质状态变化和热力学性质具有重要意义。
本实验旨在通过测定冰的熔解热,探索冰的物理特性和热力学过程。
实验原理:冰的熔解是一个吸热过程,当冰从固态转变为液态时,需要吸收一定的热量。
根据热力学原理,冰的熔解热可以通过以下公式计算得出:Q = m × L其中,Q表示熔解热,m表示冰的质量,L表示冰的熔解潜热。
实验步骤:1. 准备实验器材:电子天平、烧杯、温度计、冰块。
2. 使用电子天平称量一定质量的冰块,并记录下冰块的质量m。
3. 将称量好的冰块放入烧杯中。
4. 在烧杯中插入温度计,并记录下初始温度T1。
5. 加热烧杯中的冰块,直到冰完全熔化为止。
期间需不断搅拌以保持温度均匀。
6. 在冰完全熔化后,记录下此时的温度T2。
数据处理:根据实验原理中的公式,可以计算出冰的熔解热Q。
首先,计算冰的质量m,然后根据温度变化ΔT = T2 - T1,再结合水的比热容C,可以计算出吸收的热量Q = m × C × ΔT。
由于水的比热容C已知,所以可以通过实验数据计算出冰的熔解热。
实验结果:根据实验数据和计算公式,我们可以得出冰的熔解热。
以一次实验数据为例,假设冰的质量为50g,初始温度为0°C,冰完全熔化后的温度为10°C。
根据公式,ΔT = 10°C - 0°C = 10°C。
假设水的比热容为4.18 J/(g·°C),则吸收的热量Q = 50g × 4.18 J/(g·°C) × 10°C = 2090 J。
因此,冰的熔解热为2090 J。
讨论与分析:通过多次实验,我们可以得出冰的熔解热的平均值。
在实验中,我们发现冰的熔解过程是一个温度稳定的过程,即使在加热的过程中,温度不会显著上升,直到冰完全熔化为止。
冰的熔解热实验报告

冰的熔解热实验报告实验目的,通过测量冰的熔解热,探究物质的相变热与熔解过程的能量转化。
实验仪器与材料,电子天平、烧杯、温度计、冰块、热水。
实验原理,冰的熔解是指固体冰转变为液态水的过程,这一过程需要吸收一定量的热量,称为熔解热。
在等压条件下,冰的熔解热可以通过以下公式计算,Q =m L,其中Q为熔解热,m为物质的质量,L为熔解潜热。
实验步骤:1. 使用电子天平称量一定质量的冰块,记录其质量为m1。
2. 将烧杯中装满一定量的热水,记录其初始温度为T1。
3. 将冰块放入烧杯中的热水中,用温度计记录热水的温度变化,直到冰块完全融化,记录此时的温度为T2。
4. 用电子天平再次称量烧杯中的热水和融化后的冰水总质量,记录为m2。
实验数据处理:1. 计算冰的熔解热,根据实验数据计算冰的熔解热Q = m L,其中m为冰的质量,L为水的熔解潜热(L = 334J/g)。
2. 计算热水的温度变化,根据温度计记录的数据,计算热水的温度变化ΔT =T2 T1。
实验结果:经过计算,我们得到了冰的熔解热为Q = m L,热水的温度变化为ΔT = T2 T1。
实验结论:通过本次实验,我们成功测量了冰的熔解热,并了解了熔解过程中的能量转化。
实验结果表明,冰的熔解热为Q = m L,热水的温度变化为ΔT = T2 T1。
这些数据为我们深入了解物质的相变热与熔解过程提供了重要的参考。
实验总结:通过本次实验,我们不仅学习了测量冰的熔解热的方法,还加深了对物质相变热与能量转化的理解。
同时,我们也体会到了实验操作的重要性,以及数据处理的准确性。
希望通过这次实验,能够对我们今后的学习和科研工作有所帮助。
热冰实验

热冰(醋酸钠过饱和溶液结晶实验)冷却的醋酸钠过饱和溶液,暂时处于亚稳态。
当受到某些刺激(如加入一些固体的晶体或晃动使其产生微小的结晶)则此状态会失去平衡,过多的溶质就会结晶,恢复成一个适合此时温度的平衡状态(饱和溶液状态)。
实验前醋酸钠溶液为无色透明,与水极其相似。
而用沾有三水合醋酸钠晶体的小竹签轻触它一下,过多的溶质像水结冰一样迅速结晶,而结晶的同时会放出热量,故称“热冰”。
实验过程1、准备实验器材与原料:铁架台、烧杯、玻璃棒、三水醋酸钠(或无水醋酸钠)、水2、将水和醋酸钠一起加入烧杯中,加热至沸腾【醋酸钠的溶解度很大,应按130g/100g(醋酸钠/水)的比例调和】3、观察到液面形成一层薄薄的膜即可停止加热醋酸钠过饱和溶液实验(一)醋酸钠过饱和溶液实验(一)4、放入冰箱或置于室温下待其冷却后,醋酸钠过饱和溶液制成5、用沾有三水合醋酸钠晶体的竹签轻触其表面或投入三水合醋酸钠晶体6、观察现象,发现液体自上而下地“结冰”了!实验原理一定温度、压力下,当溶液中溶质的浓度已超过该温度、压力下溶质的溶解度,而溶质仍不析出的现象叫做过饱和现象,此时的溶液叫做过饱和溶液。
过饱和溶液是不稳定的,当往溶液中加入一小块溶质晶体,既能引起过饱和溶液中溶质的结晶。
过饱和溶液能存在的原因,是由于溶质不容易在溶液中形成结晶核心即晶核。
因为每一晶体都存在一定的排列规则,要有结晶中心,才能使原来做无规则运动着的溶质质点集合起来,并按照这种晶体所特有的次序排列。
不同的物质,实现这种规则排列的难易程度不同,有些晶体需经过相当长的时间才能自行产生结晶核心,因此,有些物质的过饱和溶液看起来还是比较稳定的。
不同的物质形成过饱和溶液的能力,首先取决于分子组成。
一般固态下含有结晶水(溶质从溶液里结晶析出时,晶体里结合着一定数目的水分子,这样的水分子叫结晶水。
)的物质,其稳定过饱和溶液容易生成,如硝酸铜、硝酸锶、硫代硫酸钠、醋酸钠等。
结晶后的晶体过饱和溶液比饱和溶液有更多的溶质,这种状态属于亚稳态。
神奇的热冰实验,让你“点水成冰”

水在环境温度处于零摄氏度时能凝固成冰。
那么,环境温度大于零摄氏度时,我们能让水结冰吗?实验材料实验步骤筷子、白醋、小苏打、烧杯(或玻璃杯)、密封袋、滴管、锅1准备一个烧杯,首先加入若反应过快溶液会溢出烧杯。
奇的热冰实验,让你“点水成冰小苏打白醋慢慢地加入化学反应化学2022JAN.实验步骤3用滴管吸取适量溶液放于密封袋中。
将袋子封好,防止灰尘等进入,等待混合溶液冷却。
冷却过程中千万不要晃动密封袋。
4溶液冷却后,打开密封袋,用滴管蘸取刚刚准备好的醋酸钠结晶,沿密封袋一侧将醋酸钠结晶缓慢放入溶液中。
你会发现,袋中的溶液会迅速“结冰”。
此时的“冰块”会发热,可以用手轻轻触碰,感受一下(注意防护)。
2将小苏打和白醋混合溶液静置一个小时。
一个小时后,在混合溶液中加入10毫升水(常温),将烧杯放入锅中,用锅将混合溶液加热。
边加热,边用筷子搅拌,直到混合溶液变得澄清透明。
在加热过程中,杯壁上会出现白色结晶,注意不要把它们重新搅入混合溶液中。
加热结束后,将白色结晶收集起来,这些结晶就是作为晶种的醋酸钠。
静置一小时后的混合溶液加热中的混合溶液蘸取少量醋酸钠晶体“热冰”实验原理小苏打,学名碳酸氢钠,分子式是NaHCO3。
这是一种白色结晶性粉末,呈弱碱性,遇酸可以分解产生二氧化碳。
白醋,主要成分是醋酸,其分子式为CH3COOH(其蒸气对眼睛和鼻子有刺激性作用,实验过程中需要小心防护)。
我们先来看一下碳酸氢钠和醋酸的化学反应方程式:NaHCO3+CH3COOH=CH3COONa+H2O+CO2↑从这个方程式可以看出,小苏打和白醋混合会产生醋酸钠和大量气体,这些气体就是二氧化碳。
醋酸钠的溶解度很大,当把水和醋酸钠混合后加热,醋酸钠会很快地溶解在水中。
当混合液体变得清澈,醋酸钠就全部溶解了。
我们制得的醋酸钠溶液是过饱和溶液。
过饱和是一种亚稳态,当受到一些外界刺激(如加入一些固体的晶体作为晶种或晃动使其产生微小的结晶),这个亚稳态会失去平衡,过多的溶质就会结晶,恢复成一个适合此时温度的平衡状态。