北师大版七年级数学下册变量之间的关系
北师大版七年级数学下册第三章 变量之间的关系3 第1课时 曲线型图象

温度在下降?
3 时到 15 时;
0 时到 3 时、15 时到 24 时.
(5) 图中的 A 点表示什么?
B 点呢? 21 时的温度是 31°C;
0 时的温度是 26°C.
E
(6) 你能预测次日凌晨 1 时
的温度吗? 说说你的理由. 大约是 24°C 左右.
归纳总结 在用图象表示变量之间的关系时,通常用水平方 向的数轴(称为横轴)上的点表示自变量,用竖直方 向的数轴(称为纵轴) 上的点表示因变量. 纵轴
2. 曲线型图象能够反映出数据的变化趋势,通过结合 横、纵轴表示的意义,我们能够很直观的感受到数 据的含义.
1. 某市一周平均气温 (℃) 12 气温/℃
如图所示,下列说法不正
10 8
确的是( C )
6 4
2
星期
A. 星期二的平均气温最高 0 一 二 三 四 五 六 日
B. 星期四到星期日天气逐渐转暖
(4)你能看出第二天 8 时骆 驼的体温与第一天 8 时 有什么关系吗?其他时 刻呢? 体温一样
(5)A 点表示的是什么?还为 39°C 20,36,44 时 (6)你还知道哪些关于骆驼的趣事?与同伴进行
交流.
1. 图象是我们表示变量之间关系的又一种方法,它的 特点是非常直观.
变量之间 的关系
新知一览
用表格表示的变 量间关系
用关系式表示的 变量间关系
用图象表示的变 量间关系
曲线型图象 折线型图象
第三章 变量之间的关系
3.3 用图象表示的变量间关系
第1课时 曲线型图象
招聘启事 亲爱的同学们:
学校广播站要招聘一名 天气预报节目主持人,为 了公平竞争,特地用下题 考查同学们的基本素质.请 将分析报告于本周内交到 学校广播站,欢迎大家积 极参与,希望你能成为我 校首位天气预报节目主持 人!
七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.
北师大版七年级数学下册第三章 变量之间的关系(考点讲解)(含解析)

第三章 变量之间的关系【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.感受生活中存在的变量之间的依赖关系. 3.能读懂以不同方式呈现的变量之间的关系.4.能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测. 【考点总结】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量.特别说明:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量. 要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.特别说明:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等. 要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.特别说明:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式. 要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.特别说明:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色. 【例题讲解】类型一、常量、自变量与因变量例1、根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?【答案】(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.【训练】某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.类型二、用表格表示变量间关系例2、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒,v的变化情况相同吗?在哪个时间段内,v增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.【答案】(1)时间与速度;时间;速度;(2)0到3和4到10,v随着t的增大而增大,而3到4,v随着t的增大而减小;(3)不相同;第9秒时;(4)1秒.【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v的变化趋势;(3)根据表中的数据可得出V的变化情况以及在哪1秒钟,V的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大; (4)由题意得:120千米/小时=12010003600⨯(米/秒),由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>, 所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.【训练】某路公交车每月有x 人次乘坐,每月的收入为y 元,每人次乘坐的票价相同,下面的表格是y 与x 的部分数据.x /人次500 1000 1500 2000 2500 3000 … y /元1000200040006000…(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【答案】(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量;(2)表格见解析;(3)7000人次. 【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论; (3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论; 解:(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量. (2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元, 表格补充如下:÷=(元)(3)10005002()÷(人次)4000+100002=7000答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.类型三、用关系式表示变量间关系例3.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?②你能写出两个变量之间的关系吗?【答案】①有2个变量;②能,函数关系式可以为y=4x+2.【解析】试题分析:①根据变量和常量的定义可得结果;②由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.试题解析:①观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②能,由①分析可得:函数关系式可以为y=4x+2.【训练】已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.【答案】y=﹣125x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=12AP•BD,代入数值,即可求出y与x之间的关系式.【详解】如图,过点B作BD⊥AC于D.∵S△ABC=12AC•BD=12AB•BC,∴BD=8624105 AB BCAC⋅⨯==;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=12AP•BD=12×(10﹣x)×245=﹣125x+24,∴y与x之间的关系式为:y=﹣125x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.类型四、用图象表示变量间关系例4、巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【答案】(1)t,s;(2)2,6;(3)小明距起点的距离为300米.【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据【训练】如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度乙的速度(大于、等于、小于);(3)6时表示;(4)路程为150km,甲行驶了小时,乙行驶了小时;(5)9时甲在乙的(前面、后面、相同位置);(6)乙比甲先走了3小时,对吗?.【答案】(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 【解析】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解析:解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s是因变量;(2)甲的速度是100÷6=503千米/小时,乙的速度是100÷3=1003千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)不对,是乙比甲晚走了3小时.故答案为(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 考点:函数的图象.【训练】根据图回答下列问题.(1)图中表示哪两个变量间的关系?(2)A、B两点代表了什么?(3)你能设计一个实际事例与图中表示的情况一致吗?【答案】(1)时间与价钱;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元【解析】试题分析:认真分析表中数据再结合身边的事例即可得到结果.(1)图中表示时间与价钱的关系;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元考点:本题考查的是函数的图象点评:解答本题的关键是读懂图象,得到图象的特征及规律,再根据这个规律解决问题.。
北师大版七下数学3.2用关系式表示的变量间关系说课稿2

北师大版七下数学3.2用关系式表示的变量间关系说课稿2一. 教材分析北师大版七下数学3.2用关系式表示的变量间关系是学生在学习了函数概念和一次函数的基础上,进一步探究变量之间关系的课程。
通过本节课的学习,学生能够理解常量、变量、函数的概念,能够用关系式表示变量之间的关系,并会解决一些简单的实际问题。
本节课的内容主要包括两个部分,一是关系式的概念和表示方法,二是用关系式表示实际问题中的变量关系。
教材通过丰富的例题和练习题,引导学生理解和掌握关系式的表示方法,并能够运用关系式解决实际问题。
二. 学情分析学生在进入七年级下学期之前,已经学习了代数基础知识,对常量、变量、函数等概念有了一定的理解。
但是,对于关系式的概念和表示方法,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出关系式,理解关系式的概念和表示方法。
同时,学生在解决实际问题时,往往只注重结果,而忽视了解题过程中的思路和方法。
因此,在教学过程中,需要引导学生关注解题思路和方法,培养学生的逻辑思维能力。
三. 说教学目标1.知识与技能目标:理解关系式的概念和表示方法,能够用关系式表示变量之间的关系。
2.过程与方法目标:通过解决实际问题,培养学生的抽象思维能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:理解关系式的概念和表示方法,能够用关系式表示变量之间的关系。
2.教学难点:从实际问题中抽象出关系式,理解关系式的概念和表示方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生从实际问题中抽象出关系式,理解关系式的概念和表示方法。
2.教学手段:利用多媒体课件,展示实际问题和关系式,帮助学生直观地理解关系式的概念和表示方法。
六. 说教学过程1.导入:通过展示一些实际问题,引导学生关注变量之间的关系,激发学生的学习兴趣。
2.探究:引导学生从实际问题中抽象出关系式,理解关系式的概念和表示方法。
数学北师大版七年级下册用关系式表示变量间的关系

400 cm3 。 3
议一议(P67)
(1)家居用电的二氧化碳排放量可以用 y = 0.785x 关系式表示为_____________ ,
其中的字母表示:
y 为家居用电的二氧化 碳排放量 ; x 为耗电量 。
(2)在上述关系式中,耗电量每增加 1 KW· h,二氧化碳排放量增加 0.785kg ___________ 。当耗电量 从1 KW· h增加到100 KW· h时,二氧化碳排 0.785kg 增加 放量从_______ 78.5kg 到_________ 。
(3)小明家本月用电大约110 KW· h、 天然气20m3、自来水5t、油耗75L,请 你计算一下小明家这几项的二氧化碳 总排放量。
0.785 110
0.19 20
2.7 75
0.91 5
ห้องสมุดไป่ตู้
297.2kg
随堂练习(P67)
1、在地球某地,温度T(℃)与高度d(m)
来表示,根据这个关系式,当
面积 y y=3x表示了 三角形底边长 _ x 和_________
之间的关系,它是变量 的关系式。
y
随
x
变化
y = 3x
因变量 含自变量代数式 自变量的取值要符合实际
7 cm 当三角形的面积为21cm2时,底边长为______
自学检测一
1.将一个长为20cm,宽为10cm的长方形的四个角, 分别剪去大小相等的正方形,若被剪去正方形
B
(2)如果三角形底边BC长为x(cm)
C
那么三角形的面积y(cm2)可以表示为 (3)当底边长从12cm变化到3cm时,
y=3x
.
36 2变化到____cm 2 9 三角形的面积从______cm
北师大版七年级数学下册-第四章变量之间的关系(同步+复习)精品课件

2. 3. 4.
5.
【例题】将一个长为20cm,宽为10cm的长方形
的四个角,分别剪去大小相等的正方形,若被
剪去正方形的边长为 x cm , 阴影部分的面积为
y(cm2)
2 y =200 4 x ,则 y 与 x 的关系式是 .
【练习1】
1.圆柱的底面直径是6cm,当圆柱的高 h (cm) 由大到小变化时,圆柱的体积V(cm3)随之发生变 化,则V与h之间的关系式是___________ V 9πh 2.圆锥的高为 4,底面半径为 r 那么圆锥的体积 V 可以表示为
2.
3.
在变化过程中,若有两个变量x 和y, 其中y随着x 的变化而发生 变化,我们就把x叫自变量,y 叫因变量。
自变量
主动变化的量
变 量
因变量
被动变化的量
1.自变量是在一定范围内主动变化的量。
2.因变量是随自变量变化而变化的量。
3.表格可以表示因变量随自变量变化而变化的情 况,还能帮助我们对变化趋势进行初步的预测。
y = 3x
系数为1
因变量 含自变量代数式
原料
工厂
自变量的取值要符合实际
●当底边长从12cm变化到3cm时,
2变化到____cm 36 9 2 三角形的面积从______cm
产品
1.
用关系式表示两个变量之间的关系
关系式:这里指通过自变量计算对应的因变 量的一个“公式”y=f(x).其中y表示因变量; f表示计算规则;x表示自变量。 关系式是表示变量之间的关系的另一种方法。 关系式的用途:变量互求;分类讨论-----列关系式:把变量和常量都当做已知量,找 等量关系,列方程,变为y=f(x)的形式。 优缺点:优点:全面准确反映两个变量之间 的关系;缺点:需要计算,不形象不直观。
第三章 变量之间的关系(单元小结)七年级数学下册(北师大版)

知识专题
用表格表示变量之间关系的“三个一” 一个优点:根据表格中已列出的自变量的值,可以直接查 到与其对应的因变量的值,使用起来比较方便. 一个不足:表格中所列出的对应值一般都是有限的,由表 格不容易看出两个变量之间的对应规律,不能直观、形象 地反映变量之间的变化趋势. 一个注意:用表格表示变量之间关系时,要先表示自变量,再 表示因变量,在表示自变量和因变量时,第一列要写单位名称.
小兰前20分的速度为6千米/时,最后10分的速度为18千米/时. (3)小红与小兰从学校到书店的平均速度各是多少?
小红的平均速度为6千米/时,小兰的平均速度为5千米/时.
考点专练
例4:一辆汽车以每时 50 千米的速度行驶了 t 时,行驶路 程为 s 千米. (1)这个情境中,有哪些变量?其中自变量是什么?因
缓——速度越慢
知识专题
三种表示变量之间关系的方法和优缺点:
方法
优点
缺点
表格法
对于表中自变量的每一个值,可以 只能列出部分自变量与因变量
不通过计算,直接把因变量的值找 的对应值,难以反映变量间变
到,查询时很方便,于是一些数学 化的全貌,而且从表中看不出
用表应运而生
变量间的对应规律
关系式法 关系式简明扼要,规范准确
程=时间×速度”,销售问题中“销售额=单价× 数量”等; (3)根据表格与图象中的信息列关系式(这种方法以后 会学习)等.
知识专题
4.用关系式表示变量之间的关系的优缺点:
优点:简单明了,能准确反映整个变化过程中自 变量与因变量的相互关系. 缺点:求对应值时有时要经过比较复杂的计算, 而且实际问题中,有的变量之间的关系不一定能 用关系式表示出来.
s/千米
实线—小兰 虚线—小红
北师大版七年级数学下册第三章 变量之间的关系1 用表格表示的变量间关系

时间发生了变化,木板的长度没变化.
归纳总结
变量
支撑物的高度 h t 随 h 的变 h 是自变量 小车下滑的时间 t 化而变化 t 是因变量
数值发生变化的量
常量
木板的长度
像这种在变化过程中数值始终不变的量叫做常量.
议一议
4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35
1.23 0.55 0.32 0.24 0.18 0.12 0.09 0.09 0.06
(2)如果用 h 表示支撑物高度,t 表示小车下滑时间, 随着 h 逐渐变大,t 的变化趋势是什么? 变小
(3)h 每增加 10 cm,t 的变化情况相同吗? 不同
是怎样变化的? 从1949年起,时间每向后推移10年,我国人口增加 1.5 亿左右,但最后10年的增加量大约只有0.76亿,
典例精析 例1 父亲告诉小明:“距离地面越远,温度越低”, 并且出示了下面的表格:
父亲给小明出了下面几个问题,请你和小明一起回答:
(1) 如果用 h 表示距离地面的高度,用 t 表示温度, 那么 随着 h 的变化,t 如何变化?
支撑物高度
/cm
10 20 30 40 50 60 70 80 90 100
小车下滑
时间/s
4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35
(4)估计当 h =110 cm 时,t 的值是多少. 你是怎样估 计的? 估计是 1.30 s,因为时间越来越少.
变量之间 的关系
新知一览
用表格表示的变 量间关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量之间的关系
一、基础知识回顾:
1、在某一变化过程中,把数值始终不变的量称为( ),把数值发生变化的量称为( )。
2、表示两个变量之间关系的方法有( )、( )、( ).
3、图象法表示两个变量之间关系的特点是直观的反应了两个变量之间的变化情况。
4、用图象法表示两个变量之间关系时,通常用水平方向的数轴(横轴)上的点表示( ),用竖直方向的数轴(纵轴)上的点表示( ). 一、用表格表示变量间的关系
某商场出售某种商品,其销售件数与守家的关系如下表: 销售件数/件 1 2 3 4 5 …… 售价/元
8.4
16.8
25.2
33.6
42
……
(1) 上述表格中那些量在变化?自变量和因变量各是什么?
(2)某顾客欲购买这种商品10件,但是只带了80元。
他所带的钱是否够用?如果不够用,则最多可购买该商品多少件?
二、用关系式表示的变量间的关系:
例2:一本书,每20页厚1mm ,设从第一页到x 页的厚度是y mm ,则y 和x 之间的关系式是( ) A .120y x =
B.20y x =
C.120y x =+
D. 20
y x
=
2.一长方形的周长为12cm ,面积y 随长方形的长x 的变化而变化。
Y 和x 的关系式是( )
A .26y x x =+ B.26y x x =- C.26y x x =-
3.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:
M 1 2 3 4 V
0.01
2.9
8.03
15.1
则m 与v 之间的关系接近下列关系式中的( )
A .22v m =- B.21v m =- C.32v m =- D. 1v m =+
4.小明想把一长为60cm ,宽为40cm 的长方形硬纸片做成一个无盖的长方体小盒子。
于是在长方形纸片的四个角各剪去一个边长为x cm 的小正方形。
用s 表示图中阴影部分的面积。
(1)试写出s 和x 之间的关系式。
(2)当x 等于5时,求这个盒子的容积。
三、用图像表示变量间的关系 专题一、速度随时间的变化
1、 汽车速度与行驶时间之间的关系可以用图象来表示,下图中A 、B 、C 、D 四个图象,可以分别用一句话来描述:
(1)在某段时间里,速度先越来越快,接着越来越慢。
( ) (2)在某段时间里,汽车速度始终保持不变。
( ) (3)在某段时间里,汽车速度越来越快。
( ) (4)在某段时间里,汽车速度越来越慢。
( )
2、描述一名跳水运动员从起跳到落水这一运动过程中,速度v 与时间t 之间关系的图象大致是( )
3、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图6—41中,符合上述情况的是 ( )
时间
速度
A
o
速度
D
速度
时间
C
速度 时间
B
o
o
o O
O
V
t
O
V
O
V
t
V
t
专题二、温度与时间的关系
1、夏天,一杯热水越来越凉,图中可表示这杯水的水温T与时间t的函数关系的是()
2、气温与海拔高度有关,一般情况下,每升高1 km,气温下降6℃.某山地面温度为28℃,请写出气温t(℃)与高度h(km)之间的关系式:________.
专题三、高度(深度)与时间的变化
1、如图是某蓄水池的横断面示意图,分深水区和浅水区,如果这个蓄水池以
固定的流量注水,下面哪个图象能大致表示水的最大深度h和时间t之间的
关系?( )
A B C D
第10题图
2、如图:向放在水槽底部的烧杯注水(流量一定)注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度与注水时间之间的关系大致是下列图象中的()
3、(2013•玉林)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()
t
h
A
0t
h
B
0t
h
C
0t
h
D
t
T
0 t
T
0 t
T
0 t
T
(A) (B) (C) (D)
A .
B .
C .
D .
专题四、数学与生活
1、某人用新充值的50元IC 卡打长途电话,按通话时间3分钟内收2.4元,超过1分钟加收一元钱的方式缴纳话费.若通话时间为t 分钟(t 大于等于3分钟),那么电话费用w 可以表示为 ;当通话时间达到10分钟时,卡中所剩话费从50元减少到 元
2、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为 y(km),图中的折线表示y 与x 之间的函数关系,根据图像回答以下问题, (1)、甲、乙两地之间的距离为 km
(2)、请解释图中B 点的意义: (3)、求慢车和快车的速度,
(4)、求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;
x/h
y/km
D
C
B
A
900
12
4
O。