5-3第三节 等比数列(2015年高考总复习)

合集下载

2022届高考一轮复习第5章数列第3节等比数列及其前n项和

2022届高考一轮复习第5章数列第3节等比数列及其前n项和

15,且 a5=3a3+4a1,则 a3=( )
A.16
B.8
C.4
D.2
[解析]
由题意知aa11>+0a,1q+q>a10q,2+a1q3=15, a1q4=3a1q2+4a1,
解得aq1==21,,∴a3=a1q2=4.故选 C.
[答案] C
(2)(2019·高考全国卷Ⅰ)记 Sn 为等比数列{an}的前 n 项和.若 a1=13,a24=a6,则 S5 =________.
[解析] 由 a24=a6 得(a1q3)2=a1q5,
整理得 q=a11=3.∴S5=13(11--335)=1231.
[答案]
121 3
(3)(2018·高考全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. ①求{an}的通项公式; ②记 Sn 为{an}的前 n 项和.若 Sm=63,求 m. [解析] ①设{an}的公比为 q,由题设得 an=qn-1. 由已知得 q4=4q2,解得 q=0(舍去),q=-2 或 q=2. 故 an=(-2)n-1 或 an=2n-1.
[解析] (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8, 即 an+1-bn+1=an-bn+2. 又因为 a1-b1=1. 所以{an-bn}是首项为 1,公差为 2 的等差数列.
A.4
B.8
C.16
D.32
答案:C
2.(基础点:等比数列的前 n 项和)设{an}是公比为正数的等比数列,若 a1=1,a5

第五章 第三节 等比数列及其前n项和

第五章 第三节 等比数列及其前n项和
由(S4-S2)2=S2·(S6-S4)得 S6=21a,同理得 S8=85a,所以SS84= 855aa=17.
答案:17
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
大一轮复习 数学(理)
考点二 等比数列的判定与证明[探究型]——应用逻辑推理 [例 1] (2018·珠海模拟)已知数列{an}和{bn}满足:a1=λ,an+1 =23an+n-4,bn=(-1)n(an-3n+21),其中 λ 为实数,n 为正整数. (1)对任意实数 λ,证明数列{an}不是等比数列; (2)试判断数列{bn}是否为等比数列,并证明你的结论. 解:(1)假设存在一个实数 λ,使{an}成等比数列,则有 a22=a1a3, 即23λ-32=λ49λ-4,故49λ2-4λ+9=49λ2-4λ,即 9=0,这与事实 相矛盾.所以对任意实数 λ,数列{an}都不是等比数列.
大一轮复习 数学(理)
③若数列{an},{bn}(项数相同)是等比数列,则{λan},{|an|}, a1n,{a2n},{an·bn},abnn(λ≠0)仍然是等比数列;
④在等比数列{an}中,等距离取出若干项也构成一个等比数 列,即 an,an+k,an+2k,an+3k,…为等比数列,公比为 qk.
大一轮复习 数学(理)
2.分类讨论的思想:等比数列的前 n 项和公式涉及对公比 q 的分类讨论,当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时, {an}的前 n 项和 Sn=a111--qqn=a11--aqnq.
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
大一轮复习 数学(理)

5-5第五节 数列的综合应用练习题(2015年高考总复习)

5-5第五节 数列的综合应用练习题(2015年高考总复习)

第五节 数列的综合应用时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.各项都是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( ) A.5-12 B.5+12 C.1-52D.5-12或5+12解析 设{a n }的公比为q (q >0),由a 3=a 2+a 1,得q 2-q -1=0,解得q =1+52.而a 4+a 5a 3+a 4=q =1+52.答案 B2.据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…a n 则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n (n -1)d 2=240,即2n +n (n -1)=240,解得n =15.答案 C3.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n解析 由f ′(x )=mx m -1+a =2x +1得m =2,a =1. ∴f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.∴S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1. 答案 A4.已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N *),设其前n项和为S n ,则使S n <-5成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值31解析 ∵a n =log 2n +1n +2=log 2(n +1)-log 2(n +2),∴S n =a 1+a 2+…+a n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=1-log 2(n +2).由S n <-5,得log 2(n +2)>6,即n +2>64,∴n >62,∴n 有最小值63. 答案 A5.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64解析 依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除,得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列.而a 1=1,a 2=2,所以a 10=2·24=32,a 11=1·25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64. 答案 D6.抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交点分别为A n ,B n (n ∈N *),以|A n B n |表示该两点的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 010B 2 010|的值是( )A.2 0092 010 B.2 0102 011 C.2 0112 012D.2 0122 013解析 令y =0,则(n 2+n )x 2-(2n +1)x +1=0. 设两根分别为x 1,x 2,则x 1+x 2=2n +1n 2+n ,x 1x 2=1n 2+n .解得x 1=1n ,x 2=1n +1.∴|A n B n |=1n -1n +1.∴|A 1B 1|+|A 2B 2|+…+|A n B n |=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. ∴|A 1B 1|+|A 2B 2|+…+|A 2 010B 2 010|=2 0102 011. 答案 B二、填空题(本大题共3小题,每小题5分,共15分)7.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.解析 由于a 1=1,a 2=-2,a n +2=-1a n ,所以a 3=-1,a 4=12,a 5=1,a 6=-2,…, 所以{a n }是周期为4的数列,故S 26=6×⎝ ⎛⎭⎪⎫1-2-1+12+1-2=-10.答案 -108.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________.解析 a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2[(n -1)+(n -2)+…+1]+33=33+n 2-n ,所以a n n =33n +n -1.设f (x )=33x +x -1,则f ′(x )=-33x 2+1. 令f ′(x )>0,得x >33或x <-33.所以f (x )在(33,+∞)上是增函数,在(0,33)上是减函数. 因为n ∈N *,所以当n =5或n =6时,f (n )取最小值. 因为f (5)=535,f (6)=636=212,535>212, 所以a n n 的最小值为212. 答案 2129.(2013·安徽卷)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n .若a 1=1 ,a 2=2,则数列{a n }的通项公式是________.解析 ∵A 1B 1∥A 2B 2∥A 3B 3∥…∥A n B n ,∴A 1A 2A 2A 3=B 1B 2B 2B 3,…,不妨设OA 1=OB 1,OA 2=OB 2,OA 3=OB 3,…,OA n =OB n .梯形A 1A 2B 2B 1,A 2A 3B 3B 2,…,A n -1A n B n B n -1的面积均为S ,∠O =θ.梯形A 1A 2B 2B 1的面积为S ,则S =12a 22·sin θ-12a 21·sin θ=12×22sin θ-12×12sin θ=32sin θ.梯形A 2A 3B 3B 2的面积 S =12a 23·sin θ-12a 22·sin θ=32sin θ,∴可解得a 3=7,同理a 4=10,…,故a n =3n -2. 答案 a n =3n -2三、解答题(本大题共3小题,每小题10分,共30分) 10.已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n ,(n ∈N *).(1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1a n ,且a 1=4,求数列{a n }的通项公式.解 (1)由f ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =2n ,16n 2a -4nb =0. 解之得a =12,b =2n ,即f (x )=12x 2+2nx (n ∈N *). (2)由1a n +1=1a n +2n ,∴1a n +1-1a n=2n .由累加得1a n-14=n 2-n ,∴a n =4(2n -1)2(n ∈N *). 11.某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a n n ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.解 (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列.a n =120-10(n -1)=130-10n ;当n >6时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝ ⎛⎭⎪⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎨⎧130-10n ,n ≤6,70×⎝ ⎛⎭⎪⎫34n -6,n ≥7.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n ≤6时,S n =120n -5n (n -1), A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故 S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34n -6 =780-210×⎝ ⎛⎭⎪⎫34n -6,A n =780-210×⎝ ⎛⎭⎪⎫34n -6n. 因为{a n }是递减数列,所以{A n }是递减数列.又A 8=780-210×⎝ ⎛⎭⎪⎫3428=824764>80,A 9=780-210×⎝ ⎛⎭⎪⎫3439=767996<80.所以须在第9年初对M 更新. 12.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n内的整点个数为a n (n ∈N *)(整点即横坐标和纵坐标均为整数的点).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1.若对于一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.解 (1)由x >0,y >0,3n -nx >0,得0<x <3. ∴x =1,或x =2.∴D n 内的整点在直线x =1和x =2上.记直线y =-nx +3n 为l ,l 与直线x =1,x =2的交点的纵坐标分别为y 1,y 2.则y 1=-n +3n =2n ,y 2=-2n +3n =n . ∴a n =3n (n ∈N *).(2)∵S n =3(1+2+3+…+n )=3n (n +1)2, ∴T n =n (n +1)2n .∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n =(n +1)(2-n )2n +1.∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32. 于是T 2,T 3是数列{T n }中的最大项,故m ≥T 2=32.。

高考数学一轮复习 第5章第3节 等比数列课件 文 新课标

高考数学一轮复习 第5章第3节 等比数列课件 文 新课标
• (2)若{an}为等比数列,公比为q,则{a2n} 是 q2. ,公比为 等比数列
• (3)如果数列{an}和{bn}都是等比数列,那 么{anbn}是 等比数列.
• 7.等差数列与等比数列的比较:
• (1)相同点:
• ①强调的都是每一项与它前一项 系.
的关
• ②结果必须都是 常 数.
• ③数列都由公差、首项或公比、首项确定.
可以用aann≥ ≥aann- +11, 或aann≤ ≤aann- +11, , 也可以转化为函数最值
问题或利用数形结合法.
• 7.数列求和的方法有公式法、倒序相加 (乘)法、错位相减法、裂项相消法、分组 转化法、归纳法.
• 8.通项公式的求解方法有观察法、构造 等差或等比数列法、猜测归纳法、累加法、 累积法、待定系数法及公式法.
• 2.运用等比法是理解和掌握两类数列的定义、通项公 式及中项公式、前n项和公式的重要方法.判定一个数 列是等比数列,不能只验证数列的前几项,需根据定义 证明
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30

高考数学一轮专项复习讲义-等比数列(北师大版)

高考数学一轮专项复习讲义-等比数列(北师大版)

§6.3等比数列课标要求1.通过生活中的实例,理解等比数列的概念和通项公式的意义.2.掌握等比数列前n 项和公式,理解等比数列的通项公式与前n 项和公式的关系.3.能在具体问题情境中,发现数列的等比关系,并解决相应的问题.4.体会等比数列与指数函数的关系.知识梳理1.等比数列有关的概念(1)如果一个数列从第2项起,每一项与它的前一项的比值都是同一个常数,那么称这样的数列为等比数列,称这个常数为等比数列的公比,通常用字母q 表示(q ≠0).(2)等比中项:如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么称G 为a 与b 的等比中项,此时,G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1(a 1≠0,q ≠0).(2)前n 项和公式:S n ,=a 1-a n q 1-q,q ≠1且q ≠0.3.等比数列的常用性质(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N +.特别地,若2w =m +n ,则a m a n =a 2w ,其中m ,n ,w ∈N +.(2)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N +).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }数列(b ,p ,q ≠0).(4)1>0,>11<0,q <1,则等比数列{a n }递增.1>0,q <11<0,>1,则等比数列{a n }递减.4.等比数列前n 项和的常用性质若等比数列{a n }的公比q ≠-1,前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .常用结论1.等比数列{a n }的通项公式可以写成a n =cq n ,这里c ≠0,q ≠0.2.等比数列{a n }的前n 项和S n 可以写成S n =Aq n -A (A ≠0,q ≠1,0).3.设数列{a n }是等比数列,S n 是其前n 项和.(1)S m +n =S n +q n S m =S m +q m S n .(2)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T3n T 2n ,…成等比数列.(3)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.(×)(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .(×)(3)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.(×)(4)对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积.(√)2.设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析若a ,b ,c ,d 成等比数列,则ad =bc ,数列-1,-1,1,1满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要不充分条件.3.在等比数列{a n }中,若a 3=32,S 3=92,则a 2的值为()A .32B .-3C .-32D .-3或32答案D解析由S 3=a 1+a 2+a 3=a 3(q -2+q -1+1),得q -2+q -1+1=3,即2q 2-q -1=0,解得q =1或q =-12,∴a 2=a 3q =32或-3.4.数列{a n }的通项公式是a n =a n (a ≠0),则其前n 项和为S n =________.答案a ≠0,a ≠1解析因为a ≠0,a n =a n ,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时,Sn =a (1-a n )1-a.题型一等比数列基本量的运算例1(1)(2023·全国甲卷)设等比数列{a n }的各项均为正数,前n 项和为S n ,若a 1=1,S 5=5S 3-4,则S 4等于()A.158B.658C .15D .40答案C 解析方法一若该数列的公比q =1,代入S 5=5S 3-4中,有5=5×3-4,不成立,所以q ≠1.由1-q 51-q =5×1-q 31-q -4,化简得q 4-5q 2+4=0,所以q 2=1或q 2=4,因为此数列各项均为正数,所以q =2,所以S 4=1-q 41-q =15.方法二由题知1+q +q 2+q 3+q 4=5(1+q +q 2)-4,即q 3+q 4=4q +4q 2,即q 3+q 2-4q -4=0,即(q -2)(q +1)(q +2)=0.由题知q >0,所以q =2.所以S 4=1+2+4+8=15.(2)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则Sn a n 等于()A .2n -1B .2-21-nC .2-2n -1D .21-n -1答案B 解析方法一设等比数列{a n }的公比为q ,易知q ≠1,1q 4-a 1q 2=12,1q 5-a 1q 3=24,1=1,=2,所以S n =a 1(1-q n )1-q =2n -1,a n =a 1q n -1=2n -1,所以S n a n =2n -12n -1=2-21-n .方法二设等比数列{a n }的公比为q ,易知q ≠1,因为a 6-a 4a 5-a 3=a 4(q 2-1)a 3(q 2-1)=a 4a 3=2412=2,所以q =2,所以S na n =a 1(1-q n )1-q a 1q n -1=2n -12n -1=2-21-n .思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n 项和公式时,一定要讨论公比q =1的情形,否则会漏解或增解.跟踪训练1(1)(2023·天津)已知{a n }为等比数列,S n 为数列{a n }的前n 项和,a n +1=2S n +2,则a 4的值为()A .3B .18C .54D .152答案C解析由题意可得,当n =1时,a 2=2a 1+2,即a 1q =2a 1+2,①当n =2时,a 3=2(a 1+a 2)+2,即a 1q 2=2(a 1+a 1q )+2,②联立①②1=2,=3,则a 4=a 1q 3=54.(2)(2023·青岛模拟)云冈石窟,古称为武州山大石窟寺,是世界文化遗产.若某一石窟的某处“浮雕像”共7层,每一层的“浮雕像”个数是其下一层的2倍,共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上每一层的“浮雕像”的个数构成数列{a n },则log 2(a 3a 5)的值为()A .8B .10C .12D .16答案C解析从最下层往上每一层的“浮雕像”的个数构成数列{a n },则{a n }是以2为公比的等比数列,∴S 7=a 1(1-27)1-2=1016,即127a 1=1016,解得a 1=8,∴a n =8×2n -1,∴log 2(a 3a 5)=log 2(8×22×8×24)=12.题型二等比数列的判定与证明例2(2023·长沙模拟)记S n 为数列{a n }的前n 项和,已知a 1=2,a 2=-1,且a n +2+a n +1-6a n =0(n ∈N +).(1)证明:{a n +1+3a n }为等比数列;(2)求数列{a n }的通项公式a n 及前n 项和S n .(1)证明由a n +2+a n +1-6a n =0,可得a n +2+3a n +1=2(a n +1+3a n ),即a n +2+3a n +1a n +1+3a n=2(n ∈N +),∴{a n +1+3a n }是以a 2+3a 1=5为首项,2为公比的等比数列.(2)解由(1)可知a n +1+3a n =5·2n -1(n ∈N +),∴a n +1-2n =-3(a n -2n -1),∴a n +1-2n a n -2n -1=-3,∴{a n -2n -1}是以a 1-20=1为首项,-3为公比的等比数列,∴a n -2n -1=1×(-3)n -1,∴a n =2n -1+(-3)n -1,S n =1-2n 1-2+1-(-3)n 1-(-3)=2n -34-(-3)n 4.思维升华等比数列的四种常用判定方法(1)定义法:若a na n -1=q (q 为非零常数,且n ≥2,n ∈N +),则{a n }是等比数列.(2)等比中项法:若在数列{a n }中,a n ≠0且a 2n +1=a n a n +2(n ∈N +),则{a n }是等比数列.(3)通项公式法:若数列{a n }的通项公式可写成a n =cq n -1(c ,q 均为非零常数,n ∈N +),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =kq n -k (k 为常数,且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2(2024·潍坊模拟)已知数列{a n }和{b n }满足a 1=3,b 1=2,a n +1=a n +2b n ,b n +1=2a n +b n .(1)证明:{a n +b n }和{a n -b n }都是等比数列;(2)求{a n b n }的前n 项和S n .(1)证明因为a n +1=a n +2b n ,b n +1=2a n +b n ,所以a n +1+b n +1=3(a n +b n ),a n +1-b n +1=-(a n -b n ),又由a 1=3,b 1=2得a 1-b 1=1,a 1+b 1=5,所以数列{a n +b n }是首项为5,公比为3的等比数列,数列{a n -b n }是首项为1,公比为-1的等比数列.(2)解由(1)得a n +b n =5×3n -1,a n -b n =(-1)n -1,所以a n =5×3n -1+(-1)n -12,b n =5×3n -1-(-1)n -12,所以a n b n =5×3n -1+(-1)n -12×5×3n -1-(-1)n -12=25×32n -2-14=254×9n -1-14,所以S n =254×1-9n 1-9-n 4=25×(9n -1)-8n32.题型三等比数列的性质命题点1项的性质例3(1)(2023·全国乙卷)已知{a n }为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=________.答案-2解析方法一{a n }为等比数列,∴a 4a 5=a 3a 6,∴a 2=1,又a 2a 9a 10=a 7a 7a 7,∴1×(-8)=(a 7)3,∴a 7=-2.方法二设{a n }的公比为q (q ≠0),则a 2a 4a 5=a 3a 6=a 2q ·a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,∵a 9a 10=-8,则a 1q 8·a 1q 9=-8,则q 15=(q 5)3=-8=(-2)3,则q 5=-2,则a 7=a 1q ·q 5=q 5=-2.下标和相等的等差(比)性质的推广(1)若数列{a n }为等比数列,且m 1+m 2+…+m n =k 1+k 2+…+k n ,则12m m a a ·…·n m a =12k k a a ·…·n k a .(2)若数列{a n }为等差数列,且m 1+m 2+…+m n =k 1+k 2+…+k n ,则1m a +2m a +…+n m a =1k a +2k a +…+n k a .典例已知等差数列{a n },S n 为前n 项和,且a 9=5,S 8=16,则S 11=________.答案33解析S 8=8(a 1+a 8)2=16,∴a 1+a 8=4,又∵a 9+a 1+a 8=3a 6,∴a 6=3,故S 11=11a 6=33.(2)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N +),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=________.答案100解析因为log 2a n +1=1+log 2a n ,可得log 2a n +1=log 2(2a n ),所以a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列,又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100,所以log 2(a 101+a 102+…+a 110)=log 22100=100.命题点2和的性质例4(1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.答案2解析奇+S 偶=-240,奇-S 偶=80,奇=-80,偶=-160,所以q =S 偶S 奇=-160-80=2.(2)已知S n 是正项等比数列{a n }的前n 项和,S 10=20,则S 30-2S 20+S 10的最小值为________.答案-5解析依题意,S 10,S 20-S 10,S 30-S 20成等比数列,且S 10=20,不妨令其公比为q (q >0),则S 20-S 10=20q ,S 30-S 20=20q 2,∴S 30-2S 20+S 10=(S 30-S 20)-(S 20-S 10)=20q 2-20q =-5,故当q =12时,S 30-2S 20+S 10的最小值为-5.思维升华(1)在解决与等比数列有关的问题时,要注意挖掘隐含条件,利用性质,特别是“若m +n =p +q ,则a m a n =a p a q ”,可以减少运算量,提高解题速度.(2)在应用等比数列的性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.跟踪训练3(1)(2024·南昌模拟)已知等比数列{a n }满足a 2+a 4+a 6+a 8=20,a 2a 8=2,则1a 2+1a 4+1a 6+1a 8=________.答案10解析1a 2+1a 4+1a 6+1a 8==a 2+a 8a 2a 8+a 4+a 6a 4a 6=a 2+a 8+a 4+a 6a 2a 8=202=10.(2)(2023·长春统考)在等比数列{a n }中,q =12,S 100=150,则a 2+a 4+a 6+…+a 100的值是________.答案50解析设T 1=a 1+a 3+a 5+…+a 99,T 2=a 2+a 4+a 6+…+a 100,所以T 2T 1=a 2+a 4+a 6+…+a 100a 1+a 3+a 5+…+a 99=12,所以S 100=T 1+T 2=2T 2+T 2=3T 2=150,所以T 2=a 2+a 4+a 6+…+a 100=50.课时精练一、单项选择题1.(2023·本溪模拟)已知等比数列{a n }的各项均为正数,公比q =12,且a 3a 4=132,则a 6等于()A.18 B.116C.132D.164答案C解析由a 3a 4=132,得a 1q 2·a 1q 3=132,即a 21=132,所以a 21=1.又a n >0,所以a 1=1,a 6=a 1q 5=1=132.2.若1,a 2,a 3,4成等差数列;1,b 2,b 3,b 4,4成等比数列,则a 2-a 3b 3等于()A.12B .-12C .±12D.14答案B解析由题意得a 3-a 2=4-13=1,设1,b 2,b 3,b 4,4的公比为q ,则b 3=q 2>0,b 23=1×4=4,解得b 3=2,a 2-a 3b 3=-12=-12.3.(2023·济宁模拟)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n 等于()A .5B .6C .7D .8答案B解析∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列.又S n =126,∴2(1-2n )1-2=126,解得n =6.4.已知等比数列{a n }为递减数列,若a 2a 6=6,a 3+a 5=5,则a5a 7等于()A.32B.23C.16D .6答案A解析由{a n }为等比数列,得a 2a 6=a 3a 5=6,又a 3+a 5=5,∴a 3,a 5为方程x 2-5x +6=0的两个根,解得a 3=2,a 5=3或a 3=3,a 5=2,由{a n }为递减数列得a n >a n +1,∴a 3=3,a 5=2,∴q 2=a 5a 3=23,则a 5a 7=1q 2=32.5.(2024·揭阳模拟)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后三天所走的里程数为()A .6B .12C .18D .42答案D解析设第n (n ∈N +)天走a n 里,其中1≤n ≤6,由题意可知,数列{a n }是公比为12的等比数列,1-12=6332a 1=378,解得a 1=192,所以此人后三天所走的里程数为a 4+a5+a 6=192×18×1-12=42.6.(2023·新高考全国Ⅱ)记S n 为等比数列{a n }的前n 项和,若S 4=-5,S 6=21S 2,则S 8等于()A .120B .85C .-85D .-120答案C解析方法一设等比数列{a n }的公比为q ,首项为a 1,若q =1,则S 6=6a 1=3×2a 1=3S 2,不符合题意,所以q ≠1.由S 4=-5,S 6=21S 2,可得a 1(1-q 4)1-q =-5,a 1(1-q 6)1-q =21×a 1(1-q 2)1-q ,①由①可得,1+q 2+q 4=21,解得q 2=4,所以S 8=a 1(1-q 8)1-q =a 1(1-q 4)1-q ·(1+q 4)=-5×(1+16)=-85.方法二设等比数列{a n }的公比为q ,因为S 4=-5,S 6=21S 2,所以q ≠-1,否则S 4=0,从而S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,所以(-5-S 2)2=S 2(21S 2+5),解得S 2=-1或S 2=54,当S 2=-1时,S 2,S 4-S 2,S 6-S 4,S 8-S 6,即为-1,-4,-16,S 8+21,易知S 8+21=-64,即S 8=-85;当S 2=54时,S 4=a 1+a 2+a 3+a 4=(a 1+a 2)(1+q 2)=(1+q 2)S 2>0,与S 4=-5矛盾,舍去.综上,S 8=-85.二、多项选择题7.(2023·太原模拟)已知数列{a n }是等比数列,以下结论正确的是()A .{a 2n }是等比数列B .若a 3=2,a 7=32,则a 5=±8C .若a 1<a 2<a 3,则数列{a n }是递增数列D .若数列{a n }的前n 项和S n =3n +r ,则r =-1答案ACD 解析令等比数列{a n }的公比为q ,则a n =a 1q n -1,对于A ,a 2n +1a 2n ==q 2,且a 21≠0,则{a 2n }是等比数列,故A 正确;对于B ,由a 3=2,a 7=32,得q 4=16,即q 2=4,所以a 5=a 3q 2=2×4=8,故B 错误;对于C ,由a 1<a 2<a 31(q -1)>0,1q (q -1)>0,>0,1(q -1)>0,a n +1-a n =q n -1·a 1(q -1)>0,即∀n ∈N +,a n +1>a n ,所以数列{a n }是递增数列,故C 正确;对于D ,显然q ≠1,则S n =a 1(1-q n )1-q =a 1q -1·q n -a 1q -1,而S n =3n +r ,因此q =3,a 1q -1=1,r =-a 1q -1=-1,故D 正确.8.记等比数列{a n }的前n 项和为S n ,前n 项积为T n ,且满足a 1>1,a 2022>1,a 2023<1,则()A .a 2022a 2024-1<0B .S 2022+1<S 2023C .T 2022是数列{T n }中的最大项D .T 4045>1答案AC 解析设数列{a n }的公比为q .∵a 1>1,a 2023<1,∴0<a 2023<1,又a 2022>1,∴0<q <1.∵a 2022a 2024=a 22023<1,∴a 2022a 2024-1<0,故A 正确;∵a 2023<1,∴a 2023=S 2023-S 2022<1,即S 2022+1>S 2023,故B 错误;∵0<q <1,a 1>1,∴数列{a n }是递减数列,∵a 2022>1,a 2023<1,∴T 2022是数列{T n }中的最大项,故C 正确;T4045=a1a2a3·…·a4045=a1(a1q)(a1q2)·…·(a1q4044)=a40451q1+2+3+…+4044=a40451q2022×4045=(a1q2022)4045=a40452023,∵0<a2023<1,∴a40452023<1,即T4045<1,故D错误.三、填空题9.(2023·全国甲卷)记S n为等比数列{a n}的前n项和.若8S6=7S3,则{a n}的公比为________.答案-1 2解析若q=1,则由8S6=7S3得8·6a1=7·3a1,则a1=0,不符合题意.所以q≠1.当q≠1时,因为8S6=7S3,所以8·a1(1-q6)1-q=7·a1(1-q3)1-q,即8(1-q6)=7(1-q3),即8(1+q3)(1-q3)=7(1-q3),即8(1+q3)=7,解得q=-1 2 .10.设等比数列{a n}共有3n项,它的前2n项的和为100,后2n项的和为200,则该等比数列中间n项的和等于________.答案200 3解析设数列{a n}的前n项和、中间n项和、后n项和依次为a,b,c.由题意知a+b=100,b+c=200,b2=ac,∴b2=(100-b)(200-b),∴b=200 3.11.在等比数列{a n}中,若a9+a10=4,a19+a20=24,则a59+a60=______.答案31104解析设等比数列{a n}的公比为q,则a n=a1q n-1.因为a 9+a 10=4,a 19+a 20=24,所以a 19+a 20=(a 9+a 10)q 10=24,解得q 10=6,所以a 59+a 60=(a 9+a 10)q 50=4×65=31104.12.记S n 为数列{a n }的前n 项和,S n =1-a n ,记T n =a 1a 3+a 3a 5+…+a 2n -1a 2n +1,则a n =________,T n =________.答案12n解析由题意得a 1=1-a 1,故a 1=12.当n ≥2n =1-a n ,n -1=1-a n -1,得a n =S n -S n -1=-a n +a n -1,则a n a n -1=12,故数列{a n }是以12为首项,12为公比的等比数列,故数列{a n }的通项公式为a n =12n .由等比数列的性质可得a 1a 3=a 22,a 3a 5=a 24,…,a 2n -1a 2n +1=a 22n ,所以数列{a 2n -1a 2n +1}是以a 22=116为首项,116为公比的等比数列,则T n =a 22+a 24+…+a 22n =161-116=四、解答题13.已知数列{a n }满足a 1=1,a n +1=2a n +2.(1)证明数列{a n +2}是等比数列,并求数列{a n }的通项公式;(2)求数列{a n }落入区间(10,2023)的所有项的和.解(1)由a n +1=2a n +2,得a n +1+2=2(a n +2),又a 1+2=3,所以a n +1+2a n +2=2,所以{a n +2}是首项为3,公比为2的等比数列,所以a n +2=3×2n -1,a n =3×2n -1-2.(2)由10<a n <2023,得10<3×2n -1-2<2023,即4<2n -1<675,即4≤n ≤10,故{a n }落入区间(10,2023)的项为a 4,a 5,a 6,a 7,a 8,a 9,a 10,所以其和S =a 4+a 5+a 6+a 7+a 8+a 9+a 10=3×(23+24+…+29)-2×7=3×8-10241-2-14=3034.14.(2024·邯郸模拟)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n +1,n ∈N +.(1)求{a n }通项公式;(2)设b n =a n n +1,在数列{b n }中是否存在三项b m ,b k ,b p (其中2k =m +p )成等比数列?若存在,求出这三项;若不存在,说明理由.解(1)由题意知,在数列{a n }中,a n +1=3S n +1,a n =3S n -1+1,n ≥2,两式相减可得,a n +1-a n =3a n ,a n +1=4a n ,n ≥2,由条件知,a 2=3a 1+1=4a 1,符合上式,故a n +1=4a n ,n ∈N +.∴{a n }是以1为首项,4为公比的等比数列.∴a n =4n -1,n ∈N +.(2)由题意及(1)得,在数列{a n }中,a n =4n -1,n ∈N +,在数列{b n }中,b n =4n -1n +1,如果满足条件的b m ,b k ,b p 存在,则b 2k =b m b p ,其中2k =m +p ,∴(4k -1)2(k +1)2=4m -1m +1·4p -1p +1,∵2k =m +p ,∴(k +1)2=(m +1)(p +1),解得k 2=mp ,∴k =m =p ,与已知矛盾,∴不存在满足条件的三项.15.(2023·杭州模拟)已知数列{a n }的前n 项和为S n .若p :数列{a n }是等比数列;q :(S n +1-a 1)2=S n (S n +2-S 2),则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若{a n }是等比数列,设公比为k ,则a 2+a 3+…+a n +1=k (a 1+a 2+…+a n ),a 3+a 4+…+a n +2=k (a 2+a 3+…+a n +1),于是(a 2+a 3+…+a n +1)2=k 2(a 1+a 2+…+a n )2=(a 3+a 4+…+a n +2)(a 1+a 2+…+a n ),即q :(S n +1-a 1)2=S n (S n +2-S 2)成立;若(S n +1-a 1)2=S n (S n +2-S 2),取a n =0,n ∈N +,显然{a n }不是等比数列,故p 是q 的充分不必要条件.16.(2023·泰安模拟)若m ,n 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同零点,且m ,n ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则pq =________.答案20解析+n =p >0,=q >0>0,>0,则m ,-2,n 或n ,-2,m 成等比数列,得mn =(-2)2=4.不妨设m <n ,则-2,m ,n 成等差数列,得2m =n -2.结合mn =4,可得(2m +2)m =4⇒m (m +1)=2,解得m =1或m =-2(舍去),=1,=4=5,=4⇒pq =20.。

高考数学总复习 第5章 第3讲 等比数列及其前n项和课件 理 新人教A版

高考数学总复习 第5章 第3讲 等比数列及其前n项和课件 理 新人教A版
第二十六页,共49页。
[变式探究(tànjiū)] 已知数列{an}的前n项和Sn=2an+1,求 证:{an}是等比数列,并求出通项公式.
证明:∵Sn=2an+1, ∴Sn+1=2an+1+1, ∴ an + 1 = Sn + 1 - Sn = (2an + 1 + 1) - (2an + 1) = 2an + 1 - 2an. ∴an+1=2an, 又∵S1=2a1+1=a1,∴a1=-1≠0,
-an-1),不为定值,故不符合题意;对于 f(x)= |x|,f(an)=
|an|,则
|an| = |an-1|
aan-n 1= |q|为定值,
第二十四页,共49页。
符合题意;对于 f(x)=ln|x|,f(an)=ln|an|,由等比数列定 义得, ln|an| 并不为定值,故不符合题意;故①③正确.
(2)在等比数列{an}中,a2013=8a2010,则 q=________. (3)已知等比数列的公比是 2,且前 4 项的和为 1,那么 前 8 项之和为________.
第十页,共49页。
2. 等比数列的主要性质 (1){an}是等比数列⇒{c·an}是等比数列(c≠0). (2){an}{bn}均为等比数列⇒{an·bn}、{abnn}是等比数列. (3){an}为等比数列,则aamn =________. (4)若 m、n、p、q∈N*且 m+n=p+q,则 am·an=ap·aq. 特别地,a1an=a2an-1
填一填:(1)2 2n-1-12 (2)2
第十四页,共49页。
(3)17 提示:将 q=2,S4=1,n=4 代入 Sn=a111--qqn, 得 1=a111--224,解之得 a1=115, ∴S8=11511--228=17.

(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人

(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人

5-3 等比数列及其前n 项和课时规X 练A 组 基础对点练1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( B ) A .21 B.42 C .63D.842.(2018·某某质检)在等比数列{a n }中,a 2=2,a 5=16,则a 6=( C ) A .14 B.28 C .32D.643.(2017·某某摸底考试)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( B ) A .9或-9 B.9 C .27或-27D.27解析:∵数列{a n }为等比数列,且a 5=1,a 9=81, ∴a 27=a 5a 9=1×81=81, ∴a 7=±9.当a 7=-9时,a 26=1×(-9)=-9不成立,舍去. ∴a 7=9.故选B.4.(2018·某某调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( B ) A .-2n B.2n C .2n -1D.2n +1解析:由题意,得a 2a 8=a 24,又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.5.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( D ) A .-3 B.-1 C .1D.3解析:在等比数列{a n }中, ∵a 3=2S 2+1,a 4=2S 3+1,∴a 4-a 3=2S 3+1-(2S 2+1)=2(S 3-S 2)=2a 3, ∴a 4=3a 3, ∴q =a 4a 3=3.故选D.6.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( C ) A .5 B.4 C .3D.27.若等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( D ) A .5 B.9 C .log 345D.10解析:由等比数列性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,∴a 5a 6=9, 则原式=log 3a 1a 2…a 10=log 3(a 5a 6)5=10.8.已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是__-2__. 9.(2018·某某调研)在各项均为正数的等比数列{a n }中,若a 5=5,则log 5a 1+log 5a 2+…+log 5a 9= __9__.解析:因为数列{a n }是各项均为正数的等比数列,所以由等比数列的性质,可得a 1·a 9=a 2·a 8=a 3·a 7=a 4·a 6=a 25=52,则log 5a 1+log 5a 2+…+log 5a 9=log 5(a 1·a 2·…·a 9) =log 5[(a 1·a 9)·(a 2·a 8)·(a 3·a 7)·(a 4·a 6)·a 5]=log 5a 95=log 559=9.10.(2018·某某统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n (n ≥2). 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n. (2)证明:因为a n b n =log 2a n ,所以b n =2n4n ,所以T n =241+442+643+ (2)4n ,14T n =242+443+644+ (2)4n +1,两式相减得,34T n =24+242+243+244+…+24n -2n4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n4n +1=23-6n +83×4n +1, 所以T n =89-6n +89×4n <89.11.(2017·某某质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n ,知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②,得12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组 能力提升练1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( C )A .2B.1C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.2.(2018·某某质检)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马,”马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507B .a ,b ,c 依次成公比为2的等比数列,且c =507C .a ,b ,c 依次成公比为12的等比数列,且a =507A .a ,b ,c 依次成公比为12的等比数列,且c =507解析:由题意,可得a ,b ,c 依次成公比为12的等比数列,b =12a ,c =12b ,故4c +2c +c =50,解得c =507.故选D.3.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( B ) A .4 B.5 C .6D.7解析:由等比数列的性质,可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B.4.(2018·某某适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 018=( A )A .22 017-12 B.1-⎝ ⎛⎭⎪⎫12 2 017C .22 018-12D.1-⎝ ⎛⎭⎪⎫12 2 018解析:由a 1=12,a 2a 6=8(a 4-2),得q 6-16q 3+64=0,所以q 3=8,即q =2,所以S 2 018=a 11-q 2 0181-q =22 017-12.故选A.5.(2016·高考某某卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C ) A .充要条件 B.充分而不必要条件 C .必要而不充分条件 D.既不充分也不必要条件解析:由题意,得a n =a 1qn -1(a 1>0),a 2n -1+a 2n =a 1q2n -2+a 1q2n -1=a 1q2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,故选C.6.若等比数列{a n }的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( D )A.32B.94 C .1D.2解析:设等比数列{a n }的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9①,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92②,①÷②得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2.故选D. 7.已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( D )A .6 B.7 C .8D.9解析:∵3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去).∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q=q 2=32=9.故选D.8.(2018·某某质检)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( A ) A .22 018-1 B.32 018-6C.⎝ ⎛⎭⎪⎫12 2 018-72D.⎝ ⎛⎭⎪⎫13 2 018-103解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3;当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.则a n +1=-2×(-2)n -1=(-2)n,所以a n =(-2)n-1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.9.(2018·某某质量预测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=__100__.解析:由log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,即a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列.又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100, 所以log 2(a 101+a 102+…+a 110)=log 22100=100.10.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值X 围是__(-∞,-1]∪[3,+∞)__.解析:当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3; 当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1, 所以S 3的取值X 围是(-∞,-1]∪[3,+∞).11.(2018·某某质检)已知数列{a n }是各项均为正数的等比数列,若a 1=1,a 2·a 4=16. (1)设b n =log 2a n ,求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和S n . 解析:(1)设数列{a n }的公比为q (q >0),由⎩⎪⎨⎪⎧a 1=1,a 2a 4=16,得q 4=16,所以q =2,则a n =2n -1.又b n =log 2a n ,所以b n =n -1. (2)由(1)可知a n ·b n =(n -1)·2n -1,则S n =0×20+1×21+2×22+…+(n -1)·2n -1,2S n =0×21+1×22+2×23+…+(n -1)·2n, 两式相减,得-S n =2+22+23+…+2n -1-(n -1)·2n=2-2n1-2-(n -1)·2n =2n (2-n )-2, 所以S n =2n(n -2)+2.12.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.。

2015高考总复习数学(文)课件:9.1数列的概念与简单表示法

2015高考总复习数学(文)课件:9.1数列的概念与简单表示法

已给出.
22-1 32-1 42-1 52-1 (1) 2 , 3 , 4 , 5 ,„; 1 1 1 1 (2)-2,6,-12,20,„;
(3)0.9,0.99,0.999,0.999 9,„;
(4)5,4,5,4,„.
解:(1)该数列第1,2,3,4 项的分母分别为2,3,4,5,恰好比项 数多1.分子中的 22,32,42,52,恰是分母的平方,-1 不变,故它 n+12-1 的一个通项公式为an= n+1 . (2)该数列各项符号是正负交替变化的,需有一个因子 (- 1)n ,分子均为1 不变,分母2,6,12,20 可分解为1×2,2×3, 1 n· 1) 3×4,4×5,故它的一个通项公式为an=(- nn+1 .
(3)∵0.9 = 1 - 0.1,0.99 = 1 - 0.01,0.999 = 1 - 0.001 , 0.999 9 =1-0.000 1,
又∵0.1=10-1,0.01=10-2,0.001=10-3,0.0001=10-4,∴它 的一个通项公式为an=1-10-n. (4)∵这个数列前 4 项构成一个摆动数列,奇数项是 5,偶 数项是 4.
1.数列的定义 一定顺序 排列着的一列数称为数列,数列中的每一 按照__________ 项 .数列可以看作是定义域为 N*的非空 个数叫做这个数列的____ 子集的函数,其图象是一群孤立的点.
2.数列的分类Βιβλιοθήκη 分类原则按项数分类 按项与项之 间的大小关 系分类
类型
有穷数列 无穷数列 递增数列 递减数列 常数列 有界数列
an 已知a1a1≠0,且 =fn,可用“累乘法”求an. an1
3已知a1,且an+1=qan+b,则an+1+k=qan+k其中k由 待定系数法确定,可转化为{an+k}为等比数列.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节
高考总复习模块新课标
新课标A版数学
题型一
等比数列基本量的计算
【例 1】 (2013· 湖北卷)已知 Sn 是等比数列{an}的前 n 项和, S4,S2,S3 成等差数列,且 a2+a3+a4=-18. (1)求数列{an}的通项公式; (2)是否存在正整数 n,使得 Sn≥2 013?若存在,求出符合条 件的所有 n 的集合;若不存在,说明理由. 【思维启迪】 (1)由条件易得公比 q 与首项 a1 的关系式,从 而求得 a1 与 q,再求得通项公式;(2)先求出 Sn,再由 Sn>2 013 得 出关于 n 的不等式,再通过分类讨论得出 n 是否存在.
考源教学资源网
高考总复习模块新课标
新课标A版数学
第五章 数列
考源教学资源网
第1页
返回导航
第五章
数列
高考总复习模块新课标
新课标A版数学
第三节 ►►等比数列
读教材· 抓基础
研考点· 知规律
拓思维· 培能力
考源教学资源网
第2页
返回导航
第五章
第三节
解析
a2+a4=20, a3+a5=40,
2 a1q1+q =20, 即 2 2 a q 1 + q =40, 1
两式相除得 q=2,代入 a1q(1+q2)=20 得 a1=2, a11-qn 21-2n ∴Sn= = =2n+1-2. 1-q 1-2
第25页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
1 1 又 cn=an-1,故{cn}是以- 为首项, 为公比的等比数列. 2 2 (2)由(1)可知
1 1 - 1 n 1 n , cn=-2· =- 2 2
1 ∴an=cn+1=1-2n.
高考总复习模块新课标
新课标A版数学
高考这样考 1. 以等比数列的定义及等比中项为背景,考查等比数列的判 定. 2.运用基本量法求解等比数列问题. 3.考查等比数列的应用问题.
考源教学资源网
第3页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
备考这样做 1.注意方程思想在解题中的应用. 2.使用公式要注意公比 q=1 的情况. 3.结合等比数列的定义、公式,掌握通性通法.
a10=4.故 a8a10a12=a3 10=64.
答案 C
考源教学资源网
第12页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
3.在数列{an}中,an+1=can(c 为非零常数),且前 n 项和为 Sn =3n+k,则实数 k 的值为( A.0 C.-1 B.1 D.2 )
3 2 -a1q =2a1q , 即 2 a q 1 + q + q =-18. 1
考源教学资源网
第18页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
a1=3, 解得 q=-2.
故数列{an}的通项公式为 an=3(-2)n-1. 3· [1--2n] (2)由(1)有 Sn= =1-(-2)n. 1--2 若存在 n,使得 Sn≥2 013,则 1-(-2)n≥2 013,即(-2)n≤ -2 012.
考源教学资源网
第20页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
【规律方法】
在求等比数列的基本量时,也常运用方程的

思想和方法.从方程的观点看等比数列的通项公式 an = a1· qn na1,q=1, 1 (a1q≠0)及前 n 项和公式 Sn=a11-qn ,q≠1 1 - q
6 S6 1-q 3 故 = = 1 + q =-7 S3 1-q3
答案 -7
考源教学资源网
第15页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
Y 研考点· 知规律
探究悟道 点拨技法
考源教学资源网
第16页
返回导航
第五章
(1)设 cn=an-1,求证:{cn}是等比数列; (2)求数列{an}的通项公式. cn+1 an+1-1 【思维启迪】 运用等比数列的定义证明, 即 c = = an-1 n 常数.
考源教学资源网
第24页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
考源教学资源网
第17页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
听 课 记 录 (1)设数列{an}的公比为 q,则 a1≠0,q≠0,由
S2-S4=S3-S2, 题意得 a2+a3+a4=-18, -a3-a4=a3, 即 a2+a3+a4=-18, -a4=2a3, 即 a2+a3+a4=-18,
考源教学资源网
第6页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
3.等比中项
2 G =a· b ,则 G 叫做 a 与 b 的等比中项. 若___________
4.等比数列的常用性质
n m q (1)通项公式的推广:an=am· _________ (n,m∈N*).
同一个常数(不为零) ,那么这个数列叫做等比数列,这个常 _______________________ 公比 q 数叫做等比数列的________,通常用字母_____ 表示.
2.等比数列的通项公式 设等比数列 {an} 的首项为 a1 ,公比为 q ,则它的通项 an = n-1 a · q 1 _____________.
22n-1 1-33 = =3-2an,选 D. 2 1 1- 3 3
答案 D
考源教学资源网
第23页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
题型二 【例 2】
等比数列的判定与证明
已知数列{an}的前 n 项和为 Sn,且 an+Sn=n.
答案 A
考源教学资源网
第11页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
2.在正项等比数列{an}中,a1 和 a19 为方程 x2-10x+16=0 的两根,则 a8a10a12=( A.32 C.64
解析
)
B.± 64 D.256
由已知可得 a1a19=16,而{an}为正项等比数列,所以
考源教学资源网
第10页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
基 础 自 评 1. 已知等比数列{an}满足 a1+a2=3, a2+a3=6, 则 a7=( A.64 C.128 B.81 D.243 )
a2+a3 a1q+a2q 6 解析 ∵{an}是等比数列,∴ = =q=3=2. a1+a2 a1+a2 又∵a1+a1q=3,∴a1=1.∴a7=a1q6=1· 26=64.
考源教学资源网
第9页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
(2) 等比数列的通项公式 an = a1qn
-1
及前 n 项和公式 Sn =
a11-qn a1-anq = (q≠1)共涉及五个量 a1,an,q,n,Sn,知三求 1-q 1-q 二,体现了方程思想的应用; (3)在使用等比数列的前 n 项和公式时,如果不确定 q 与 1 的 关系,一般要用分类讨论的思想,分公比 q=1 和 q≠1 两种情况.
n
考源教学资源网
第7页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
5.等比数列的前 n 项和公式 等比数列{an}的公比为 q(q≠0),其前 n 项和为 Sn. na1 q=1, Sn=a11-qn a1-anq = q≠1. 1 - q 1 - q 6.等比数列前 n 项和的性质 若公比不为-1 的等比数列{an}的前 n 项和为 Sn,则 Sn,S2n -Sn,S3n-S2n 仍成等比数列.

(2)若{an}为等比数列,且 k+l=m+n(k,l,m,n∈N*),则
ak· al=am· an _________________.
1 (3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),{ }, an an {a2 } , { a · b } , { n n n b }仍是等比数列.
a1 解析 {an}为等比数列的充要条件是 Sn= (1-qn),由 Sn 1-q =3n+k 知,k=-1,故选 C.
答案 C
考源教学资源网
第13页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
4. (2013· 北京卷)若等比数列{an}满足 a2+a4=20, a3+a5=40, 则公比 q=________;前 n 项和 Sn=________.
B.Sn=3an-2 D.Sn=3-2an
考源教学资源网
第22页
返回导航
第五章
第三节
高考总复习模块新课标
新课标A版数学
解析 由题意得
本题考查等比数列的前 n 项和 Sn 与通项 an 之间的关系,
2 - an=3n 1,Sn=
2 1-3n
答案 2 2n 1-2

考源教学资源网
第14页
返回导航
第五章
第三节
高考总复习模块新课标
相关文档
最新文档