线性规划在企业管理中的应用

合集下载

线性规划的应用

线性规划的应用

线性规划的应用标题:线性规划的应用引言概述:线性规划是一种数学优化方法,广泛应用于经济、工程、管理等领域。

它通过建立数学模型,以线性约束条件为基础,通过优化目标函数的值来求解最优解。

本文将从六个大点来阐述线性规划的应用。

正文内容:1. 供应链管理1.1 产能规划:线性规划可以帮助企业优化生产计划,确定最佳产能配置,以满足市场需求。

1.2 物流优化:通过线性规划,可以确定最佳的物流路径和运输方案,降低物流成本,提高运输效率。

2. 市场营销2.1 定价策略:线性规划可以帮助企业确定最佳的定价策略,以最大化利润或市场份额。

2.2 市场推广:通过线性规划,可以确定最佳的市场推广策略,包括广告投放、促销活动等,以提高产品销售量。

3. 金融投资3.1 投资组合优化:线性规划可以帮助投资者优化投资组合,以最大化收益或降低风险。

3.2 资金分配:通过线性规划,可以确定最佳的资金分配方案,以实现资金的最优利用。

4. 生产调度4.1 作业调度:线性规划可以帮助企业优化作业调度,提高生产效率,降低生产成本。

4.2 人力资源调配:通过线性规划,可以确定最佳的人力资源调配方案,以满足生产需求和员工福利。

5. 能源管理5.1 能源消耗优化:线性规划可以帮助企业优化能源消耗,降低能源成本,提高能源利用效率。

5.2 能源供应链优化:通过线性规划,可以确定最佳的能源供应链配置,以满足能源需求和环保要求。

6. 运输调度6.1 路线规划:线性规划可以帮助企业优化运输路线,降低运输成本,提高运输效率。

6.2 车辆调度:通过线性规划,可以确定最佳的车辆调度方案,以满足运输需求和减少运输时间。

总结:通过以上六个大点的阐述,我们可以看到线性规划在供应链管理、市场营销、金融投资、生产调度、能源管理和运输调度等领域的广泛应用。

它能够帮助企业优化决策,提高效率,降低成本,实现最优化的经济效益。

随着科技的不断发展,线性规划的应用将会越来越广泛,为各个行业带来更大的发展机遇。

第五章运筹学线性规划在管理中的应用案例

第五章运筹学线性规划在管理中的应用案例

第五章线性规划在管理中的应用某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。

管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。

可用的机器设备是限制新产品产量的主要因素,具体数据如下表:司的利润最大化。

1、判别问题的线性规划数学模型类型。

2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。

3、建立该问题的线性规划数学模型。

4、用线性规划求解模型进行求解。

5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。

6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。

解:1、本问题是资源分配型的线性规划数学模型。

2、该问题的决策目标是公司总的利润最大化,总利润为:+ +决策的限制条件:8x1+ 4x2+ 6x3≤500 铣床限制条件4x1+ 3x2≤350 车床限制条件3x1+ x3≤150 磨床限制条件即总绩效测试(目标函数)为:max z= + +3、本问题的线性规划数学模型max z= + +S.T.8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1+ x3≤150x1≥0、x2≥0、x3≥04、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。

5、灵敏度分析目标函数最优值为: 30变量最优解相差值x1 50 0x2 25 0x3 0 .083约束松弛/剩余变量对偶价格1 0 .052 75 03 0 .033目标函数系数范围:变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限.25 .333常数项数范围:约束下限当前值上限1 400 500 6002 275 350 无上限3 150(1)最优生产方案:新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。

线性规划的应用

线性规划的应用

线性规划的应用1. 引言线性规划是一种优化问题的数学建模工具,广泛应用于经济、工程、运输、资源分配等领域。

本文将探讨线性规划在生产计划、供应链管理和投资组合优化中的应用。

2. 生产计划中的线性规划应用生产计划是企业核心业务之一,通过合理的生产计划可以提高生产效率和降低成本。

线性规划可以帮助企业确定最佳的生产计划,以满足市场需求并最大化利润。

例如,假设一家制造公司有多个产品需要生产,每个产品的生产成本、销售价格和市场需求量都不同。

通过线性规划模型,可以确定每个产品的生产数量,以最大化总利润。

3. 供应链管理中的线性规划应用供应链管理是企业与供应商、生产商和分销商之间协调和优化物流和信息流的过程。

线性规划可以用于优化供应链中的物流和库存管理。

例如,一家零售公司需要决定每个仓库的库存水平和重新补充货物的频率,以最大程度地满足顾客需求并最小化库存成本。

通过线性规划模型,可以确定最佳的库存水平和补货策略。

4. 投资组合优化中的线性规划应用投资组合优化是金融领域中的一个重要问题,即如何选择一组资产以最大化收益并控制风险。

线性规划可以用于确定最佳的投资组合权重。

例如,一个投资者有多个可选的资产,每个资产有不同的预期收益率和风险。

通过线性规划模型,可以确定每个资产的权重,以最大化整体投资组合的预期收益并控制风险。

5. 结论线性规划是一种强大的数学工具,可以应用于各种优化问题中。

本文讨论了线性规划在生产计划、供应链管理和投资组合优化中的应用。

通过合理的模型建立和求解,可以帮助企业和个人做出最佳决策,提高效益和竞争力。

线性规划及其在企业管理中的应用

线性规划及其在企业管理中的应用

线性规划及其在企业管理中的应用引言线性规划是一种数学建模方法,通过建立数学模型来解决实际问题。

它在企业管理中有着广泛的应用,可以帮助企业优化资源配置、提高效率和利润。

本文将探讨线性规划的基本原理以及在企业管理中的具体应用。

一、线性规划的基本原理线性规划是一种优化问题,其目标是在一组线性约束条件下,找到使目标函数达到最大或最小值的变量值。

线性规划的基本原理可以通过以下步骤进行描述:1.确定决策变量:决策变量是问题中需要求解的变量,可以是产品的生产数量、资源的分配比例等。

2.建立目标函数:目标函数是需要优化的指标,可以是利润最大化、成本最小化等。

3.确定约束条件:约束条件是问题中的限制条件,可以是资源的有限性、市场需求等。

4.构建数学模型:将决策变量、目标函数和约束条件转化为数学表达式,建立线性规划模型。

5.求解最优解:使用线性规划算法,如单纯形法、内点法等,求解模型得到最优解。

二、线性规划在企业管理中的应用1.生产计划优化企业的生产计划涉及到资源的合理配置和产量的最大化。

线性规划可以帮助企业确定最佳的生产数量和资源分配比例,以实现生产效率的提高和成本的降低。

通过建立生产计划的线性规划模型,考虑到资源的有限性和市场需求,可以找到最优的生产方案。

2.库存管理库存管理是企业运营中的重要环节,合理的库存管理可以降低成本和提高服务水平。

线性规划可以帮助企业确定最佳的库存水平和订货量,以实现库存成本的最小化和客户满意度的最大化。

通过建立库存管理的线性规划模型,考虑到需求的不确定性和供应的限制,可以制定出最优的库存策略。

3.人力资源调配人力资源是企业的核心资产,合理的人力资源调配可以提高工作效率和员工满意度。

线性规划可以帮助企业确定最佳的人力资源分配方案,以实现工作量的均衡和生产效率的提高。

通过建立人力资源调配的线性规划模型,考虑到员工的技能和工作需求,可以找到最优的人力资源配置方案。

4.营销策略制定营销策略是企业发展的关键,合理的营销策略可以提高市场份额和利润。

线性规划的应用

线性规划的应用

线性规划的应用引言概述:线性规划是一种数学优化方法,广泛应用于各个领域。

它通过建立数学模型,寻找最优解来解决实际问题。

本文将介绍线性规划的应用,并分析其在经济、物流、生产、资源分配和运筹学等领域的具体应用。

一、经济领域的应用1.1 产量最大化:线性规划可以用于帮助企业确定最佳生产方案,以最大化产量。

通过考虑生产成本、资源限制和市场需求等因素,线性规划可以确定最优的生产数量和产品组合。

1.2 资源分配:线性规划可以帮助企业合理分配资源,以最大化利润。

通过考虑各种资源的供应和需求关系,线性规划可以确定最优的资源分配方案,提高资源利用效率。

1.3 价格优化:线性规划可以用于确定最佳定价策略,以最大化利润。

通过考虑市场需求、成本和竞争等因素,线性规划可以确定最优的价格水平,提高企业的竞争力。

二、物流领域的应用2.1 运输成本最小化:线性规划可以用于确定最佳的物流方案,以最小化运输成本。

通过考虑物流网络、货物流量和运输成本等因素,线性规划可以确定最优的运输路线和运输量,提高物流效率。

2.2 仓储优化:线性规划可以帮助企业优化仓储管理,以最小化仓储成本。

通过考虑仓库容量、货物存储需求和仓储成本等因素,线性规划可以确定最优的仓储方案,提高仓储效率。

2.3 供应链优化:线性规划可以用于优化供应链管理,以提高整体供应链效率。

通过考虑供应商、生产商和分销商之间的关系,线性规划可以确定最优的供应链方案,减少库存和运输成本。

三、生产领域的应用3.1 生产计划:线性规划可以用于帮助企业制定最佳的生产计划,以满足市场需求。

通过考虑生产能力、原材料供应和市场需求等因素,线性规划可以确定最优的生产计划,提高生产效率。

3.2 产能利用率优化:线性规划可以帮助企业提高产能利用率,以降低成本。

通过考虑设备利用率、工人数量和生产效率等因素,线性规划可以确定最优的产能利用方案,提高生产效率。

3.3 品质控制:线性规划可以用于优化品质控制过程,以提高产品质量。

线性规划的应用

线性规划的应用

线性规划的应用引言概述:线性规划是一种优化问题的数学建模方法,可以用于解决许多实际问题。

本文将探讨线性规划在不同领域的应用,包括生产计划、资源分配、运输问题、金融投资和市场营销等。

一、生产计划1.1 产能规划:线性规划可以匡助企业确定最优产能规划,通过最大化产量和最小化成本,实现生产效益的最大化。

1.2 原材料采购:线性规划可以优化原材料的采购计划,确保原材料的供应充足,同时最小化采购成本。

1.3 生产调度:线性规划可以匡助企业制定最佳的生产调度方案,合理安排生产过程,提高生产效率和产品质量。

二、资源分配2.1 人力资源:线性规划可以匡助企业合理分配人力资源,根据不同部门和岗位的需求,确定最佳的人员配置方案。

2.2 设备调度:线性规划可以优化设备的调度计划,确保设备的利用率最大化,减少闲置时间和能源浪费。

2.3 资金分配:线性规划可以匡助企业合理分配资金,根据不同项目的需求,确定最佳的资金分配方案,实现资金的最大效益。

三、运输问题3.1 物流配送:线性规划可以优化物流配送路线,确定最佳的配送方案,减少运输成本和时间。

3.2 仓储管理:线性规划可以匡助企业优化仓储管理,确定最佳的仓储位置和库存量,减少库存成本和仓储空间的浪费。

3.3 运输调度:线性规划可以匡助企业制定最佳的运输调度计划,合理安排运输车辆和货物的装载,提高运输效率和减少运输成本。

四、金融投资4.1 资产配置:线性规划可以匡助投资者确定最佳的资产配置方案,平衡风险和收益,实现投资组合的最优化。

4.2 资金规划:线性规划可以优化资金的规划和运用,确保资金的最大化利用和最小化风险。

4.3 投资决策:线性规划可以匡助企业制定最佳的投资决策方案,根据不同项目的收益和风险,确定最优的投资方向。

五、市场营销5.1 定价策略:线性规划可以匡助企业确定最佳的定价策略,根据市场需求和成本考虑,确定最优的价格水平。

5.2 促销策略:线性规划可以优化促销策略,确定最佳的促销活动方案,提高产品销售量和市场份额。

线性规划运用举例

线性规划运用举例

线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。

线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。

下面将举例说明线性规划在实际生产和管理中的应用。

1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。

企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。

线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。

例如,生产一种食品有两个不同的发酵温度可以选择。

这个决策需要考虑到提高产量的同时也要保证产品质量。

通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。

2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。

为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。

线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。

例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。

3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。

在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。

通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。

例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。

总之,线性规划在生产和管理中的应用非常广泛。

通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。

线性规划在管理中的应用

线性规划在管理中的应用

线性规划在管理中的应用摘要:本文从线性规划的概念、构成要素出发,给出了线性规划模型。

并给出了用单纯型法来求解线性规划模型的求解原理。

然后通过几个具体例子,如合理下料问题、运输问题、投资问题,建立了数学规划模型,并给出了如何对生活中有限资进行合理分配,对选择方案进行最优决策。

线性规划模型决策应用线性规划是运筹学中一种最常用的方法,线性规划在现代管理中起到了重要的作用,线性规划所处理的问题是怎样以最佳的方式在各项经济活动中分配有限的资,以便最充分地发挥资的效能去获取最佳经济效益。

线性规划在财务贸易、金融、工业制造、农业生产、交通运输、人事管理、设备维修等领域的管理决策分析^p 中均可帮助人们解决实际问题。

例如在原料分配问题上,研究如何确定各原料比例,才能降低生产成本,增加利润;在农作物规划中,如何安排各种农作物的布局,使生产率迅速提高;在生产计划安排中,选择什么样的生产方案才能提高生产产值。

线性规划为求解这类问题提供了实用性强的理论基础和具体求解方法。

一、线性规划数学模型经营管理中研究如何有效地利用现有的人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现,这个统筹规划的问题用可用数学语言表达。

线性规划模型从数学角度来归纳为三点:(1)每个问题都有一组变量,称为决策变量,一般记为,一般要求。

它是决策者对决策问题需要加以考虑和控制的因素。

(2)每个问题都有决策变量需要满足一定的条件,问题的限制条件用不等式或等式来表达,它是实现企业决策目标,限制性因素对实现目标起约束作用,称为约束条件。

(3)问题的目标通过变量的函数形式来表达,称为目标函数,且目标值与决策变量之间的关系是线性关系,要求在约束条件下,求目标函数的最大值或最小值。

(4)一般的线性规划数学模型为:线性规划标准形式特点:(1)目标函数求最大值(有时求最小值)(2)约束条件都为等式方程,且右端常数项bi都大于或等于零(3)决策变量xj为非负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划在企业管理中的应用摘要:随着运筹学广泛应用,作为其一重要分支的线性规划在企业的生产管理中起到了极其重要的作用。

本文分别对线性规划和企业管理简单介绍,然后着重讨论线性规划在现代企业生产管理中的应用,并应用几种常见的解法对所提出的问题加以解答,从而获得最优解或制定最佳方案等。

关键词:线性规划企业管理数学建模线性求解Linear Programming Be Used In Business Management Abstract:With the Operational Research has been widly used. As the major branch,The L inear Programming paly an important role in Business Management. This dissertation main introduce the L inear Programming and Business Management, then we will discuss the apply of L inear Programming in modem Business Managemen, and use some usual methods to solve this problems which we found and applied, so that we can gain the optimal solution or work out optimal schema.Keywords:Linear Programming,Business Managemen ,Mathematical Modelling,Deprecatory ,Apply由于计算机技术的发展,许多利用运筹学处理的问题可在较短的时间内得出结果,线性规划作为运筹学的一重要分支,它的应用也日益广泛,如利用其数学方法,通过计算机软件应用于生产组织、几乎与管理中。

线性规划所探讨的问题是在由所提出的问题的性质决定的一系列约束条件下,如何把有限的资源进行合理的分配,制定出最优实施方案。

企业管理是对企业的生产经营活动进行组织、计划、指挥、监督和调节等一系列职能的总称。

它运用各类策略与方法,对企业中的人、机器、原材料、方法、资产、信息、品牌、销售渠道等进行科学管理,从而实现组织目标的活动。

在企业的各项活动中,如计划、生产、运输、技术等问题,为达到目的所采取的各种有效的方法手段,从各种限制条件的组合中,选择出最合理的计算方法,从而求得最佳结果。

企业的最终目的是盈利,要获得较好的效益需要有足够的竞争力,竞争力来源于有效的管理,线性规划在企业管理中的应用对企业的管理起到了极其重要的作用。

1线性规划应用简介1.1线性规划概念线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。

决策变量、约束条件、目标函数是线性规划的三要素.1.2线性规划在企业管理中的应用范围线性规划在企业管理中的应用广泛,主要有以下八种形式:1.产品生产计划:合理利用人力、物力、财力等,是获利最大。

2.劳动力安排:用最少的劳动力来满足工作的需要。

3.运输问题:如何制定运输方案,使总运费最少。

4.合理利用线材问题:如何下料,使用料最少。

5.配料问题:在原料供应的限制下如何获得最大利润。

6.投资问题:从投资项目中选取方案,是投资回报最大。

7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益。

8.最有经济计划问题:在投资和生产计划中如何是风险最小。

1.3 如何实现线性规划在企业管理中的应用在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资源。

首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策。

1.31线性规划数学模型建立线性规划问题是一个优化问题,其数学依据为:(1)用一组未知数(X1,X2……X n)来表示某一方案,这组未知数的一组定值代表一个具体方案,通常要求这些未知数去只是非负的。

(2)存在一定的限制条件,这些限制条件可以用一组线性等式或不等式来表达。

(3)都有一个目标要求,并且这个目标可以表示一组未知数的线性函数,根具问题的不同,要求函数实现最大化或者最小化。

从而建立了线性规划的数学模型:f(X1,X2,……X n)=C1X1+C2X2+……C n X n满足约束条件:a11x1+a12x2+… +a1n x n≦b1(或≥b1,或=b1);a21x1+a22x2+… +a2n x n≦b2(或≥b2,或=b2);………………a m1x1+a m2x2+… +a mn x n≦b m(或≥b m,或=b m);x1≥0, x2≥0, …,x n≥01.32线性规划标准模型线性规划的数学模型根据具体问题可能有各种不同的形式,但在解决具体问题的时候均化为线性规划的标准模型,并借助于标准模型的求解放法求解。

建模步骤:(1)设立决策变量;(2)明确约束条件并用决策变量的线性等式或不等式表示;(3)用决策变量的线性函数表示目标,并确定是求极大(Max)还是极小(Min);(4)根据决策变量的物理性质研究变量是否有非负性一般建模形式:Max(min)f=c1x1+c2x2+…+c n x n(目标函数)满足:a11x1+a12x2+… +a1n x n≦b1(或≥b1,或=b1);a21x1+a22x2+… +a2n x n≦b2(或≥b2,或=b2);………………a m1x1+a m2x2+… +a mn x n≦b m(或≥b m,或=b m);x1≥0, x2≥0, …,x n≥02 线性规划求解方法2.1图解法图解法一般只对于只有两个决策变量的线性规划问题,可以在平面直角坐标系上作图表示线性规划问题的有关概念,并求解。

下面通过详细的例子对其进行阐述。

如例:目标函数:Max z = 50 x1 + 100 x2约束条件:s.t.x1 + x2 ≤ 300 (A)2 x1 +x2 ≤ 400 (B)x2 ≤ 250 (C)x1 ≥ 0 (D)x2 ≥ 0 (E)得到最优解:x1 = 50,x2 = 250最优目标值z = 27500(1)分别取决策变量X1 , X2为坐标向量建立直角坐标系。

在直角坐标系里,图上任意一点的坐标代表了决策变量的一组值,例1的每个约束条件都代表一个半平面。

(2)对每个不等式(约束条件),先取其等式在坐标系中作直线,然后确定不等式所决定的半平面。

(3)把五个图合并成一个图,取各约束条件的公共部分,如图2-1所示。

(4)目标函数z=50x1+100x2,当z取某一固定值时得到一条直线,直线上的每一点都具有相同的目标函数值,称之为“等值线”。

平行移动等值线,当移动到B点时,z在可行域内实现了最大化。

A,B,C,D,E是可行域的顶点,对有限个约束条件则其可行域的顶点也是有限的。

2.2单纯形法2.21基本思路①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。

②若基本可行解不存在,即约束条件有矛盾,则问题无解。

③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。

④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。

⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。

2.22表格单纯形法数学模型max S=10x1+3x2 +4 x3 -x4 + x5s.t. 3x1+6x2+ 2x3 + x4 =199x1+3x2 + x3 + x5 =9x1,x2 ,x3 ,x4 ,x5 ≥0初始可行基B1=(P4,P5)=I基变量为x4, x5 非基变量x1,x2 ,x3初始基础可行解:X(0)=(0,0,0,19,9)T计算检验数:基变量检验数=0非基变量检验数σj= C j -C B T P j目标函数值: S = C B T*b = 10选择检验数最大的非基变量X2,作为进基变量,并选定该列。

利用最小比值原则:,计算各基变量的比值,选择X5作为出基变量。

进基变量X2与出基变量X5,交叉位置为主元(3).第二行除以3第一行加上第二行的(-6)倍。

作主元运算,即用初等行变换把主元位置变成为1,该列元素变成0.得到新的基础可行解:X(1)=(0,3,0,1,0)T,S = 8。

判断X(1)=(0,3,0,1,0)T,S =8是否是最优解.再计算检验数。

X3的检验数大于零. X3进基变量,计算相应的比值.确定X2出基变量,主元为(1/3)。

第二行乘以3,作主元运算, 得到新的基础可行解:X(2)=(0,0,9,1,0)T S=35判断是否最优解:X(2)=(0,0,9,1,0)T S=35计算检验数,所有检验数全小于零,达到最优解, X*=(0,0,9,1,0)T S = 35, 最优值为35。

2.23 0-1整数规划如果线性规划中的所有决策变量的取值只能取0、1,则这类线性规划问题是一种特殊的整数规划问题称之为0-1规划,把只能取0或1值的变量称为0-1变量,0-1变量是一种逻辑变量。

在某些特殊的实际问题中,我们只需做是非选择,:是否采纳某方案,某任务是否可交给某人承担,集装箱是否装入某货物等,对于这类问题的变量可设置简化为0或1。

决策变量只取0和1的线性规划问题,数学模型如下图所示:其中x j为0-1变量,也称二进制变量,逻辑变量。

j仅取值0或1这个条件可由下述约束条件所代替。

x j≤1,x j≥0,整数它和一般整数线性规划的约束条件形式是一致的。

作用:在实际问题中,如果引入0-1变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。

相关文档
最新文档