中考数学中考数学压轴题 复习专题强化试卷检测试卷

合集下载

初中数学中考试卷压轴题

初中数学中考试卷压轴题

一、填空题(每空2分,共10分)1. 已知等差数列{an}的首项a1=3,公差d=2,求第10项a10的值。

2. 在直角坐标系中,点A(2,3),点B(4,1),点C(x,y)在直线y=2x+1上,求三角形ABC的面积。

3. 已知正方形的边长为a,求正方形内切圆的半径。

4. 若一个等比数列的前三项分别为2,6,18,求该数列的公比。

5. 在平面直角坐标系中,点P(2,3),点Q(4,-1),点R(x,y)在直线y=-x+6上,求三角形PQR的周长。

二、选择题(每题3分,共15分)6. 下列数列中,不是等差数列的是()A. 1,4,7,10,13B. 2,4,8,16,32C. 1,3,5,7,9D. 1,1/2,1/4,1/8,1/167. 已知等差数列{an}的首项a1=5,公差d=3,求第n项an的值。

A. 5nB. 5n-4C. 3n+2D. 3n-48. 在平面直角坐标系中,点A(1,2),点B(3,4),点C(5,6),求三角形ABC的面积。

A. 3B. 6C. 9D. 129. 已知等比数列的前三项分别为2,6,18,求该数列的公比。

A. 2B. 3C. 6D. 910. 在平面直角坐标系中,点P(2,3),点Q(4,-1),点R(x,y)在直线y=-x+6上,求三角形PQR的周长。

A. 5B. 10C. 15D. 20三、解答题(每题10分,共30分)11. 已知等差数列{an}的首项a1=1,公差d=3,求前n项和Sn。

12. 在平面直角坐标系中,点A(1,2),点B(3,4),点C(5,6),求三角形ABC的面积。

13. 已知等比数列的前三项分别为2,6,18,求该数列的公比和前n项和。

四、附加题(10分)14. 在平面直角坐标系中,点P(2,3),点Q(4,-1),点R(x,y)在直线y=-x+6上,求三角形PQR的面积。

解答:一、填空题1. a10 = a1 + (n-1)d = 3 + (10-1)×2 = 212. S△ABC = 1/2 × |x1(y2-y3) + x2(y3-y1) + x3(y1-y2)| = 1/2 × |2(1-6) + 3(6-2) + 5(2-1)| = 93. 正方形内切圆的半径 = a/24. 公比q = a2/a1 = 6/2 = 35. 周长 = PQ + QR + RP = √[(2-4)² + (3+1)²] + √[(x-4)² + (y+1)²] +√[(2-x)² + (3-y)²]二、选择题6. D7. A8. B9. B10. B三、解答题11. Sn = n/2 × (a1 + an) = n/2 × (1 + 1 + (n-1)×3) = n/2 × (2 + 3n - 3) = 3n²/212. S△ABC = 1/2 × |1(4-6) + 3(6-2) + 5(2-4)| = 613. 公比q = a2/a1 = 6/2 = 3,前n项和Sn = a1(1 - q^n)/(1 - q) = 2(1 - 3^n)/(1 - 3)四、附加题14. S△PQR = 1/2 × |2(-1-y) + 4(y-3) + x(3+1)| = 1/2 × |2(-1-y) + 4(y-3) + x(4)| = 1/2 × |2(-1-y) + 4y - 12 + 4x|。

中考压轴数学试卷及答案

中考压轴数学试卷及答案

1. 已知函数f(x) = 2x - 3,若对于任意实数x,都有f(x + 1) = 2f(x) - 5,则f(2)的值为()A. 1B. 3C. 5D. 72. 在直角坐标系中,点A(1, 2),点B(4, 6)在直线y = kx + b上,则k和b的值分别为()A. 1, 1B. 1, 3C. 2, 1D. 2, 33. 若等比数列{an}的首项a1 = 2,公比q = 3,则第n项an的值为()A. 2 × 3^(n-1)B. 6 × 3^(n-2)C. 6 × 3^(n-1)D. 18 × 3^(n-2)4. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为()A. √3/2B. √6/4C. √2/2D. 15. 若复数z = a + bi(a,b∈R)满足|z| = 1,则z的共轭复数是()A. a - biB. -a - biC. a + biD. -a + bi6. 已知数列{an}的前n项和为Sn,若an = 2n - 1,则S10的值为()A. 55B. 100C. 105D. 1107. 在平面直角坐标系中,点P(2, 3)关于直线y = x的对称点为Q,则Q的坐标为()A. (2, 3)B. (3, 2)C. (-2, -3)D. (-3, -2)8. 若等差数列{an}的前n项和为Sn,若a1 = 3,公差d = 2,则S10的值为()A. 100B. 105C. 110D. 1159. 在△ABC中,∠A = 90°,∠B = 30°,则sinC的值为()A. 1/2B. √3/2C. 1D. √310. 若复数z = a + bi(a,b∈R)满足|z| = 1,则z的模是()A. a^2 + b^2 = 1B. a^2 - b^2 = 1C. a^2 + b^2 = 0D. a^2 - b^2 = 011. 函数f(x) = x^2 - 4x + 3的零点为______。

2024中考数学(人教版)押题卷 (564)

2024中考数学(人教版)押题卷 (564)

一、单选题1. 若关于,的方程组的解满足,则的值为()A.B.1C.D.-12. 如图,的顶点B在反比例函数的图象上,边在x轴上,已知,,,则图中阴影部分的面积是()A.12B.C.D.3. 点关于轴对称的点的坐标是()A.B.C.D.4. 下列图形属于轴对称图形的是()A.B.C.D.5. -3的相反数是()A.B.3C.D.06. 二次函数在范围内的最大值为()A.25B.30C.36D.407. 抛物线的部分图象如上图所示,若,则的取值范围是( )A.B.C.或D.或8. 如图,为的直径,半径的垂直平分线交于点,,交于点,若,则的长为()A.B.6C.D.89. 某种药品售价为每盒300元,经过医保局连续两次“灵魂砍价”,药品企业同意降价若干进入国家医保用药目录.如果每次降价的百分率都是x,则两次降价后的价格y(元)与每次降价的百分率x之间的函数关系式是()A.B.C.D.二、多选题10. 如图是一个数值转换机,若输入,则输出的结果是()A.B .0C.D .111. 下列函数中为二次函数的是( )A .y =3x ﹣1B.C .yD.12. 学校有n 位师生乘坐m 辆客车外出参观,若每辆车坐人,则还有人没上车,若每客车坐50人,则空出一辆客车,并且有一辆还可以坐12人.则下列等式成立的是( )A.B.C.D.13. 下列说法中不正确的是( )A .-6和-4之间的数都是有理数B .数轴上表示-a 的点一定在原点左边C .在数轴上离开原点越远的点表示的数越大D .-1和0之间有无数个负数14. 下列运算中,正确的是( )A.B.C.D.15. 如图,若二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴是直线x =﹣1,则下列四个结论中,错误的是( )A .abc >0B .2a ﹣b ≠0C .4ac ﹣b 2<0D .4a +c <2b16. 在下列图形中,属于中心对称图形的有( )A .菱形B .梯形C .矩形D .等边三角形17. 如图所示,是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论,其中正确的有()A .AB ∥CD ;B .AB=BC ;C .AB ⊥BC ;D .AO=OC18. 下列选项中,能利用图形的面积关系解释平方差公式的是( )三、填空题A.B.C.D.19. 如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论中正确的是(  )A .2a +b =0B .abc >0C .方程ax 2+bx +c =3有两个相等的实数根D .抛物线与x 轴的另一个交点是(﹣1,0)E .当1<x <4时,有y 2<y 120. 黄金分割在生活中的应用十分广泛,例如大多数窗户的宽和长的比是黄金比,已知某扇窗户的长为1.8米,则宽约为______米.(结果精确到0.1)21.若是关于的一元二次方程的一个根,则方程的另一个根为______.22.如图,已知直线,直线m 、n 分别与直线、、分别交于点A 、B 、C 、D 、E 、F,若,,则的值为____.23. 已知,则________.24. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH长度的最小值是__________.25. 化简:______26. 如图,∠B 的同位角是__________.四、解答题五、解答题27. 已知一组数据有50个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频数是_________.28.不等式组 的解集为 .29. 如图,已知OA =OB ,点C 在OA 上,点D 在OB 上,OC =OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有___________对.30. 化简:(1)(2)31. 计算:(1);(2);(3);(4).32. 先化简,再求值:,其中,.33. 已知某经济开发区有一块四边形空地ABCD ,如图所示,现计划在该空地上种植草皮,经测量∠B =90°,AB =400m ,AD =1300m ,CD =1200m ,BC =300m,请计算种植草皮的面积.34. 计算:(1);(2);(3).35. 某市教育局组织了汉字听写大赛,从1000名参赛选手中随机抽取200参赛选手的成绩进行整理(注:成绩在30-40含起点值30,不含终点值40,依次类推),得到其频数及频率如下表:数据段频数频率30-40100.0540-5036c 50-60a 0.3960-70b d 70-80200.10总计2001(1)表中a 、b 、c 、d 的值分别为:a = ; b = ; c = ; d = .(2)补全频数分布直方图;(3)如果成绩不低于60即为优秀,则这次参赛选手中总共有 名同学获得优秀.36. 对于平面直角坐标系xOy 中的任意点,如果满足(x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点中,满足此条件的特征点为__________________;②⊙W的圆心为,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数,请利用特征点求出该函数的最小值.37. 如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上,将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′.(1)请在图中画出平移后的△A ′B ′C ′;(2)求△A ′B ′C ′的面积.38. 已知四边形,画出以顶点为对称中心的对称四边形.六、解答题39. 我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号活动类型A 经典诵读与写作B 数学兴趣与培优C 英语阅读与写作D 艺体类E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了 名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为 .(4)若该校共有2000名学生,请估计该校喜欢A 、B 、C 三类活动的学生共有多少人?(5)学校将从喜欢“A ”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.40. 某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.41. “读书,使人思想活跃,聪颖智慧;使人增长见识,谈吐不凡;使人目光远大,志存高远”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆384人次,进馆人次逐月增加,到第三个月末累计进馆1824人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过1350人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.42. 从社会效益和经济效益出发,某地制定了三年规划,投入资金进行生态环境建设,并以此发展旅游产业.根据规划,第一年度投入资金800万元,第二年度比第一年度减少,第三年度比第二年度减少.第一年度当地旅游业收入估计为400万元,要使三年内的投入资金与旅游业总收入持平,旅游业收入的年增长率应是多少?(以下数据供选用:=1.414,=3.606 计算结果精确到百分位)43. 某校七(1)班有56人参加过“数学兴趣小组”的学习活动,其中上学期有25名男生,15名女生参加过学习,下学期有27名男生,25名女生七、解答题参加过学习,有23名男生从上学期到下学期一直没有间断过学习,那么只在上学期参加过学习的女生有多少名?44. 2023年元旦期间,某超市打出促销广告,如下表所示:一次性所购物品的原价优惠办法不超过200元没有优惠超过200元,但不超过600元全部按九折优惠超过600元其中600元仍按九折优惠,超过600元部分按8折优惠(1)小张一次性购买物品的原价为400元,则实际付款为 元;(2)小王购物时一次性付款588元,则所购物品的原价是多少元?(3)小赵和小李分别前往该超市购物,两人各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,两人实际付款共1074元,则小赵和小李各自所购物品的原价分别是多少元?45. 如图,在ΔABC 中,AD 是高,CE 是中线,点G 是CE 的中点,DG ⊥CE ,垂足为G.(1)求证:CD =AB ;(2)若∠AEC =66°,求∠BCE 的度数.46.如图,四边形是菱形,对角线相交于点O .过点C 作,交的延长线于点E.(1)求证:.(2),,则菱形的面积为______.47.如图,是的外接圆,AB 是的直径,D 是AB 延长线上的一点,连接DC ,,于点E.(1)求证:DC 是的切线;(2)若,,求DC 的长;(3)在(2)的条件下,若点P是上一点,连接CP 交线段OA 于点F ,若,求BF 的长.48. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F .延长BF 至G ,使FG =BF ,连结DG .(1)求证:GF =DE .(2)当OF ∶BF =1∶2时,判断四边形DEFG 是什么特殊四边形?并说明理由.八、解答题九、判断题49.如图,,,的直径为6.求证:直线是的切线.50. 用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身和1个桶底正好配套做1个水桶,现在有63张这样的铁皮,则多少张做桶身、多少张做桶底正好配套?(请依题意列二元一次方程组解答本题)51. 实验发现,某种金属丝当温度每上升时伸长,当温度每下降时缩短.现将这种金属丝先从加热到,再冷却至时,请问,在这个过程中金属丝与原来相比经历了什么样的变化?请说明理由(假设伸长为正,缩短为负)52. 如图,已知在原点为O 的数轴上三个点A 、B 、C ,,动点P 从点O出发向右以每秒的速度匀速运动;同时,动点Q 从点C 出发向左以每秒的速度匀速运动.设运动时间为t秒.(1)当点P 从点O 运动到点C 时,求t 的值;(2)若,那么经过多长时间P ,Q 两点相距?(3)当,时,求a 的值.53. 已知关于x 的方程的解为负数,试求k 的取值范围.54. 阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x 为何值时,S有最大值?并求出最大值.55. 两直线平行,一组同位角的角平分线互相平行.(____)(填“√”“×”)56. ;______(判断对错)57. 用含字母的式子可以表示数量关系.( )58. (1)小英语文、数学、英语、物理四科的成绩分别是92分、98分、95分、91分,则她四科的平均成绩是94分.( )(2)3个4,2个5,1个3的平均数是4.( )59. 长方形、正方形、平行四边形和圆都是轴对称图形.( )。

中考数学 中考数学压轴题测试试题及答案

中考数学 中考数学压轴题测试试题及答案

一、中考数学压轴题1.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,25AB =.(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.2.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.3.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.4.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.5.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.6.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,123BC =,6CD =,63DA =,在四边形内部是否存在点P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.8.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.9.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.10.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.11.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.12.已知:如图①,在等腰直角ABC ∆中,斜边2AC =.(1)请你在图①的AC 边上求作一点P ,使得90APB ∠=︒;(2)如图②,在(1)问的条件下,将AC 边沿BC 方向平移,使得点A 、P 、C 对应点分别为E 、Q 、D ,连接AQ ,BQ .若平移的距离为1,求AQB ∠的大小及此时四边形ABDE 的面积;(3)将AC 边沿BC 方向平移m 个单位至ED ,是否存在这样的m ,使得在直线DE 上有一点M ,满足30AMB ∠=︒,且此时四边形ABDE 的面积最大?若存在,求出四边形ABDE 面积的最大值及平移距离m 的值;若不存在,请说明理由.13.已知:AB 为⊙O 的直径,点C 为弧AB 的中点,点D 为⊙O 上一点,连接CD ,交AB 于点M ,AE 为∠DAM 的平分线,交CD 于点E .(1)如图1,连接BE ,若∠ACD=22°,求∠MBE 的度数;(2) 如图2,连接DO 并延长,交⊙O 于点F ,连接AF ,交CD 于点N .①求证:DM 2+CN 2=CM 2;②如图3,当AD=1,AB=10时,请直接写出....线段ME 的长. 14.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为3时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E F G H ,将矩形1111E F G H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.15.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.16.已知抛物线2y ax bx c =++过点(6,0)A -,(2,0)B ,(0,3)C -.(1)求此抛物线的解析式;(2)若点H 是该抛物线第三象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且45GQA ∠=︒,求点Q 的坐标.17.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ; ②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12m 2关于点P (m ,0)的相关函数的最大值为6,求m 的值.18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD =AO .点E 、F 为矩形边上的两个动点,且∠EOF =60°.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若∠OEB =75°,求证:DF =AE ; (2)如图2,当点E 、F 同时位于AB 边上时,若∠OFB =75°,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将△OEF 沿OE 所在直线翻折至△OEP ,取线段CB 的中点Q .连接PQ ,若AD =2a (a >0),则当PQ 最短时,求PF 之长.19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:BEDE=33+;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.21.在△ABC中∠B=45°,∠C=30°,点D为BC边上任意一点,连接AD,将线段AD绕A 顺时针旋转90°,得到线段AE,连接DE.(1)如图1,点E落在BA的延长线上时,∠EDC= (度)直接填空.(2)如图2,点D在运动过程中,DE⊥AC时,AB=4 ,求DE的值.(3)如图3,点F为线段DE中点,AB=2a,求出动点D从B运动到C,点F经过的路径长度.22.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.23.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG绕点A逆时针方向旋转,连接BE、DG,当点G恰好落在线段BE上时,小亮发现DG⊥BE,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).24.已知,抛物线212y x bx c =++与y 轴交于点()0,4C -与x 轴交于点A ,B ,且B 点的坐标为()2,0.(1)求该抛物线的解析式.(2)如图1,若点P 是线段AB 上的一动点,过点P 作//PE AC ,交BC 于E ,连接CP ,求PCE ∆面积的最大值.(3)如图2,若直线y x m =+与线段AC 交于点M ,与线段BC 交于点N ,是否存在M ,N ,使得OMN ∆为直角三角形,若存在,请求出m 的值;若不存在,请说明理由.25.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 满足:322m m -+62=边AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.(1)求m 的值;(2)若45,APF ∠=︒求证:AHF HFA ∠=∠;(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.H解析:(1)211242y x x =--;(2)213S 242t t =---;(3)7433y x =-+ 【解析】【分析】(1)先把B 、C 两点坐标求解出来,再根据待定系数法即可把函数解析式求解出来;(2) 过点P 作PK x ⊥轴于点K ,PF y ⊥轴于点F ,把OH 、OD 的长度用t 表示出来,再根据ODH ∆的面积为S ,即可表示出S 与t 的函数关系式;(3)先证明PKC COD ∆≅∆,再过点R 作RN x ⊥轴,设211m,242R m m ⎛⎫-- ⎪⎝⎭,连接RC 、RO ,作CL RO ⊥于L ,求出Q 点的坐标,再利用待定系数法即可把直线TQ 的解析式求解出来;【详解】(1)∵228y ax ax a =--与x 轴交于B 、C 两点∴令0y =,即2280ax ax a --=解得14x =,22x =-由题意得,∴B(4,0),C(2,0)-在Rt OAB 中,4OB =,25AB =.∴22OA 2AB OB =-=∴()0,2A -∴82a -=-∴14a = ∴抛物线的解析式为211242y x x =-- (2)过点P 作PK x ⊥轴于点K ,PF y ⊥轴于点F∴PKO PFO 90∠=∠=︒,FOK 90∠=︒∴四边形FPKO 为矩形∴FO PK =∵E 为PB 的中点∴PE BE =∵EH BK ⊥∴PKB EHB 90∠=∠=︒∴PK //EH ∴BH BM HK PM= ∴BH HK = ∵211,242P t t t ⎛⎫-- ⎪⎝⎭ ∴211PK OF 242t t ==--,OK PF t ==- ∴BK 4t =- ∴1t BH BK 222==- ∴t t OH 42222⎛⎫=--=+ ⎪⎝⎭ ∵OD PK tan DBO OB BK ∠==, 即21441422t t OD t--=- ∴OD t 2=-- ∴211t 13S OD OH (t 2)2222242t t ⎛⎫=⋅=--+=--- ⎪⎝⎭, (3)∵OK t =-,OC 2=,∴CK OD t 2==--,∵CP CD =,PKC COD 90∠=∠=︒,∴PKC COD ∆≅∆,∴PK OC 2==,∴2OF = ∴OF 1tan FBO OB 2∠== 过点R 作RN x ⊥轴,如图设211m,242R m m ⎛⎫-- ⎪⎝⎭∴RN 1tan FBO BN 2∠==, ∴211214242m m m --=- 解得4m =-或4m =(舍去),∴R(4,4)- ∴CN 1tan CRN RN 2∠== ∴CRN FBO ∠=∠连接RC 、RO ,作CL RO ⊥于L ,如上图∵RN ON =∴45NRO RON NRC CRO ∠=∠=∠+∠=︒,∴LC LO =,RO 42=, ∴CL OL 2==, ∴CL 1tan CRO RL 3∠=, ∵SBC FBO 45∠+∠=︒, ∴OT 1tan TBO OB 3∠==, ∴4OT 3=,2TF 3=, ∴4T 0,3⎛⎫ ⎪⎝⎭∵//PF OB ,∴2FT 13tan FST FS 3FS ∠=== ∴2FS =,∴FS CO OF 2===,∴QC BC ⊥∵QF FB =,QSF BOF 90∠=∠=︒,∴QFS BFO ∆≅∆∴QS OB 4==∴(2,6)Q -设直线TQ 的解析式为y kx b =+ ∴2643k b b -+=⎧⎪⎨=⎪⎩ 解得7343k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线TQ 的解析式为7433y x =-+. 【点睛】本题主要考查了二次函数的综合应用,涉及到用待定系数法求解函数解析式、一次函数、全等三角形、图形的面积计算、矩形的性质、解直角三角形等相关知识,灵活运用所学知识是解题的关键. 2.A解析:(1)A (0,1)(2)结论:∠ABQ +∠OAB ﹣∠Q =135°.(3)α+2β=45°.【解析】【分析】(1)利用二次根式的性质求出m 、n 的值,求出B 、C 两点坐标,由S 四边形AOBC =S △OBC +S △AOC ,推出12×2×4+12×OA ×4=6,求出OA 即可; (2)如图2中,结论:∠ABQ +∠OAB ﹣∠Q =135°.根据三角形内角和定理,三角形的外角的性质即可解决问题;(3)由AD ∥BC ,推出∠ADC =∠DCB =α,由BE 平分∠CBx ,推出∠CBE =∠EBx ,由∠CBE =∠F +∠OCB =α+β,推出∠OBF =∠EBx =α+β,由OC 平分∠AOB ,可得∠COB =45°=∠F +∠OBF =α+(α+β),由此即可解决问题;【详解】解:(1)由题意2020n n -≥⎧⎨-≥⎩,,得,解得n =2,∴m=4,B(2,0),C(4,4).如图:∵S四边形AOBC=S△OBC+S△AOC,∴12×2×4+12×OA×4=6,∴OA=1,∴A(0,1).(2)结论:∠ABQ+∠OAB﹣∠Q=135°.如图:理由如下:∵OC∥PQ,∴∠Q=∠OCB,∵∠ABQ=∠1+∠OCB=∠1+∠Q,∠1=180°﹣∠OAB﹣∠AOC=180°﹣∠OAB﹣45°=135°﹣∠OAB,∴∠ABQ=∠Q+135°﹣∠OAB,∴∠ABQ+∠OAB﹣∠Q=135°.(3)如图:∵AD∥BC,∴∠ADC=∠DCB=α,∵BE平分∠CBx,∴∠CBE=∠EBx,∵∠CBE=∠F+∠OCB=α+β,∴∠OBF=∠EBx=α+β,∵C(4,4),∴OC平分∠AOB,∴∠COB=45°=∠F+∠OBF=α+(α+β),∴α+2β=45°.【点睛】本题考查平行线的判定和性质、角平分线的定义、三角形的内角和定理、三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题,属于压轴题.3.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH ⊥BC∴△DHC 是等腰直角三角形∵四边形ABCD 是梯形,∠B=90°∴四边形ABHD 是矩形,∴DH=AB=8∴HC=8∴BH=BC -HC=6∴AD=6(2)如下图,过点P 作EF 的垂线,交EF 于点Q ,反向延长交BC 于点R ,DH 与EF 交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力. 4.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477 【解析】【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得; (2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得;(3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解.【详解】(1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB∵AB=4,AD=BC=3∴BD=5∵BM OM BO DA BA BD==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD∵AP=t ,∴PD=3-t∵PN BA PD BD =,∴PN=()435t - 图中,OD=5+t ∴()()243124562555OBD t S t t t -=+=--+ 情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t同理,△PND ∽△BCD ,可得PN=()335t - ∴()()23313395251052OBD t S t t t -=+=-+- (3)情况一:当0<t <3时则h=PN=()435t - ∵15h OD =∴()43555t t -+= 解得:t=75情况二:当3<t <7时则h=PN=()335t - ∵15h OD =∴()33555t t -+= 解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=132 情况二:如下图,EP ∥CD(或EQ ∥CB)∵点E 是点A 关于QP 对称的点∴EP=PA ,EQ=QA ,QP=QP∴△APQ ≌△EPQ∵EP ∥CD ,CD ⊥AD∴EP ⊥AD∴∠APQ=∠EPQ=45°∴△AQP 是等腰直角三角形,AQ=PA∴4-43t t = 解得:t=127∴OD=5+t=477 情况三:如下图,QE ∥BD ,延长QE 交DA 于点N∵△APQ ≌△EPQ ,∴∠QEP=∠QAP=90°∴△ENP 是等腰直角三角形∵QN ∥BD ,∴∠NQA=∠DBA ,∠A=∠A∴△QNA ∽△BDA∵BQ=43t ,AP=t ,QA=4-43t ,DP=3-t ∴QN QA AN BD BA AD== ∴QN=5-43t ,NA=3-t ∴EN=QN -QE=QN -QA=1-3t ,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭ 解得:t=1213或t=3(舍) ∴OD=5+t=7713 【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.5.A解析:(1)145;(2)2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩;(3)t 的值为477或727.【解析】【分析】(1)如下图,根据4tan 3A =,可得出PN 与AP 的关系,从而求出t 的值; (2)如下图,存在2种情况,一种是点M 在△ABC 内,另一种是点M 在△ABC 外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM 所在的直线将△ABC 的面积平分,另一种是QN 所在的直线将△ABC 的面积平分.【详解】(1)如图1,点N 在AC 上图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3,图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t ∴2解得:7∴综上得:t 的值为7或7.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.6.B解析:(1)213222y x x =-++;(2)3(,0)2;(3)存在;(0,2)N 或(3,2)N 或(2,3)--N 或(5,18)--N【解析】【分析】(1)由直线122y x =-+可得B 、C 两点的坐标,根据二次函数的对称轴求得A 点坐标,可设抛物线的解析式为(1)(4)y a x x =+-,将C 点坐标代入可求得a ,即可得抛物线的解析式;(2)根据绝对值的性质得出BM CM -的值最小时,点M 为BC 的垂直平分线与直线32x =的交点,求得BC 垂直平分线的解析式,联立直线32x =即可求得点M ; (3)分四种情况进行讨论,设出N 的坐标,根据相似三角形的对应边成比例的性质,求得N 的横坐标与纵坐标的关系,然后联立抛物线解析式即可求解.【详解】 解:∵直线122y x =-+与x 轴交于点B ,与y 轴交于点C , ∴当y =0时,即1022x =-+,解得:x =4,则点B 的坐标为(4,0), 当x =0时,10222=-⨯+=y ,则点C 的坐标为(0,2),由二次函数的对称性可知:点A 与点B 关于直线32x =对称, ∴点A 的坐标为(1,0)-,∵抛物线与x 轴的交点为点(1,0),(4,0)A B -,∴可设抛物线的解析式为(1)(4)y a x x =+-,又∵抛物线过点(0,2)C ,∴2(01)(04)a =+-,解得:12a =-, ∴2113(1)(4)2222y x x x x =-+-=-++∴抛物线的解析式为213222y x x =-++; (2)如图1,连结CM 、BM ,作线段BC 的垂直平分线l 分别交BC 、直线32x =于点'、N M ,则N 为BC 中点;由绝对值的性质可得:0≥-BM CM ,∴当BM CM -的值最小时,即0=-BM CM ,则此时CM BM =, ∴点M 为l 与直线32x =的交点,此时M 与'M 重合, 设l 的解析式为:y kx b =+,∵直线BC 的解析式为:122y x =-+,BC l ⊥ ∴112-⋅=-k ,解得:2k =,则l 的解析式可化为:2y x b =+, 由(4,0),(0,2)B C 得点N 的坐标为(2,1),将(2,1)N 代入2y x b =+得: 14b =+,解得:3b =-,∴23y x =-,将32x =代入23y x =-,得323=02=⨯-y ,即3'(,0)2M , ∴当BM CM -的值最小时,点M 的坐标为3(,0)2,(3)抛物线上存在点N ,使得以点、、B N H 为顶点的三角形与ABC 相似; ∵(1,0),(4,0),(0,2)-A B C∴1,4==OA OB ,2OC =,5AB =, ∴2222125=+=+=AC OA OC 22224225BC OB OC =+=+=, ∵22252025+=+==AC BC AB ,∴ABC 为直角三角形,90ACB ∠=︒,∵NH x ⊥轴,∴90∠=︒NHB ,则90∠=∠=︒NHB ACB ,如图2所示,分四种情况,点N 的坐标分别为1234、、、N N N N ,设点N 的坐标为(,)m n ,①当点1N 在x 轴的上方,要使11N BH ABC ,则11∠=∠N BH ABC ,则此时点1N 与点C 重合,则此时点1H 与点O 重合,则11≅N BH ABC ,满足题意,∴此时点1N 的坐标为(0,2);②当点2N 在x 轴的上方,要使22BN H ABC ,则2222==N H BC BH AC , ∴24=-n m,即28n m =-+,代入抛物线的解析式得: 21328222mm m ,化简得:27120m m , 解得:13m =,24m =(不符合题意,故舍去),将3m =代入抛物线解析式得:2n =,∴此时点2N 的坐标为(3,2);③当点3N 在x 轴的下方,要使33N BH ABC ,则3332==BH BC N H AC , ∴42-=-m n ,即42-=m n ,代入抛物线的解析式得:24132222m m m ,化简得:2280m m --=,解得:12m =-,24m =(不符合题意,故舍去),将2m =-代入抛物线解析式得:3n =-,∴此时点3N 的坐标为(2,3)--;④当点4N 在x 轴的下方,要使44BN H ABC ,则4442==N H BC BH AC , ∴24-=-n m,即28=-n m ,代入抛物线的解析式得: 21328222m m m ,化简得:2200m m , 解得:15m =-,24m =(不符合题意,故舍去),将5m =-代入抛物线解析式得:18n =-,∴此时点4N 的坐标为(5,18)--;综上所述,抛物线存在点N 的坐标为(0,2)或(3,2)或(2,3)--或(5,18)--使得以点、、B N H 为顶点的三角形与ABC 相似.【点睛】本题主要考查了一次函数与二次函数的性质、相似三角形的性质,运用数形结合与分类讨论的方法是解题的关键.7.(1)①12;②4,(2)12AD BC =;理由见解析,(3)存在; 【解析】 【分析】 (1)①首先证明ADB '∆是含有30的直角三角形,可得1122AD AB BC '==,即可解决问题;②首先证明BAC B AC ''∆∆≌,根据直角三角形斜边中线定理即可解决问题. (2)AD 与BC 的数量关系为12AD BC =,如图5,延长AD 到M ,使AD DM =,连接B M '、C M ',先证四边形AC MB ''是平行四边形,再证明BAC AB M '∆∆≌,即可解决问题.(3)存在,如图6,延长AD 交BC 的延长线于M ,作BE AD ⊥于E ,做直线BC 的垂直平分线交BE 于P ,交BC 于F ,连接PA 、PD 、PC ,作PDC ∆的中线PQ ,连接DF 交PC 于O ,先证明PA PD =,PB PC =,再证明+180APD BPC ∠∠=︒,即可得出结论,再在Rt PDQ ∆中,根据勾股定理,即可求出PQ 的长.【详解】(1)①如图2,∵ABC ∆是等边三角形,把AB 绕点A 顺时针旋转α得到AB ',把AC 绕点A 逆时针旋转β得到AC ',∴===AB AC BC AB AC ''=,又∵AD 是AB C ''△边B C ''上的中线,∴=DB DC '',∴AD B C ''⊥,即90ADB '∠=︒,∵60BAC ∠=︒,180BAC B AC ''∠+∠=︒,∴120B AC ''∠=︒,∴=30B C ''∠∠=︒,∴在ADB '∆中,90ADB '∠=︒,30B '∠=︒, ∴1122AD AB BC '==. 故答案为:12. ②如图3,∵90BAC ∠=︒,+=180BAC B AC ''∠∠︒,∴==90BAC B AC ''∠∠︒,即ABC ∆和AB C ''∆为直角三角形,∵把AB 绕点A 顺时针旋转α得到AB ',把AC 绕点A 逆时针旋转β得到AC ', ∴=AB AB ',=AC AC ',∴在ABC ∆和AB C ''∆中,===AB AB BAC B AC AC AC '''∠'⎧⎪∠⎨⎪⎩∴BAC B AC ''∆∆≌,∴=BC B C '',∵AD 是AB C ''△边B C ''上的中线,AB C ''∆为直角三角形,∴1122AD B B C C ''==, 又∵8BC =, ∴11=8=422AD BC =⨯. 故答案为:4. (2)12AD BC =, 如图5,延长AD 到M ,使AD DM =,连接B M '、C M ',图5∵=B D DC '',AD DM =,∴四边形AC MB ''是平行四边形,∴AC B M AC ''==,∵+=180BAC B AC ''∠∠︒,+=180B AC AB M '''∠∠︒,∴=BAC AB M '∠∠,∵=AB AB ',∴在BAC ∆和AB M '∆中,==AC B M BAC AB M AB AB ''=⎧'⎪∠∠⎨⎪⎩∴BAC AB M '∆∆≌,∴BC AM =, ∴12AD BC =. (3)存在,如图6,延长AD 交BC 的延长线于M ,作BE AD ⊥于E ,作直线BC 的垂直平分线交BE 于P ,交BC 于F ,连接PA 、PD 、PC ,作PDC ∆的中线PQ ,连接DF 交PC 于O ,图6∵+=120A B ∠∠︒,∴=180=60M A B ∠︒-∠-∠︒, ∵=90C ∠︒,∴=180=30MDC M MCD ∠︒-∠-∠︒,在Rt DCM ∆中,∵=6CD ,=90DCM ∠︒,=30MDC ∠︒, ∴=23CM =43DM =60M ∠︒, 在Rt BEM ∆中,∵=90BEM ∠︒,143BM BC CM =+==30MDC ∠︒,∴1732EM BM ==, ∴33DE EM DM =-=,∵=63AD =AE DE ,∵BE AD ⊥,∴PA PD =,PB PC =,在Rt CDF ∆中,∵=6CD ,CF∴tan CDF ∠=∴60CDF CPF =︒=∠∠,∴FCP CFD ∆∆≌,∴CD PF =,∵//CD PF ,∴四边形CDPF 是矩形,∴=90CDP ∠︒,∴=60ADP ADC CDP ∠∠-∠=︒,∴ADP ∆是等边三角形,∴=PA PD AD =∵=60BPF CPF ∠∠=︒,∴120BPC ∠=︒,∴+180APD BPC ∠∠=︒,∴PDC ∆与PAB ∆之间满足小明探究的问题中的边角关系,在Rt PDQ ∆中,∵=90PDQ ∠︒,PD PA AD ===132DQ CD ==,∴PQ ==【点睛】本题考查了三角形的综合问题.掌握全等三角形的性质以及判定定理、直角三角形斜边中线定理、解直角三角形、勾股定理、中线的性质是解题的关键.在处理三角形的边旋转问题时,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点是否存在问题时,先假设这点存在,能求出相关线段或坐标,即证实存在性. 8.B解析:(1)14a =,4m =-;(2)3344d t =-;(3)220,39P ⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据24OC OB ==得出B,C 的坐标,令(2)()0y a x x m =++=即可求出m 的值,将B 的坐标代入抛物线的解析式中即可求出a 的值;(2)过点D 作DI AC ⊥于点I ,设MN 与x 轴的交点为J ,先利用抛物线的解析式求出M 的坐标,然后利用平行线分线段成比例有AF NF AE DE =,代入相应的值计算即可得出答案; (3)先根据154d =求出此时D,E 的坐标,然后将点D 的坐标代入211y x b =+中求出直线的解析式,设G 点的坐标为232(,)1111m m +,利用待定系数法求出直线GE 的解析式,进而求出F 的坐标及CFG S ,然后利用待定系数法求出GC,EH 的解析式,进而求出H 点的坐标,然后表示出EGH S,然后利用3CFG EGH S S =△△求出m的值,进而求出直线GE 的解析式,通过直线GE 的解析式与抛物线解析式联立即可求出P 点的坐标. 【详解】(1)24OC OB ==(0,2),(4,0)B C ∴- .令(2)()0y a x x m =++=,解得2,x x m =-=-,4m ∴-= ,4m ∴=- ,∴抛物线的解析式为(2)(4)y a x x =+- ,将点(0,2)B -代入得,82a -=-,解得14a = ; (2)如图,过点D 作DI AC ⊥于点I ,设MN 与x 轴的交点为J ,∵1,44a m ==- , 2119(2)(4)(1)444y x x x ∴=+-=--, 9(1,)4M ∴- . ∵点D 的横坐标是t ,∴211(,2)42D t t t --, 211242DI t t ∴=--. MN x ⊥轴,DI x ⊥轴,//NM DI ∴ ,AJ NJAI DI∴=.NM d=,291(2)4112242dt t t---∴=+--,解得3344d t=-;(3)如图,当154d=时,3315444d t=-=,解得6t=,此时D的坐标为(6,4).//DE x轴,∴点E的纵坐标也是4,令1(2)(4)44y x x=+-=,解得4x=-或6x=,∴(4,4)E-.∵直线211y x b=+经过点D,∴26411b⨯+=,解得3211b=,∴2321111y x=+.设点G的坐标为232(,)1111m m+,设直线EG的解析式为y kx b=+,将232(4,4),(,)1111E G m m -+代入解析式中得 442321111k b mk b m -+=⎧⎪⎨+=+⎪⎩ 解得2121144521281144m k m m b m -⎧=⎪⎪+⎨+⎪=⎪+⎩∴直线EG 解析式为2125212811441144m m y x m m -+=+++ , 令0y = ,即21252128011441144m m x m m -++=++,解得26646m x m+=- , 2664(,0)6m F m+∴- , ∴26643040466m m CF m m ++=-=--, 113040232(3040)(16)()226111111(6)CFG G m m m S CF y m m m +++∴=⋅=⨯⨯+=-- . 设直线GC 的解析式为y ax c =+ , 将232(4,0),(,)1111C G m m +代入解析式中得 402321111a c ma c m +=⎧⎪⎨+=+⎪⎩ 解得232114481281144m a m m c m +⎧=⎪⎪-⎨+⎪=-⎪-⎩∴直线GC 解析式为232812811441144m m y x m m ++=--- . ∵EH CG , ∴设直线EH 解析式为2321144m y x n m +=+-, 将点(4,4)E -代入得232(4)41144m n m +⨯-+=-, 解得52481144m n m -=- , ∴直线EH 解析式为232524811441144m m y x m m +-=+--. 将直线GD 的解析式与直线EH 的解析式联立,23211232524811441144y x x m m y x m m ⎧=+⎪⎪⎨+-⎪=+⎪--⎩解得422811m x m y +⎧=-⎪⎪⎨-⎪=⎪⎩∴428(,)211m m H +--, 11341520()10()221111EGH EDG EDH H G m m S S S ED y y ++∴=-=⋅-=⨯⨯-=- . ∵3CFG EGH S S =△△,∴(3040)(16)11(6)m m m ++-15203()11m +=⨯-, 解得154m =-或43m =-. 当154m =-时,GE 的解析式为4433y x =--, 将直线GE 的解析式与抛物线的解析式联立, 2443311242y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩解得23209x y ⎧=⎪⎪⎨⎪=-⎪⎩或44x y =-⎧⎨=⎩(点E 的坐标,舍去), ∴220(,)39P -; 当43m =-时,GE 的解析式为122y x =-+, 将直线GE 的解析式与抛物线的解析式联立212211242y x y x x ⎧=-+⎪⎪⎨⎪=--⎪⎩解得40x y =⎧⎨=⎩(点C 的坐标,舍去) 或44x y =-⎧⎨=⎩(点E 的坐标,舍去), ∴综上所述,点P的坐标为220(,)39P- . 【点睛】本题主要考查二次函数,一次函数与几何综合,难度较大,尤其是计算量太大,容易出错,掌握待定系数法,平行线分线段成比例,合理的设出点的坐标并准确的计算是解题的关键. 9.A解析:(1)作图见解析;(2)PQ 长最短是1.2;(3)四边形ADCF 面积最大值是812+,最小值是812- 【解析】【分析】(1)连接线段OP 交⊙C 于A ,点A 即为所求;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH 反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF 的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.【详解】解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短.理由:分别在线段AB,⊙C上任取点P',点Q',连接P',Q',CQ',如图2,由于CP⊥AB,根据垂线段最短,CP≤CQ'+P'Q',∴CO+PQ≤CQ'+P'Q',又∵CQ=CQ',∴PQ<P'Q',即PQ最短.在Rt△ABC中22228610AB AC BC=+=+=,1122ABCS AC BC AB CP∆=•=•,∴684.810AC BCCPAB•⨯===,∴PQ=CP﹣CQ=6.8﹣3.6=1.2,∴22226 4.8 3.6BP BC CP-=-=.当P在点B左侧3.6米处时,PQ长最短是1.2.(3)△ACF的面积有最大和最小值.如图3,取AB的中点G,连接FG,DE.∵∠EAF=90°,1 tan3AEF∠=,∴13 AF AE=。

2024年中考考前押题密卷数学(全国卷)(全解全析)

2024年中考考前押题密卷数学(全国卷)(全解全析)

2024年中考考前押题密卷(全国卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列各数中,相反数是它本身的数是()A .2-B .1-C .0D .11.C【分析】根据相反数的意义,只有符号不同的数为相反数.【解析】相反数等于本身的数是0.故选:C .【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.如图所示的几何体是由7个相同的小正方体组合成的,则这个几何体的左视图是()A .B .C .D .2.D【分析】根据观察几何体,从左边看,底层有2个正方体,上层有一个正方体,即可得到答案.【解析】从左边看,底层有2个正方体,上层有一个正方体,∴几何体的左视图为:,故选:D .【点睛】本题考查三视图的知识,解题的关键是学会找几何体的三视图.3.据国家统计局预测,截止2024年底,我国GDP 将突破23万亿美元,23万亿用科学记数法表示为()A .132.310⨯B .142.310⨯C .140.2310⨯D .122310⨯3.A【分析】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【解析】23万亿23000000000000=元132.310=⨯元.故选:A .4.下列运算中,正确的是()A .326326x x x ⋅=B .4482x x x +=C .633x x x ÷=D .()32528x x =4.C【分析】分别利用单项式乘单项式、合并同类项、同底数幂的除法和积的乘方运算法则化简求出即可.【解析】A 、3x 3•2x 2=6x 5,故此选项错误;B 、x 4+x 4=2x 4,故此选项错误;C 、x 6÷x 3=x 3,故此选项正确;D 、(2x 2)3=8x 6,故此选项错误.故选:C .【点睛】此题主要考查了单项式乘单项式、合并同类项、同底数幂的除法和积的乘方等知识,熟练掌握相关运算法则是解题关键.5.如图,在平面直角坐标系中,点P 坐标为()1,2,以点O 为圆心,以OP 的长为半径画弧,交x 轴的正半轴于点A ,则点A 的横坐标介于()A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.B【分析】先根据勾股定理计算出OP 的长度,OP OA =可以知道A 点的横坐标,再利用估算无理数的方法得出答案.【解析】22125OP =+=,则A 点横坐标为5,459<<,即253<<,∴A 的横坐标介于2和3之间,故选B .【点睛】本题主要考查了估算无理数的大小和勾股定理,正确估计5最接近的整数是解题的关键.6.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)10203040户数215103则五月份这30户家庭节电量的众数与中位数分别为()A .20,20B .20,25C .30,25D .40,206.A【分析】根据表格中的数据可以得到这组数据的众数和中位数,本题得以解决.【解析】由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选:A .【点睛】本题考查众数、统计表、中位数,解题的关键是明确它们各自的含义,会找一组数据的众数和中位数.7.如图,Rt ABC △中,90ACB ∠=︒,30B ∠=︒,2AC =,23BC =,将ABC 绕点C 逆时针旋转至A B C ''△,使得点A '恰好落在AB 上,A B ''与BC 交于点D ,则A CD '△的面积为()A .32B .53C .5D .237.A【分析】由已知结合旋转的性质可知CA CA '=,60A CA B ''∠=∠=︒,可证得ACA ' 是等边三角形,可得2A C A B ''==,30A CB B '∠=∠=︒,进而可知A D BC '⊥,由等腰三角形的性质和含30度的直角三角形的性质可知112A D A C ''==,132CD BC ==,进而利用面积公式即可求解.【解析】在Rt ABC △中,90ACB ∠=︒,2AC =,30B ∠=︒,∴9060A B ∠=︒-∠=︒,24AB AC ==,由旋转可知,CA CA '=,60A CA B ''∠=∠=︒,∴ACA ' 是等边三角形,∴2AA AC A C ''===,∴2A C A B ''==,∴30A CB B '∠=∠=︒,∵60CA B ∠=''︒,∴18090CDA A CD CA D '''∠=︒-∠-∠=︒,则A D BC '⊥,∴112A D A C ''==,132CD BC ==,∴131322A CD S '=⨯⨯=△.故选:A .【点睛】本题考查直角三角形30度角的性质、勾股定理、等边三角形的判定和性质、旋转的性质等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.8.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明距离学校的路程s 关于行驶时间t 的函数图象,那么符合小明行驶情况的图象大致是()A .B .C .D .8.D【分析】根据函数图象与因变量和自变量的关系判断选项即可.【解析】根据题意,小明距离学校的路程s 关于行驶时间t 的函数图象应该分为三段:第一段随着时间的增加,路程s 逐渐减小;第二段小明停下修车,路程s 随着时间的增加没有发生变化;第三段小明加速行驶,随着时间的增加,路程s 减小的更快,所以只有D 选项符合题意,故选:D .【点睛】本题考查函数的图象,熟练掌握函数的图象与因变量和自变量的变化关系是解答的关键.9.如图,AB 为O 的直径.弦CD AB ⊥于点E ,5OC cm =,8CD cm =,则BE 的值为()A .2cmB .3cmC .5cmD .8cm9.A【分析】根据垂径定理得出4CE DE ==cm ,根据勾股定理得出222OC CE OE =+,代入求出答案即可.【解析】AB 是O 的直径,5OB OC ∴==(厘米),弦CD AB ⊥,4CE DE ∴==(厘米),在Rt OCE ∆中,5OC =(厘米),22543OE ∴=-=(厘米),532BE OB OE ∴=-=-=(厘米).故选:A .【点睛】本题考查了勾股定理和垂径定理,能熟记垂直于弦的直径平分这条弦是解此题的关键.10.如图,在正方形ABCD 中,O 是对角线AC ,BD 的交点.过点O 作OE OF ⊥,分别交AB ,BC 于点E ,F .若3AE =,1CF =,则EF =()A .2B 10C .4D .2210.B【分析】本题考查正方形的性质,证明()ASA BOE COF ≌,得到1BE CF ==,继而得到3BF AE ==,最后在Rt BEF △中,利用勾股定理可得EF 的值.掌握正方形的性质及勾股定理是解题的关键.【解析】∵四边形ABCD 是正方形,3AE =,1CF =,∴AB BC =,OB OC =,90BOC ∠=︒,90ABC ∠=︒,45OBE OCF ∠=∠=︒,∵OE OF ⊥,∴90EOF BOC ∠=︒=∠,∴EOB FOC ∠=∠,在BOE △和COF 中,OBE OCF OB OCEOB FOC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BOE COF ≌,∴1BE CF ==,∴3BF BC CF AB BE AE =-=-==,在Rt BEF △中,3BF =,1BE =,∴22221310EF BE BF =+=+=.故选:B .第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:236m m -=.11.()32m m -【分析】提取公因式3m 即可.【解析】()23632.m m m m -=-故答案为:()32m m -【点睛】本题考查的是利用提公因式分解因式,掌握“公因式的确定”是解本题的关键.12.有一个圆形飞镖盘,上面画有五个圆,半径由小到大依次为2cm 4cm 6cm 、、、8cm 10cm 、,如图所示,投中镖盘时,飞镖落在阴影部分的概率为.12.35/0.6【分析】本题考查了概率,掌握相关知识并熟练使用是解题的关键.根据概率的定义,分别求出阴影部分的面积和大圆的面积,它们的比值就是所求.【解析】∵()2224cm S ππ=⨯=小阴影,()()2226420cm S ππ=⨯-=中阴影,()()22210836cm S ππ=⨯-=大阴影,()2210100cm S ππ=⨯=大圆,∴飞镖落在阴影部分的概率4203631005ππππ++==.故答案为:35.13.如图,直线4y x =-+与双曲线=y x交于A B ,两点,若AOB △的面积为4,则k 的值为.13.3【分析】根据直线4y x =-+与双曲线=ky x关于直线=y x 对称,得出AOC BOD ≌,求得2AOC S = ,根据三角形面积求得点A 的坐标,代入一次函数求得纵坐标,即可求解.【解析】如图,设4y x =-+与y 轴交于点C ,与x 轴交于点D ,∵直线4y x =-+与双曲线=ky x关于直线=y x 对称,∴AOC BOD ≌,由4y x =-+,令=0x ,得=4y ,令=0y 得=4x ,∴(0,4),(4,0)C D ,∴14482COD S ∆=⨯⨯=,∵AOB △的面积是4,∴()18422AOC S =-= ,∴1422A x ⨯⨯=,解得1A x =,代入4y x =-+得,43y x =-+=,∴(1,3)A ,∴133k =⨯=,∴k 的值为3,故答案为:3.【点睛】本题是反比例函数与一次函数的交点问题,考查了函数的对称性,三角形的面积,一次函数图象上点的坐标特征,求得A 的坐标是解题的关键.14.将一张长方形纸条ABCD 沿EF 折叠,点B ,A 分别落在B ',A '位置上,FB '与AD 的交点为G .若∠DGF =110°,则∠FEG 的度数为.14.55°/55度【分析】根据平行的性质可知∠DGF=∠GFB,再根据翻折的性质可知∠BFE=∠EFG,即可求解.【解析】∵四边形ABCD是长方形,∴AD BC∥,∴∠GFB=∠DGF,∵∠DGF=110°,∴∠GFB=∠DGF=110°,∵根据翻折的性质有∠BFE=∠EFG,∴∠BFE=∠EFG=12∠GFB,∴∠FEG=1110552⨯=o o,故答案为:55°.【点睛】本题考查了平行的性质、矩形的性质以及翻折的性质,掌握平行的性质是解答本题的关键.15.如图,MN是半圆O的直径,K是MN延长线上一点,直线KP交半圆于点Q,P.若20K∠=︒,40PMQ∠=︒,则MQP∠=.15.35°【分析】连接PO、QO,根据圆周角定理,得∠POQ=2∠PMQ=80°,则∠OPQ=∠OQP=50°,则∠POM=70°,再根据圆周角定理即可求解.【解析】连接PO、QO.根据圆周角定理,得∠POQ=2∠PMQ=80°,又OP =OQ ,则∠OPQ =∠OQP =50°,则∠POM =∠K +∠OPK =70°,所以∠PQM =12∠POM =35°.故答案为:35°.【点睛】此题综合运用了圆周角定理,等腰三角形的性质,三角形的外角的性质,难度适中.16.如图,ABC ∆的顶点都在正方形网格纸的格点上,则sin C =.16.31010【分析】连接AD ,利用勾股定理的逆定理先证明ACD ∆是直角三角形,从而可得90ADC ∠=︒,然后在Rt ACD ∆中,利用锐角三角函数的定义进行计算即可解答.【解析】如图:连接AD ,由题意得:2221750AC =+=,222125CD =+=,2226345AD =+=,∴222AD CD AC +=,∴ACD ∆是直角三角形,∴90ADC ∠=︒,在Rt ACD ∆中,35AD =,52AC =,∴35310sin 1052AD C AC ===,故答案为:31010.【点睛】本题考查了解直角三角形,勾股定理的逆定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(本大题共8个小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.(4分)计算:2023221(1)|13()231--+--.【解析】2023221(1)|13|()231--+-----=()131314-+--+-=131314-+----=7-【点睛】本题主要考查了实数的运算,熟练掌握运算法则是解答本题的关键.18.(5分)为提高病人免疫力,某医院精选甲、乙两种食物为确诊病人配制营养餐,两种食物中的蛋白质含量和铁质含量如表.如果病人每餐需要35单位蛋白质和40单位铁质,那么每份营养餐中,甲、乙两种食物各需多少克?每克甲种食物每克乙种食物其中所含蛋白质0.5单位0.7单位其中所含铁质1单位0.4单位【解析】设甲、乙两种食物各需x 克、y 克,则0.50.7350.440x y x y +=⎧⎨+=⎩,解得2830x y =⎧⎨=⎩.答:每份营养餐中,甲、乙两种食物分别要28,30克.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.19.(6分)如图,AM BN ∥,AC 平分BAM ∠,交BN 于点C ,过点B 作BD AC ⊥,交AM 于点D ,垂足为O ,连接CD ,求证:四边形ABCD是菱形.【解析】证明:∵AC 平分BAM ∠,AM BN ∥,∴12∠=∠,23∠∠=.∴13∠=∠.∴BA BC =.又∵BD AC ⊥于点O ,∴OA OC =.在AOD △和COB △中,23OA OC AOD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()AOD COB ASA ≌.∴OD OB =.∴四边形ABCD 是平行四边形.又∵BA BC =,∴平行四边形ABCD 是菱形.【点睛】本题主要考查了菱形的判定,涉及平行四边形的判定和性质,全等三角形的判定和性质,角平分线的性质,平行线的性质等知识,熟练掌握菱形的判定方法是解题的关键.20.(6分)某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言的人数比为10:3,请结合图中相关数据回答下列问题:(1)A组有人,C组有人,E组有人,并补全直方图;(2)该年级共有学生600人,请估计全年级在这天发言次数不少于20的人数;(3)已知A组发言的学生中恰有一位女生,E组发言的学生中恰有两位男生,现从A组与E组中分别抽一位学生写报告,求所抽的两位学生至多有一位男生的概率.【解析】试题分析:(1)根据B、E两组发言的人数比为10:3,即可求得B组发言人数的百分比,从而可以求得抽取的总人数,即可求得结果;(2)先求得发言次数不少于20的人数所占的百分比,再乘以600即可得到结果;(3)先列树状图表示出所有等可能的情况,再根据概率公式求解即可.(1)∵B、E两组发言的人数比为10:3,E组发言人数的百分比为6%∴B组发言人数的百分比为20%∴B组发言的人数=10÷20%=50人∴A组有50×4%=2人,C组有50×40%=20人,E组有50×6%=3人(2)由题意得(人)答:全年级在这天发言次数不少于20的人数为60人;(3)列树状图:共有6六种等可能情况,符合至多有一位男生的情况有4种因此P (至多有一位男生)4263==.21.(6分)电力公司在高山上建设如图1所示的输电铁塔,其示意图如图2所示,铁塔A 沿着坡面到山脚的距离200m AC =,铁塔B 沿着坡面到山脚的距离60m BD =,坡面AC 与山脚水平线CD 的夹角140ACD ∠=︒,坡面BD 与山脚水平线CD 的夹角120BDC ∠=︒.(1)求铁塔A 到山脚水平线CD 的距离;(2)若从铁塔A 看铁塔B 的俯角为10°,求铁塔A 与铁塔B 的距离AB 的长(结果精确到1m ).(参考数据:sin 400.643︒≈,cos 400.766︒≈,tan 400.839︒≈,sin100.174︒≈,cos100.985︒≈,tan100.176︒≈,3 1.732≈)【解析】(1)解:如下图,过A 作AE CD ⊥交DC 延长线于E ,90AEC ∴∠=︒,140ACD ∠=︒,18014040ACE ∴∠=︒-︒=︒,200m AC =Q .∴在Rt ACE 中,sin AE ACE AC∠=,sin 200sin 402000.643128.6m AE AC ACE ∴=⋅∠=︒≈⨯=.答:铁塔A 到山脚水平线CD 的距离约为128.6m .(2)如上图,过B 作BF CD ⊥交CD 的延长线于F ,过A 作AH CD ∥交FB 的延长线于H ,则90AEC BFE H ∠=∠=∠=︒,∴四边形AEFH 为矩形,128.6m HF AE ∴==.120BDC ∠=︒ ,60BDF ∴∠=︒;60m BD = ,∴在Rt BDF △中,sin BF BDF BD∠=,3sin 60sin 606030330 1.73251.96m 2BF BD BDF ∴=⋅∠=⨯≈︒=⨯=⨯=,128.651.9676.64m BH HF BF ∴=-=-=.在Rt ABH △中,sin BH BAH AB ∠=,76.6476.64440m sin sin100.174BH BA AB H ∴==≈≈∠︒.答:铁塔A 到铁塔B 的距离AB 的长约为440m .22.(7分)如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过点D 作DE ⊥MN 于点E .(1)求证:DE 是⊙O 的切线;(2)若DE =4cm ,AE =3cm ,求⊙O 的半径.【解析】(1)证明:连接OD ,∵OA=OD,∴∠1=∠2,∵AD平分∠CAM,∴∠2=∠3,∴∠1=∠3,∴MN∥OD,∵DE⊥MN,∴DE⊥OD,∴DE是⊙O的切线;(2)解:连接CD,∵AC是⊙O的直径,∴∠ADC=90°,43+=5,∴AD=22+=22DE AE∵DE⊥MN,∴∠AED=90°,∴∠ADC=∠AED,又∵∠2=∠3,∴△ADC ∽△AED ,∴AC AD AD AE =,即553AC =,∴AC =253,∴OA =12AC =256,即⊙O 的半径为256cm .【点睛】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、勾股定理等知识;本题综合性强,有一定难度.23.(8分)如图,已知抛物线22y ax bx =++()0a <与y 轴交于点C ,与x 轴交于()1,0A -,()2,0B 两点.(1)求抛物线的函数表达式;(2)若点D 是第二象限抛物线上的动点,DE x 轴,交直线BC 于点E ,点G 在x 轴上,点F 在坐标平面内,是否存在点D ,使以D ,E ,F ,G 为顶点的四边形是正方形?若存在,求点D 的坐标;若不存在,请说明理由.【解析】(1)将()1,0A -,()2,0B 代入22y ax bx =++()0a <中,得204220a b a b -+=⎧⎨++=⎩,解得:11a b =-⎧⎨=⎩∴抛物线的函数表达式为22y x x =-++.(2)由题意和22y x x =-++可得()0,2C ,()2,0B ,可设直线BC 的函数表达式为:2y kx =+,将()2,0B 代入得:220k +=,∴1k =-,∴直线BC 的函数表达式为2y x =-+.设()2,2D t t t -++(0t <),分两种情况:①当DE 为边时,如图1,四边形DEFG 是正方形(点G 、F 可互换位置).则22DG D t E t ==-++,故E 的纵坐标与D 的纵坐标相等为22t t -++,将22y t t =-++代入2y x =-+中,可得E 的横坐标为2t t -,则点E 的坐标为()22,2t t t t --++,2t t tDE =--∴DE EF =,即222t t t t t --=-++,解得2t =(0t <,要舍)或12t =-,∴点D 的坐标为15,24⎛⎫- ⎪⎝⎭.②当DE 为对角线时,如图2,连接FG ,过点D 作DH x ⊥轴于点H ,DE HG ∥,DH FG ∥,易得2DE FG DH ==,则()2222224DE t t t t =-++=-++,则E 的纵坐标为2224t t t -+++,∴点E 的坐标为()22224,2t t t t t -+++-++.点E 在直线2y x =-+上,∴2222342t t t t -++=--+,解得23t =-或2(0t <,要舍),∴点D 的坐标为28,39⎛⎫- ⎪⎝⎭.综上可得:存在点D ,使以D ,E ,F ,G 为顶点的四边形是正方形,点D 的坐标为15,24⎛⎫- ⎪⎝⎭或28,39⎛⎫- ⎪⎝⎭.24.(10分)如图1,在正方形ABCD 中,E ,F 分别在边AB BC ,上,且CE DF ⊥于点O .(1)试猜想线段CE 与DF 的数量关系为______;(2)数学小组的同学在此基础上进行了深入的探究:①如图2,在正方形ABCD 中,若点E ,F ,G ,H 分别在边AB BC CD DA ,,,上,且EG FH ⊥于点O ,求证:EG FH =;②如图3,将①中的条件“在正方形ABCD 中”改为“在矩形ABCD 中,AB a =,2BC a =”,其他条件不变,试推理线段EG 与FH 的数量关系;③如图4,在四边形ABCD 中,90ABC ∠=︒,60BCD ∠=︒,6AB BC CD ===,点M 为AB 的三等分点,连接CM ,过点D 作DN CM ⊥,垂足为点O ,直接写出线段DN 的长.【解析】(1)证明:∵四边形ABCD 是正方形,90,B DCF BC CD ︒∴∠=∠==,90BCE DCE ∴∠+∠=︒,CE DF ⊥ ,90CPD ︒∴∠=,90CDF DCE ∴∠+∠=︒,BCE CDF ∴∠=∠,()CBE DCF ASA ∴ ≌,CE DF ∴=.(2)①证明:过点H 作HN BC ⊥交于N ,过点G 作GM BA ⊥交于M ,∵四边形ABCD 是正方形,BC CD∴= 四边形BCGM 为矩形,四边形CDHN 为矩形,MG BC ∴=,HN CD=∴MG HN =,∵HF EG ⊥,∴90MGE OPG NHF OPG ∠+∠=∠+∠=︒,∴MGE NHF ∠=∠,∴()HFN GEM ASA ≌,∴HF EG =;②解:2EG FH =;理由:过点H 作HQ BC ⊥交于Q ,过点G 作GP ⊥AB 交于P ,由①可得,QHF PGE ∠=∠,QHF PGE ∴V V ∽,HF HQ GE PG∴=,,2AB a BC a ==Q ,2,PG a HQ a ∴==,122HF a GE a ∴==,2EG FH ∴=;③解:如图3,过点D 作DS BC ⊥于S ,90DSN DSC B ∴∠=∠=∠=︒,60,6DCS CD ∠=︒=Q ,3sin 60332DS CD CD ∴=⋅︒==, 点M 是AB 的三等分点,6AB =,2BM ∴=或4BM =,6BC = ,22210CM BC BM ∴=+=或213,DN CM ⊥Q ,BM DS ∴∥,BMC DJM ∴∠=∠,90DJM NDS NDS DNS ∠+∠=∠+∠=︒Q ,DNS DJM ∴∠=∠,BMC DJM DNS ∴∠=∠=∠,∴BCM SDN ∽,CM BC DN SD ∴=,210633DN ∴=,或213633DN =,解得30DN 或39.【点睛】本题考查了四边形的综合题,正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,正确地作出辅助线是解题的关键.。

中考数学压轴题专项训练十套(含答案)

中考数学压轴题专项训练十套(含答案)

中考数学压轴题专项训练十套(含答案)中考数学压轴题专项训练(一)做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形 $OABC$ 中,$AB\parallel OC$,$BC\perp x$ 轴于点 $C$,$A(1,1)$,$B(3,1)$.动点$P$ 从点 $O$ 出发,沿 $x$ 轴正方向以每秒 $1$ 个单位长度的速度移动.过点 $P$ 作 $PQ\perp OA$,垂足为 $Q$.设点$P$ 移动的时间为 $t$ 秒($0<t<4$),$\triangle OPQ$ 与直角梯形 $OABC$ 重叠部分的面积为 $S$.1)求经过 $O$,$A$,$B$ 三点的抛物线解析式.2)求 $S$ 与 $t$ 的函数关系式.3)将 $\triangle OPQ$ 绕着点 $P$ 顺时针旋转$90^{\circ}$,是否存在 $t$,使得 $\triangle OPQ$ 的顶点$O$ 或 $Q$ 在抛物线上?若存在,直接写出 $t$ 的值;若不存在,请说明理由.解析:1)由题意可知,经过 $O$,$A$,$B$ 三点的抛物线为$y=ax^{2}+bx+c$,代入三点的坐标可得:begin{cases}a+b+c=1\\4a+2b+c=1\\9a+3b+c=1end{cases}$解得 $a=-\dfrac{1}{4}$,$b=\dfrac{5}{4}$,$c=\dfrac{1}{2}$,即经过 $O$,$A$,$B$ 三点的抛物线解析式为 $y=-\dfrac{1}{4}x^{2}+\dfrac{5}{4}x+\dfrac{1}{2}$.2)设 $\triangle OPQ$ 的高为 $h$,则 $\triangle OPQ$ 的面积为 $\dfrac{1}{2}xh$,其中 $x=OP=t$.由于 $\triangle OPQ$ 与直角梯形 $OABC$ 重叠部分的面积为 $S$,所以$S=\dfrac{1}{2}(AB+BC)h=\dfrac{1}{2}(3+2t)h$.又因为 $P$ 沿 $x$ 轴正方向以每秒 $1$ 个单位长度的速度移动,所以 $h$ 的变化率为$\dfrac{\mathrm{d}h}{\mathrm{d}t}=-1$,即 $h=-t+4$.综上所述,$S=\dfrac{1}{2}(3+2t)(-t+4)=-t^{2}+5t-6$,即$S$ 与 $t$ 的函数关系式为 $S=-t^{2}+5t-6$.3)将 $\triangle OPQ$ 绕着点 $P$ 顺时针旋转$90^{\circ}$,则 $\triangle OPQ$ 变为 $\triangle OP'Q'$,其中$P'$,$Q'$ 分别为 $P$,$Q$ 绕着点 $P$ 顺时针旋转$90^{\circ}$ 后的点.易知 $\triangle OP'Q'$ 的顶点为 $O'$,坐标为 $(1+t,1)$.将 $O'$ 的坐标代入抛物线的解析式中,得到 $y=-\dfrac{1}{4}(1+t)^{2}+\dfrac{5}{4}(1+t)+\dfrac{1}{2}$.令 $y=0$,解得 $t=2\pm\sqrt{3}$.由于 $0<t<4$,所以 $t=2+\sqrt{3}$,即存在 $t$,使得$\triangle OPQ$ 的顶点 $O$ 在抛物线上.答案:(1)$y=-\dfrac{1}{4}x^{2}+\dfrac{5}{4}x+\dfrac{1}{2}$;(2)$S=-t^{2}+5t-6$;(3)$t=2+\sqrt{3}$.2)正方形以每秒5个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止。

2024中考数学(人教版)押题卷 (470)

2024中考数学(人教版)押题卷 (470)

一、单选题1. 如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3 个B.4 个C.7 个D.8 个2. 如图,已知点A(3,4),点B为直线x=﹣2上的动点,点C(x,0)且﹣2<x<3,BC⊥AC垂足为点C,连接AB.若AB与y轴正半轴的所夹锐角为α,当tanα的值最大时x的值为( )A.B.C.1D.3. 元旦前夕,某商店购进某种特色商品100件,按进价每件加价30%作为定价,可是总卖不出去,后来每件按定价降价20%,以每件104元出售,终于在元旦前全部售出,则这批商品在销售过程中的盈亏情况是()A.亏40元B.赚400元C.亏400元D.不亏不赚4. 小明调查了涟水县1月份一周的最低气温(单位:℃),分别是:,0,3,,,0,2,其中0℃以上(不含0℃)出现的频数是()A.2B.3C.4D.55. 三地位于同一条笔直的直线上,B在之间,甲、乙两人分别从两地同时出发赶往C地,甲、乙两人距C地的距离s(单位:m)与甲运动的时间t(单位:s)之间的关系如图所示.根据图象判断下列说法错误的是()A.两地之间的距离为B.甲的速度比乙快C.甲、乙两人相遇的时间为D.时,甲、乙两人之间的距离为6. 如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦二、多选题7. 估计的值应在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间8. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A .60πB .85πC .95πD .169π9. 如图,△ABC 是等腰直角三角形,AC=BC=2,以斜边AB 上的点O 为圆心的圆分别与AC 、BC 相切于点D 、E ,与AB 分别相交于点G 、H ,且DG 的延长线与CB 的延长线交于点F ,分析下列四个结论:①HG=2;②BG=BF ;③AH=BG=;④CF=.其中正确的结论个数有( )A .1个B .2个C .3个D .4个10. 关于x 的方程无解,则a 的值为( )A .1B .3C .1或D .1或311. 在下列图形中,只是中心对称图形不是轴对称图形的是( )A.B.C.D.12. 下列说法中,正确的是( )A .若,则B .A 、B 、C 三点在数轴上对应的数分别是、6、x,若相邻两点的距离相等,则C .若代数式的值与x 无关,则该代数式值为2021D .若,则的值为13. 已知直线l 外一点P 到直线l 上两点A ,B 的距离分别为6和7,则点P 到直线l 的距离可能为( )A .4B .5C .6D .714. 有这样一列数:1,1,2,3,5,8,13,21,…即第一项,第二项,第三项,第四项,…可以发现从第三项开始,每一项都是它前面两项的和,该数列称为斐波那契数列.则下列关于斐波那契数列说法正确的是A.B.是偶数C.D.15. 表中所列、的7对值是二次函数图象上的点所对应的坐标,其中611116根据表中提供约信息,以下4个判断中正确的是( )三、填空题A.B.C .当时,的值是D.16. 在某市举办的端午节龙舟比赛中,甲、乙两队在比赛时的路程与时间之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的是()A.这次比赛的全程是B .经过乙队追上了甲队C .甲队速度大于乙队速度D.两队相遇时乙队速度是17. △ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果a 2+b 2=c 2,那么下列结论不正确的是( )A .bcosB =cB .csinA =aC .atanA =bD .tanB =18. 下列说法不正确的是( )A .相切两圆的连心线经过切点B .长度相等的两条弧是等弧C .平分弦的直径垂直于弦D .相等的圆心角所对的弦相等19. 下列尺规作图能得到平行线的是( )A.B.C.D.20.若,则________.21. 如图,已知网格中每个小正方形的边长为1,则菱形ABCD 的面积为_____.22.计算的结果等于______.23. 的小数部分是_________.24.如图,四边形为平行四边形,延长至,使,连接,,,若添加一个条件后,使四边形成为矩形,则添加的条件是_____.2024中考数学(人教版)押题卷四、解答题五、解答题25.已知如图:中,,以为直径的圆交于,若,则阴影部分的面积为__________.26. 如图,已知圆的半径为R ,正方形的边长为a .(1)表示出阴影部分的面积________;(2)当,阴影部分面积________.27.在中,,,则此三角形外接圆半径为________.28. 中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为____________.29. 已知,则的值_____.30.计算:31. 计算:|﹣2|+(π﹣1)0×(﹣1)2012+()﹣3.32. 计算:(﹣1)11﹣8÷(﹣2)+4×|﹣5|.33. 婷婷对“化简:”的解答过程如下:解:原式.试问婷婷的解答过程是否正确?若正确,请再写出一种解答过程:若有错误,请写出正确的解答过程.34. ①计算:;②解方程:.35. 王老师对试卷讲评课中学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项评价组随机抽取了若干名学生的参与情况,绘制成如图所示的统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为 度;(3)请将条形图补充完整;(4)如果全校学生有2800名,那么在试卷讲评课中,“独立思考”的学生约有多少人?36. 如图,在平面直角坐标系中,,,.(1)画出关于x轴的对称图形;(2)在坐标系中,找出一点,使与关于直线对称,直接写出点的坐标.37. 如图,在中,.(1)尺规作图:按要求完成下列作图,不写做法,保留作图痕迹,并标明字母.作的平分线交于点F,连接、;(2)在(1)的条件下,若,求的度数.38. 如图,在平面直角坐标系中,的顶点坐标分别为,,.将绕点O逆时针旋转得到,点A旋转后的对应点为.(1)画出旋转后的图形,并写出的坐标;(2)在(1)的条件下,求点B经过的路径长(结果保留).六、解答题七、解答题39. 如图:在平面直角坐标系中,三角形ABC 的顶点坐标分别是A(1,1);B(2,﹣1);C(4,3),将三角形ABC 向左平移2个单位长度,再向上平移3个单位长度后得三角形A 1B 1C 1.(1)画出三角形A 1B 1C 1;(2)分别写出A 1、B 1、C 1的坐标;(3)求三角形A 1B 1C 1的面积.40. 某超市用500元购进了甲、乙两种商品,其中甲种商品购进14件,乙种商品购进18件,已知乙种商品每件进价比甲种商品每件进价多10元.(1)求甲、乙两种商品每件进价;(2)若甲种商品售价为15元/件,乙种商品售价为35元/件.求该超市甲、乙两种商品全部销售完后的利润(注:利润售价进价).41. 某商场经销A 玩具,购进时的单价是60元.根据市场调查,销售单价定为80元时,每天可以卖出200件,而销售单价每降低1元,每天就可多售出20件.求销售单价定为多少时,顾客得到优惠,且该商场每天销售A 玩具可以获利4000元.42. 如图,在一条水平的码头上有两处灯塔A 和B ,在灯塔处测得某一渔船位于北偏西方向的处,当渔船沿着正北方向前进到达处时,在灯塔处测得处位于西北方向.已知,求处到码头的距离.43. 某工厂1月份的产值是25万元,计划3月份的产值达到36万元,那么这家工厂2月、3月这两个月产值的月平均的增长率是多少?44. 我国古代数学家赵爽利用影子对物体进行测量的方法,至今仍有借鉴意义.如图,身高1.5米的小王晚上在路灯灯柱下散步,他想通过测量自己的影长来估计路灯灯泡的高度,具体做法如下:先从路灯底部沿方向走20步到处,发现自己的影子端点落在点处,作好记号后,从点沿方向走4步恰好到达点处,此时他影子的端点在点处,已知在同一水平线上,路灯的灯泡在上,,小王的步间距保持一致.(1)请在图中画出灯泡和影子端点的位置;(2)估计灯泡的高,并求出影长的步数.45. 如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分∠BEF ,FN 平分∠CFE ,且EM FN.求证:.请在下面的证明过程中的横线处填写正确的结论或理由.证明:∵EM∥FN (已知),∴∠FEM=∠EFN ( ).∵EM平分∠BEF(已知),∴∠FEM= ∠FEB(角平分线定义).又∵FN平分∠CFE(已知),∴∠EFN= (角平分线定义).∴∠FEB =(等量代换),∴AB CD ( )46. 如图,在四边形ABCD中,AD⊥CD,CD=BC,AB=AC.求证:∠1=∠BAC.47. 在正方形中,点,,分别在边,,上(点,,不与正方形的顶点重合),,相交于点,且.(1)猜想与的数量关系并证明:(2)证明:;(3)若,,请直接写出点到直线的距离.48. 如图,四边形木架.(1)加上木条后,木架不易变形,其中蕴含的数学道理是____________;(2)如,平分,求证:.49. 【感受与猜想】(1)如图,四边形和四边形均为正方形,点正好落在对角线上.试猜想与的数量关系:__.八、解答题【探究与证明】(2)如图,四边形和四边形均为正方形,正方形绕点顺时针旋转角(),连结,.()中的结论是否还成立,若成立,请给出证明.【拓展与延伸】(3)如图3,在平面直角坐标系中,直线分别交轴,轴于,两点,点为线段上一点,以为底边向下作等腰直角三角形.①若,求点的坐标.②若点落在边的中点处,与交于点,已知,求的长.50. 如图,点A 在第一象限内,轴于点B ,反比例函数的图象分别交于点C ,D .已知点C 的坐标为.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在的内部(包括边界),直接写出点P 的横坐标x 的取值范围.51. 已知a 、b 为有理数,现规定一种新运算※,满足,例如:.(1)求的值:(2)求的值.52. 如图,直线AB 是某天然气公司的主输气管道,点C 、D 是在AB 异侧的两个小区,现在主输气管道上寻找支管道连接点,铺设管道向两个小区输气.有以下两个方案:方案一:只取一个连接点P ,使得向两个小区铺设的支管道总长度最短;方案二:取两个连接点M 和N ,使得点M 到C 小区铺设的支管道最短,使得点N 到D 小区铺设的管道最短.(1)在图中标出点P 、M 、N 的位置,保留画图痕迹;(2)设方案一中铺设的支管道总长度为l 1,方案二中铺设的支管道总长度为l 2,则l 1 与l 2的大小关系为:l 1 l 2(填“>”,“<”或“=”).53. +cos30°54. 已知 是直线l 和双曲线的交点.九、判断题(1)求m 的值.(2)若直线l 分别和x 轴、y 轴交于E 、F 两点,且点A 是的中点,试确定直线l 的解析式.(3)在双曲线上另取一点B ,过B 作轴于K .问:在y 轴上是否存在点P ,使得?若存在,请求出点P 的坐标;若不存在,请说明理由.55.一个几何体,从正面和左面看都是 ,这个几何体至少有4个小正方体.( )56. 中心对称是指一个图形之间的关系. ( )57. 平行四边形有2条对称轴. _____(判断对错)58. 所有的负数和0一定都比正数小.( )59. 一个等腰三角形的两条边的长度分别为厘米和厘米,则这个三角形的周长为厘米. _____(判断对错)。

2024年浙江中考数学最后一卷终极押题卷及答案

2024年浙江中考数学最后一卷终极押题卷及答案

2024年浙江中考最后一卷数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。

一、单选题(本大题共有10小题,每小题3分,共30分)1.下列各数中最大的数是()A.5−B.0 C.1−D2.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x63.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.8×80.16108.01610×B.9C.10×80.1610×D.100.8016104.下列立体图形中,主视图是三角形的是()A.B.C.D.5.在数轴上表示不等式x﹣2≤0的解集,正确的是()A.B.C .D .6.随着自动驾驶技术的不断发展,某知名汽车制造公司近期对研发的自动驾驶汽车进行了一次大规模的路测,有45辆自动驾驶汽车参与了这次测试.测试结束后,技术部门对每辆汽车的性能进行评估(车辆的自动驾驶技术、安全性、反应速度等综合表现),得分如下:得分(分) 75 80 85 90车辆(辆) 5 16 14 10得分的中位数和众数分别是( )A .80,80B .82.5,80C .80,85D .85,807.如图,线段CD 是O 的直径,CD AB ⊥于点E ,若8AB =,3OE =,则CE 的长是( )A .8B .7C .6D .58.《九章算术》中曾记载:“今有牛五羊二,直金十两;牛二羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?若设每头牛值金x 两,每只羊值金y 两,则可列方程组为( )A .5210258x y x y += +=B .2510528x y x y += +=C .51058x y x y += +=D .21028x y x y += +=9.二次函数2y =的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B ,C 在函数图象上,四边形OBAC 为菱形,且120ABO ∠=°,则点C 的坐标为( )A .14 −B .14 −C . −D .(− 10.如图,四边形ABCD 是一张矩形纸片.折叠该矩形纸片,使AB 边落在AD 边上,点B 的对应点为点F ,折痕为AE ,展平后连接EF ;继续折叠该纸片,使FD 落在FE 上,点D 的对应点为点H ,折痕为FG ,展平后连接HG .若矩形HECG ∽矩形ABCD ,1AD =,则CD 的长为( ).A .0.5B 1−C D二、填空题(本大题共有6小题,每小题4分,共24分)11.因式分解: 34t t −=12.实现中国梦,必须弘扬中国精神.在如图所示除正面图案不同外,其余无差别的四张不透明卡片上分别写有“红船精神”、“长征精神”、“延安精神”、“特区精神”,将卡片置于暗箱摇匀后随机抽取一张,则所抽取卡片为“特区精神”的概率为 .13x 的值可以是 .(写出一个即可) 14.如图,《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕塑,掷铁饼者张开的双臂与肩宽可以近似看像一张拉满弦的弓,若弧长为2π3米,“弓”所在圆的半径1.2米,则“弓”所对的圆心角θ的度数为 .15.如图,点A 为反比例函数(0,0)k y k x x=<<的图象上一点,AB x ⊥轴于点B ,点C 是y 轴正半轴上一点,连接BC ,AD BC ∥交y 轴于点D ,若0.5ABCD S =四边形,则k 的值为 .16.如图,正方形ABCD 的边长为2,以AB 边上的动点O 为圆心,OB 为半径作圆,将AOD △沿OD 翻折至A OD ′ ,若O 过A OD ′ 一边上的中点,则O 的半径为 .三、解答题(本大题共有8小题,共66分)(共66分)17.(本题6分)计算或化简:(1)()201253π− +−−+−; (2)()()()2m n n m m n +−−−.18.(本题6分)如图,在平面直角坐标系中,ABC 的顶点坐标分别为()2,4A ,()3,1B ,()5,3C .(1)作ABC 关于y 轴对称的111A B C △;(2)将ABC 绕原点O 顺时针旋转90°,得到222A B C △,作出222A B C △并求点C 旋转到点2C 所经过的路径长.19.(本题6分)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓.引导学生爱该书.读好书,善读书,贵阳市某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查.将调查结果的数据分成A 、B 、C 、D 、E 五个等级并绘制成表格和扇形统计图如下.等级 周平均读书时间t (单位:小时) 人数A01t ≤< 4 B12t ≤< a C23t ≤< 20 D34t ≤< 15 E 4t ≥5 每个等级人数扇形统计图(1)求统计图表中=a ______,m =______.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为______.(3)请写出一条你对读书的建议.20.(本题8分)我国是世界上最早发明历法的国家之一,《周礼》中记载:垒土为圭,立木为表,测日影,正地中,定四时,如图1,圭是地面上一根水平标尺,指向正北,表是一根垂直于地面的杆,正午,表的日影(即表影)落在圭上,根据表影的长度可以测定节气.在一次数学活动课上,要制作一个圭表模型,如图2,地面上放置一根长2米的杆AB ,向正北方向画一条射线BC ,在BC 上取点D ,测得 1.5m BD =, 2.5m AD =.(1)判断:这个模型中AB 与BC 是否垂直.答:______(填“是”或“否”);你的理由是:______.(2)利用这个圭表模型,测定某市冬至正午阳光与日影夹角30°,夏至正午阳光与日影夹角为60°,请求出这个模型中该市冬至与夏至的日影的长度差(结果保留根号).21.(本题8分)如图,在矩形ABCD 中,沿EF 将矩形折叠,使A 、C 重合,AC 与EF 交于点H .(1)求证:AE =AF ;(2)若AB =4,BC =8,求△ABE 的面积.22.(本题10分)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据下表组织的信息,解答以下问题.脐橙品种A B C 每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元) 1200 1600 1000(1)设转运A 种脐橙的车辆数为x ,转运B 种脐橙的车辆数为y ,求y 与x 的函数表达式;(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.23.(本题10分)定义:平面直角坐标系xOy 中,当点N 在图形M 的内部,或在图形M 上,且点N 的横坐标和纵坐标相等时,则称点N 为图形M 的“梦之点”.(1)如图①,矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,在点1(2,2)P −−,2(0,0)P ,3(1,1)P ,4(2,2)P 中,是矩形ABCD “梦之点”的是________;(2)如图②,已知A 、B 是抛物线21922y x x =−++上的“梦之点”,点C 是抛物线的顶点: ①求出AC ,AB ,BC 三条线段的长度;②判断ABC 的形状,并说明理由.24.(本题12分)如图,ABC 内接于圆O ,AD 是ABC 的高线,9AD =,12CD =,tan 3ABD ∠=,连接OC .(1)求证:ABC 是等腰三角形;(2)求证:BCO BAD ∠=∠;(3)若点E 是OC 上一动点,EF AB ∥交BC 于点F .①若OEF 与ABD △相似,求EF 的长;②当OEF 的面积与CEF △的面积差最大时,直接写出此时CF 的长.2024年浙江中考最后一卷数学解析及参考答案一、单选题1.D【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵510−<−<<故选:D .2.D【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a ﹣2a =a ,故选项A 错误;∵2a 2+4a 2=6a 2,故选项B 错误;∵(x 3)2=x 6,故选项C 错误;∵x 8÷x 2=x 6,故选项D 正确;故选D .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.3.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:80.16亿98.01610×,故选:B .4.B【分析】本题考查立体几何的三视图.根据题意,逐项判断即可.【详解】解:A.主视图为长方形,此项不符合题意;B.主视图为三角形,此项符合题意;C.主视图为圆,此项不符合题意;D.主视图为长方形,此项不符合题意.故选:B .5.C【分析】先解不等式,求出解集,然后在数轴上表示出来.【详解】解:不等式x ﹣2≤0,得:2x ≤ ,把不等式的解集在数轴上表示出来为:.故选:C【点睛】本题主要考查了解不等式,并在数轴上表示解集,解题的关键是熟练掌握解不等式的步骤,不等式的解集在数轴表示时空心圈不包含该点,实心圈包含该点.6.D【分析】本题为统计题,考查众数与中位数的意义,根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】有45辆自动驾驶汽车参与了这次测试,45个分数,按大小顺序排列最中间的数据是第23个数:85,故得分的中位数是85(分),得80分的人数最多,有16人,故众数为80,故选D .7.A【分析】本题考查了垂径定理和勾股定理的应用,根据垂径定理求出AE 的长是解此题的关键.连接OA ,根据垂径定理求出AE ,再根据勾股定理求出OA ,最后根据线段的和差求解即可.【详解】解:如图,连接OA ,线段CD 是O 的直径,CD AB ⊥于点E ,∴12AE AB =,8AB =, ∴4AE =,3OE =,∴5OA ,∴5OC OA ==,∴8CE OC OE =+=,故选:A .8.A【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是设每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】解:设每头牛值金x 两,每只羊值金y 两,则可列方程组为5210258x y x y += +=, 故选A .9.B【分析】本题考查了菱形的性质、二次函数图象上点的坐标特征,根据二次函数图象上点的坐标性质得出BD 的长是解题关键.连接BC 交OA 于D ,如图,根据菱形的性质得BC OA ⊥,60OBD ∠=°,利用含30度的直角三角形三边的关系得OD =,设BD t =,则OD =,()B t ,利用二次函数图象上点的坐标特征得2=,得出14BD =,OD =C 点坐标. 【详解】解:连接BC 交OA 于D ,如图,四边形OBAC 为菱形,BC OA ,120ABO ∠=° ,60OBD ∴∠=°,OD ∴,设BD t =,则OD =,()B t ∴,把()B t 代入2y =,得2=,解得10t =(舍去), 214t =,14BD ∴=,OD =故C 点坐标为:14 − .故答案为:B .10.C【分析】本题考查的是矩形的性质、翻折的性质及相似多边形性质,熟练应用矩形和相似多边形性质是解题关键,设CD x =,则()1,1EC x CG x x =-=--,根据两矩形相似求出即可.【详解】解:在矩形ABCD 中,设CD x =,则ABCD x ==,1AD BC ==, 由翻折得,90AB AF x AFE B BAF ==∠=∠=∠=︒,∴四边形ABEF 是正方形,同理,四边形DFHG 是正方形,,1BE AB x DF DG x ∴====-,()1,121CE x CG x x x ∴=-=--=-,矩形HECG ∽矩形ABCD ,EC CG BC CD∴=,即1211x x x --=,解得:x =,经检验,xCD ∴ 故选:C .二、填空题11.()()22t t t +−【分析】本题考查了因式分解,先提取公因式,再利用公式法即可求解,熟练掌握提公因式法及公式法分解因式是解题的关键.【详解】解:()()()324422t t t t t t t −=−=+−,故答案为:()()22t t t +−.12.14/0.25 【分析】本题考查了概率公式的应用,用到的知识点为:概率所求情况数与总情况数之比.全部情况的总数是四种,符合条件的情况的是一种,二者的比值就是其发生的概率.【详解】由于概率为所求情况数与总情况数之比,而抽取卡片为“特区精神”的情况数只有一种,从暗箱随机抽取一张的情况数为四种,故抽取卡片为“特区精神”的概率为14, 故答案为14. 13.0(答案不唯一)【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件,根据二次根式有意义的条件的条件是被开方数大于等于0,分式有意义的条件是分母不为0进行求解即可.∴10x −>,解得1x <.∴x 的值可以是0,故答案为:0(答案不唯一).14.100°/100度【分析】本题考查的是已知弧长与半径求解弧所对的圆心角,熟记弧长公式是解本题的关键.直接利用弧长公式计算即可.【详解】解: 设“弓”所在的圆的弧长圆心角度数是n °, 则1.2π2π1803n =, 解得:100n =,故答案为:100°.15.0.5−【分析】本题考查了反比例函数k 值的几何意义,熟练掌握k 值的几何意义是解答本题的关键.根据反比例函数k 值的几何意义进行解答即可.【详解】AB x ⊥ 轴于点B ,CD x ⊥轴,∴AB CD ,又 AD BC ,∴四边形ABCD 是平行四边形,过点作AM y ⊥轴,则四边形ABOM 是矩形, ∴0.5,ABOMABCD S S k ===矩形平行四边形∵反比例函数图象在第二象限,0.5k ∴=−,故答案为:0.5−.16.23、54【分析】本题考查了折叠的性质,正方形的性质,勾股定理,圆的定义;分三种情况讨论,设O 的半径为r ,分别根据勾股定理,即可求解.【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =,当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−, 在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23、54 三、解答题17.(1)5(2)222m mn −+【分析】此题考查了实数的运算以及整式的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、绝对值的代数意义以及负整数指数幂法则计算即可求出值;(2)根据平方差公式和完全平方公式化简,再合并同类项即可.【详解】(1)解:原式159=-+5=;(2)原式()22222n m m mn n =−−−+22222n m m mn n =−−+−222m mn =−+18.(1)图见解析(2)【分析】本题考查作图-轴对称变换,旋转变换,以及求弧长,熟练掌握相关作图方法是解题关键; (1)根据点关于y 轴对称的性质分别找到对应的点1A ,1B ,1C ,然后进一步连接即可;(2)利用旋转变换的性质分别作出A ,B ,C 的对应点2A ,2B ,2C ,再顺次连接即可,利用弧长公式求得点C 经过的路径长.【详解】(1)解:如图,111A B C △即为所求;(2)如图,222A B C △即为所求,由题意可知,OC∴点C 旋转到点2C =. 19.(1)6,40(2)1120(3)全校学生一周内平均读书时间23t ≤<(答案不唯一)【分析】本题考查了扇形统计图,样本估计总体等知识.(1)由等级得到学生总数,即可得出a ,再求C 等级的占比即可;(2)用样本估计总体即可得出结果;(3)根据表格可题建议合理即可.【详解】(1)解:由等级D 得到学生总数1530%50÷=人, ∴504201556a −−−−,()%2050100%40%m =÷×=,40m =,故答案为:6,40.(2)1552800112050+×=人, 故该校2800名学生每周读书时间至少3小时的人数为1120人.故答案为:1120.(3)根据表格可建议:全校学生一周内平均读书时间23t ≤<.20.(1)是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2).【分析】本题考查的勾股定理的逆定理的应用,解直角三角形的应用,理解题意是解本题的关键. (1)利用勾股定理的逆定理判断即可;(2)先画图,利用三角函数再计算BE=BF =,从而可得答案. 【详解】(1)解:是, 理由:由测量结果可知得 1.5m BD =, 2.5m AD =,而2m AB =,∴2226.25AB BD AD +==,∴90ABD ,∴AB BC ⊥.故答案是:是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2)如图,由题意可得:90ABC ∠=°,2AB =,30AFB ∠=°,60AEB ∠=°,∴tan tan 60AB AEB BE∠=°=,∴BE =, 同理:tan tan 30AB AFBBF ∠=°=,∴BF =,∴FE BF BE =−==. 21.(1)证明见解析(2)6【分析】(1)依据平行线的性质以及矩形的性质,即可得到∠AFE =∠AEF ,进而得出AE =AF .(2)设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得方程,即可得到BE 的长,再根据三角形面积计算公式求解.【详解】(1)证明:∵四边形ABCD 矩形,∴AD ∥BC ,∴∠AFE =∠FEC ,由折叠的性质得:∠AEF =∠FEC ,∴∠AFE =∠AEF ,∴AE =AF .(2)解:根据折叠的性质可得AE =EC ,设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得:222AB BE AE +=,即()22248x x +=−,解得:x =3,∴BE =3,∴ABE S = 12AB •BE =12×4×3=6. 【点睛】本题主要考查了折叠问题以及矩形的性质的运用,解题的方法是设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.22.(1)220y x =−+ (2)5种(3)当转运A 种脐橙的车4辆,转运B 种脐橙的车12辆,转运C 种脐橙的车4辆时,利润最大为140800元【分析】(1)根据题意列式:()20651040x x y y −−=++,整理后即可得到220y x =−+; (2)根据装运每种水果的车辆数都不少于4辆,4x ≥,2204x −+≥,解不等式组即可;(3)设利润为W 元,则()480016000048W x x =−+≤≤,根据一次函数的增减性求解即可. 【详解】(1)根据题意,装运A 种水果的车辆数为x ,装运B 种水果的车辆数为y ,∴装运C 种水果的车辆数为()20x y −−,∴()20651040x x y y −−=++, 整理得220y x =−+. (2)由(1)知,装运A ,B ,C 三种水果的车辆数分别为x ,220x −+,x ,由题意得2204x −+≥,解得8x ≤,∵4x ≥,∴48x ≤≤.∵x 为整数,∴x 的值为4,5,6,7,8,∴安排方案共有5种.(3)设利润为W 元,∴()612005220160041000W x x x =×+−+×+× 4800160000x =−+,因为48000−<,且x 的值为4,5,6,7,8,∴W 的值随x 的增大而减小,∴当4x =时,销售利润最大.当装运A 种水果4车,B 种水果12车,C 种水果4车,销售获利最大.最大利润48004160000140800W =−×+=(元).【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.(1)2(0,0)P ,3(1,1)P ,4(2,2)P(2)①AC =BC =AB =ABC 是直角三角形,理由见解析【分析】本题考查了二次函数的图象与性质、勾股定理以及勾股定理逆定理:(1)根据“梦之点”的定义判断这几个点是否在矩形的内部或者边上即可得到答案;(2)①根据“梦之点”的定义求出A ,B 的坐标,再求出顶点的坐标,计算出AC ,AB ,BC 的长; ②根据勾股定理逆定理,即可求解.【详解】(1)解:∵矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,∴矩形ABCD 的“梦之点”(),x y 满足2,131x y −−≤≤≤≤,∴点2(0,0)P ,3(1,1)P ,4(2,2)P 是矩形ABCD 的“梦之点”,1(2,2)P −−不是矩形的“梦之点”.故答案为:2(0,0)P ,3(1,1)P ,4(2,2)P(2)解:①A 、B 是抛物线21922y x x =−++上的“梦之点”, ∴21922x x x =−++, 解得:123,3x x ==−,当3x =时,3y =,当3x =−时,=3y −,∴()()3,3,3,3A B −−, ∵()2219115222y x x x =−++=−−+, ∴顶点坐标为()1,5C ,∴AC =BC =AB =; ②ABC 是直角三角形,理由如下:∵AC =BC =AB =∴((2222280AB AC BC +=+==,∴ABC 是直角三角形.24.(1)证明见解析(2)证明见解析(3)①EF =253CF =【分析】本题考查了圆的性质,等腰三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,掌握相关知识是解题的关键.(1)利用勾股和锐角三角函数求得AC BC =即可证明;(2)连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,先证明CO 是ACB ∠的角平分线,再证明ANM CDM ∽即可得出结论;(3)①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,先证明CHO CFB ∽,设EF x =3x =即可求解,②要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,当E 点与O 点重合时,EF 最大,CE OE OC −=最大,先求得EF =即可求出CF . 【详解】(1)证明:∵AD 是ABC 的高线,∴90ADC ADB ∠=∠=°, ∵9AD =,12CD =,∴15AC ===,∵tan 3ABD ∠=, ∴tan 3AD ABD BD∠==, ∴3BD =,∴31215BC BD CD =+=+=, ∴AC BC =,∴ABC 是等腰三角形.(2)证明:连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,如图:∵AC BC =,∴CAB CBA ∠=∠, ∵OA OB =,∴OAB OBA ∠=∠, ∴CAO CBO ∠=∠, ∵OA OC =,∴CAO ACO ∠=∠, ∵OB OC =,∴BCO CBO ∠=∠, ∴ACO BCO ∠=∠, ∴CO 是ACB ∠的角平分线, 又∵ AC BC =,∴CN AB ⊥,∴90ANC BNC ∠=∠=°, ∴90MDC ANE ∠=∠=°, 又∵AMN CMD ∠=∠, ∴ANM CDM ∽,∴DCM NAM ∠=∠, ∴BCO BAD ∠=∠. (3)解:①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,如图:∵,,15OB OC OH BC BC =⊥=, ∴17.52CH BC ==,90CHO CFB ∠=∠=°, ∴CHO CFB ∽,∴COH CBF ∠=∠, ∵tan 3ABD ∠=, ∴tan tan 3CH COH CBF OH∠=∠==, ∴ 2.5OH =,∴OC =, ∵EF AB ∥,90BNC ∠=°, ∴CEF CNB ∽,∴90CEF CNB ∠=∠=°, 设EF x =,∴tan tan 3CE CE CFE CBN EF x∠=∠===, ∴3CE x =,∵OEF ADB ∽,∴OE EF AD BD=, ∵OEOC CE =−, 3x =, 解得:x =∴EF ②∵90CEF ∠=°,即EF OC ⊥, ∴12CEF S CE EF =⋅ ,12OEF S OE EF =⋅ , ∴()111222CEF OEF S S CE EF OE EF EF CE OE −=⋅−⋅=⋅− , 由题知,要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,∴当E 点与O 点重合时,EF 最大,CE OE OC −=最大,如图:∵EF AB ∥,∴CEF CNB ∽,∴CFE CBN ∠=∠,CE OC ==,∴tan tan 3CE CFE CBN EF ∠=∠==,∴EF∴253CF =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、中考数学压轴题1.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.2.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.3.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.4.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.5.已知抛物线217222y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.6.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.7.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.8.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N .(1)如图1,当α=60°时,求证:DM =BN ;(2)在上述旋转过程中,DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.9.如图,在平面直角坐标中,点O 为坐标原点,ABC ∆的三个顶点坐标分别为()A O m ,,(),B m O -,(),C n O ,5AC =且OBA OAB ∠=∠,其中m ,n 满足725m n m n +=⎧⎨-=⎩.(1)求点A ,C 的坐标;(2)点P 从点A 出发,以每秒1个单位长度的速度沿y 轴负方向运动,设点P 的运动时间为t 秒.连接BP 、CP ,用含有t 的式子表示BPC ∆的面积为S (直接写出t 的取值范围);(3)在(2)的条件下,是否存在t 的值,使得ΔΔ32PAB POC S S =,若存在,请求出t 的值,并直接写出BP 中点Q 的坐标;若不存,请说明理由.10.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+,32AB =,45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.11.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.12.如图1,在O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO ,AD AB =.(1)求证:2CAO CDB ∠=∠(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.13.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.(1)求证:DE =BO ;(2)如图2,当点D 恰好落在BC 上时.①求点E 的坐标;②在x 轴上是否存在点P ,使△PEC 为等腰三角形?若存在,写出点P 的坐标;若不存在,说明理由;③如图3,点M 是线段BC 上的动点(点B ,点C 除外),过点M 作MG ⊥BE 于点G ,MH ⊥CE 于点H ,当点M 运动时,MH +MG 的值是否发生变化?若不会变化,直接写出MH +MG 的值;若会变化,简要说明理由.14.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?15.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.16.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.17.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.18.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM =BN ;(2)如图②,点F 为角平分线AN 上一点,且∠CPF =30°,求证:△APF ∽△AMC ; (3)在(2)的条件下,求PF BN的值. 19.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(12,﹣98)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣12m2关于点P(m,0)的相关函数的最大值为6,求m的值.20.如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE分别长acm.bcm,满足(a-3)2+|2a+b-9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D,设运动时间为t s.(1)a=______cm,b=______cm;(2)t为何值时,EP把四边形BCDE的周长平分?(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2.21.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:BEDE=33;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.22.如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出当t为何值时,①PD=PQ;②DQ=PQ.23.如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC=8,点D在△ABC外,连接AD、BD,且∠ADB=90°,AB、CD相交于点E,AB、CD的中点分别是点F、G,连接FG.(1)求AB的长;(2)求证:AD+BD=2CD;(3)若BD=6,求FG的值.24.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.25.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)菱形;(2)①AF =ADAF ⊥AD ;②2AD OG =,理由见解析;(3)4【解析】【分析】(1)由折叠的性质可得AB=AD=BC=CD ,可得四边形ABCD 是菱形;(2)①由菱形的性质可得AD ∥BC ,且AF ⊥BC ,可得AD ⊥AF ,由等腰三角形的性质和外角的性质可求∠OBE=∠OEB=45°,∠ABE=∠AFB ,可得AF=AB ;②取AB 中点M ,由三角形中位线定理可得MO ∥AD ,AD=2MO ,AF ∥MG ,AF=2MG ,且AF=AD ,AD ⊥AF ,可得MO=MG ,MG ⊥MO ,可得2OM ,即可得OG 与AD 的数量关系;(3)连接AG ,由等腰三角形的性质可得AG ⊥BF ,且∠BEO=45°,可得AG=GE ,由勾股定理可求解.【详解】解:(1)∵将△ABC沿y轴翻折∴AB=AD,BC=CD又∵AB=CB∴AB=AD=BC=CD∴四边形ABCD是菱形故答案为:菱形;(2)①∵四边形ABCD是菱形∴AD∥BC,且AF⊥BC∴AD⊥AF,∴∠FAC+∠CAD=90°,且∠CAD+∠ADO=90°,∴∠FAC=∠ADO,∵AB=AD∴∠ABD=∠ADB,∴∠ABD=∠FAC∵OE=OB∴∠OBE=∠OEB=45°∴∠ABD+∠OBE=∠FAC+∠OEB∴∠ABE=∠AFB∴AF=AB∴AF=AD,故答案为:AF=AD,AD⊥AF;②AD=2OG;如图,取AB中点M,∵点M是AB的中点,点G是BF的中点,点O是AC的中点,∴MO∥AD,AD=2MO,AF∥MG,AF=2MG,且AF=AD,AD⊥AF ∴MO=MG,MG⊥MO∴2OM∵2GO;(3)∵四边形ABCD的周长为8,∴AB=BC=CD=AD=2=AF如图,连接AG,∵AB=AF ,点G 是BF 的中点,∴AG ⊥BF ,且∠BEO=45°∴∠GAE=∠BEO=45°∴AG=GE ,∵AG 2+GF 2=AF 2=4,∴GE 2+GF 2=4,故答案为:4;【点睛】本题是四边形综合题,考查了菱形的判定和性质,等腰直角三角形的性质,三角形中位线定理,折叠的性质,添加恰当辅助线是本题的关键.2.A解析:(1) A (12,0) B (72,0);(2) ①23333y x =-+,②24316373999y x x =-+ 【解析】【分析】(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4∆∆=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得13=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标; (2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式.【详解】解:(1)∵抛物线的解析式为24(0)=-+>y mx mx n m , ∴对称轴为直线422-=-=m x m, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,∴△AOE ∽△AGC , ∴=AO AE AG AC , ∵:3:4ABC BCE S S =,∴CA :CE =3:4 ,则31AE AC =, ∴13==AO AE AG AC , ∴1142==OA OG ,3342==AG OG , 则23==AB AG ,72=+=OB OA AB , ∴A (12,0), B (72,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,由旋转的性质得:△BCO ≌△ACQ ,∴BO =AQ =72,CO =CQ , ∴OQ==== ∵CP y ⊥轴,∴12==OP OQ ∴点C的坐标为(2,,则CG =由(1)得△AOE ∽△AGC ,13==OE AE CG AC ,∴3OE =,即点E的坐标为(0,3, ①设CE 的解析式为y kx b =+,分别代入C (2,,E 得:23k b b ⎧+=⎪⎨=⎪⎩,解得:k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴CE的解析式为33y x =-+; ②将A (12,0),C (2,分别代入24y mx mx n =-+得:120448m m n m m n ⎧-+=⎪⎨⎪-+=⎩,解得:99m n ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为2999y x x =-+. 【点睛】本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键. 3.C解析:(1)112y x =-+;(2)1d t =-+;(3)65t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD 的解析式为:112y x =-+; (2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,令26112y x y x =+⎧⎪⎨=-+⎪⎩, 解得22x y =-⎧⎨=⎩, ∴()2,2E -,易证EDM ≌EAN ,ENH ≌EMG ,∴AN =DM ,HN =GM ,∴AH DG =,由直线CE 的解析式112y x =-+,可求点D (0,1) ∴DG =1—t ,∴1d t =-+;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,易证四边形BGMT 与四边形HNMC 均为矩形,由(2)问可知1t AH GD ==-,则6t HC =-∴6t BG MT ==-,∴MN MT =,∵90KNM LTM ∠=∠=︒,∴ENH ≌EMG ,∴L NKM ∠=∠,设KMN α∠=,则KMB KMN α∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+, 解得64215t +=(不合题意舍去)或64215t -= 故,6215t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.4.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1, ∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+, ∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3, ∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:111201m -=211201m +=(不合题意,舍去), ∴点P 11201- 【点睛】本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.5.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或417k 或417k 时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【解析】【分析】(1)从2172022x mx m 的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴32bx a 来求m 的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点C 的坐标;(3)根据平行四边形的性质得到:215|1(3)|422MN k k kCD . 需要分类讨论:①当四边形CDMN 是平行四边形,2151(3)422MN k k k,通过解该方程可以求得k 的值;②当四边形CDNM 是平行四边形,2153(1)422NM k kk ,通过解该方程可以求得k 的值. 【详解】 解:(1)2217()4(2)(2)322m m m, ∵不论m 为何实数,总有2(2)0m -≥,2(2)30m ,∴无论m 为何实数,关于x 的一元二次方程2172022x mxm总有两个不相等的实数根,∴无论m 为何实数,抛物线217222y x mxm与x 轴总有两个不同的交点. (2)抛物线的对称轴为直线3x =,3122m ,即3m =,此时,抛物线的解析式为221513(3)2222y x xx ,∴顶点C 坐标为(3,2)-;(3)//,CD MN C D M N 、、、为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线的下方),如图所示,由已知215(3,2),(,1),(3)22D M k k N k k k,, (3,2)C ,4CD ∴=,2151(3)422MNk k kCD,①当四边形CDMN 是平行四边形,2151(3)422MNk k k,整理得,28150k k -+=,解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形,2153(1)422NMk kk ,整理得2810k k , 解得,12417417k k ,,综上,5k =或417k或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.6.A解析:(1)12;(2)5s 或373s ;(3)163s 或685s 或72s 【解析】 【分析】(1)AD 与BC 之间的距离即AB 的长,如下图,过点D 作BC 的垂线,交BC 于点E ,在RtDEC 中可求得DE 的长,即AB 的长,即AD 与BC 间的距离; (2)四边形QDCP 为平行四边形,只需QD=CP 即可;(3)存在3大类情况,情况一:QP=PD ,情况二:PD=QD ,情况三:QP=QD ,而每大类中,点P 存在2种情况,一种为点P 还未到达点C ,另一种为点P 从点C 处返回. 【详解】(1)如下图,过点D 作BC 的垂线,交BC 于点E∵∠B=90°,AD ∥BC ∴AB ⊥BC ,AB ⊥AD∴AB 的长即为AD 与BC 之间的距离 ∵AD=16,BC=21, ∴EC=5 ∵DC=13∴在Rt DEC 中,DE=12同理,DE 的长也是AD 与BC 之间的距离 ∴AD 与BC 之间的距离为12 (2)∵AD ∥BC∴只需QD=PC ,则四边形QDCP 是平行四边形 QD=16-t ,PC=21-2t 或PC=2t -21 ∴16-t=21-2t 或16-t=2t -21 解得:t=5s 或t=373s (3)情况一:QP=PD图形如下,过点P 作AD 的垂线,交AD 于点F∵PQ=PD ,PF ⊥QD , ∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90° ∴四边形ABPF 是矩形, ∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t ∵AF=BP ∴8+2t =2t 或8+2t=42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12 BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+- ∵PD=QD , ∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+-- 解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12 BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+-∵PQ=QD , ∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+-- 第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度. 7.(1)1001;9999;(2)2754和4848;(3)见解析 【解析】 【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明. 【详解】解:(1)根据“和平数”的定义可得: 最小的“和平数”1001,最大的“和平数”9999, 故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤, 则个位数字是2a , 又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数, ∴m+n =0或m+n =12, ∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意, ∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数, ∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754; 当a =4时,m =8,这个“和平数”是4848; 综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++ 110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d , ∴原式1100()11()a b a b =+++ 1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除, ∴任意的两个“相关和平数”之和是1111的倍数. 【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.8.A解析:(1)详见解析;(2)3DNDM =,是一个定值;(3)92【解析】 【分析】(1)利用ASA 证ADM DBN △≌△,从而得出DM BN =; (2)如下图,先证NDQ MDP △∽△,得出DN DQDM DP=,然后在Rt BDQ △,利用tan ∠B 得出DQ BQ 的值,最后得出DNDM的值; (3)如下图,先证点C 是EF 的中点,然后利用CD 平分EDF ∠可推导出四边形CGDH 为正方形,从而得出CHN CGM △≌△,进而得出面积. 【详解】解:(1)由题意,∵60α=︒,90EDF ∠=︒,∴30BDN ∠=︒,∴BDN A ∠=∠,B EDA ∠=∠, ∵点D 是斜边AB 的中点,∴AD BD =, ∴ADM DBN △≌△,∴DM BN =. (2)3DNDM=,是一个定值. 证明:如图1,作DP AC ⊥于点P ,DQ BC ⊥于点Q ,∴90NQD MPD ∠=∠=︒,又∵90MDN PDQ ∠=∠=︒,∴NDQ MDP ∠=∠, ∴NDQ MDP △∽△,∴DN DQDM DP=, 在Rt BDQ △中,60B ∠=︒,∴tan ∠B 3DQBQ==又由(1)可知:DP BQ =,∴3DQDP =, ∴3DNDM= (3)连接CD ,作CG DE ⊥于点G ,CH DF ⊥于点H ,在Rt ABC 中,点D 是AB 的中点,∴132CD AB ==, ∵AB EF =,∴12CD EF =,∵90EDF ∠=︒,∴C 是EF 中点, ∴CD 平分EDF ∠,45CDE ∠=︒, ∵CG DE ⊥,CH DF ⊥,∴CG CH =, ∵90CGD CHD EDF ∠=∠=∠=︒, ∴四边形CGDH 为正方形,90GCH ∠=︒, ∴GCM HCN ∠=∠,∴CHN CGM △≌△, ∴S 四边形CMDN S =正方形21922CGDH CD ==. 【点睛】本题综合考查了全等三角形和相似三角形的证明和性质,解题关键是找出两个全等(相似)三角形,根据三角形全等(相似)的性质推出结论.9.A解析:(1)A (0,4),C (3,0);(2)S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩;(3)存在,满足条件的t 的值为3617或36,点Q 的坐标为162,17⎛⎫- ⎪⎝⎭或()2,16--.【解析】 【分析】(1)解方程组求出m ,n 即可解决问题.(2)分两种情形:如图1中,当0<t <4时,如图2中,当t >4时,根据S=12•BC•OP 求解即可.(3)分两种情形分别构建方程求解即可. 【详解】解:(1)由725m n m n +=⎧⎨-=⎩,解得:43m n =⎧⎨=⎩,∴A (0,4),C (3,0); (2)如图1中,当0<t <4时,S=12•BC•OP=12×5×(4-t )=-52t+10. 如图2中,当t >4时,S=12•BC•OP=12×5×(t-4)=52t-10. 综上所述,S=()()51004251042t t t t ⎧-+<<⎪⎪⎨⎪->⎪⎩,(3)当04t <<时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯,解得3617t =, 此时,363241717OP =-=, 32(0,)17P ∴, (4,0)B -,BQ ∴的中点Q 的坐标为162,17⎛⎫- ⎪⎝⎭,当4t >时,由题意,1314(4)3222t t ⨯⨯=⨯⨯-⨯,解得36t =,此时36432OP =-=, (0,32)P ∴-, (4,0)B -,BP ∴的中点Q 的坐标为(2,16)--.综上所述,满足条件的t 的值为3617或36.点Q 的坐标为16(2,)17-或(2,16)--.【点睛】本题属于三角形综合题,考查了解方程组,三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.10.B解析:(1)333-;(2)18;(3)①2716;②972625【解析】 【分析】(1)过点B 作BF ⊥AD ,交DA 的延长线于点F ,利用等腰直角三角形ABF 求得AF 和BF 的长,再利用Rt △PBF 求得PF 的长,进而得解;(2)作点B 关于直线AD 的对称点B',连接B'C ,交AD 于点P',连接BP',根据两点之间线段最短可知当B',P ,C 三点共线时,BPC △周长取得最小值,再利用勾股定理计算即可;(3)①②根据EM PB ⊥,EN PC ⊥可得点E 、M 、P 、N 在以PE 为直径的圆上,利用圆周角定理和直角三角形两锐角互余可证得△MPN ∽△CPB ,进而可知当MN 最大时,PMN 面积的最大,当MN 最小时,PMN 面积的最小,由圆的性质可知当MN 为直径时MN 最大,当MN ⊥PE 时,MN 最小,最后利用勾股定理、等积法和相似三角形的性质求解即可. 【详解】解:(1)如图,过点B 作BF ⊥AD ,交DA 的延长线于点F ,∵AD ∥BC ,∠ABC =45°, ∴∠FAB =∠ABC =45°, ∵BF ⊥AD ,∴在Rt △ABF 中,AF 2+BF 2=AB 2, ∵32AB =∴AF =BF 22323=, ∵AD ∥BC ,∠PBC =30°, ∴∠FPB =∠PBC =30°,∵在Rt △PBF 中,tan ∠FPB=BFPF∴tan30°=333PF =, ∴33PF=∴333AP PF AF =-=-;(2)如图,作点B 关于直线AD 的对称点B',连接B'C ,交AD 于点P',连接BP',∵点B 与点B'关于直线AD 对称, ∴AD 垂直平分BB',BF =B'F =3, ∴P'B =P'B',BB'=6,∴当点P 在点P'时,PB+PC 取得最小值,最小值为B'C 的长,此时△BPC 的周长最小, 在Rt △BB'C 中,B'C =22226810'BB BC +=+=, ∴△BPC 的周长最小值为B'C +BC =10+8=18; (3)①∵EM PB ⊥,EN PC ⊥, ∴∠EMP =∠ENP =90°,∴点E 、M 、P 、N 在以PE 为直径的圆上,如图所示,则∠PMN =∠PEN , ∵PE BC ⊥,EN PC ⊥, ∴∠PEC =∠ENC =90°,∴∠PEN+∠NEC =∠NEC+∠PCB =90°, ∴∠PEN =∠PCB , ∴∠PMN =∠PCB , 又∵∠MPN =∠CPB , ∴△MPN ∽△CPB ,∴2PMN PCB S MN S BC ⎛⎫= ⎪⎝⎭∵PE BC ⊥, ∴PE =3,∴118312 22PCBS BC PE==⨯⨯=∴2 128PMNS MN⎛⎫= ⎪⎝⎭∴当MN取得最大值时,PMN的面积取得最大值,当MN=PE=3时,23128PMNS⎛⎫= ⎪⎝⎭解得2716PMNS=即当MN=PE=3时,PMN的面积最大,最大值为27 16;②由①可知,2 128PMNS MN⎛⎫= ⎪⎝⎭,∴当MN取得最小值时,PMN的面积取得最小值,由垂径定理可知,当MN⊥PE时,MN取得最小值,如图,当MN⊥PE时,则弧ME=弧NE∴∠MPE=∠NPE,∵PE BC⊥,∴∠PEB=∠PEC=90°,∴△PEB≌△PEC,∴EB=EC=12BC=4,在Rt△BEP中,BP2222435BE PE+=+=,∵1122BEPS BE PE BP ME ==∴1143522ME ⨯⨯=⨯∴125 ME=,在Rt△PME中,PM2222129355 PE ME⎛⎫-=-=⎪⎝⎭∵1122PMES PM ME PE MH ==∴191213 2552MH ⨯⨯=⨯∴3625MH =, ∴72225MN MH ==, ∴227292512825PMN S ⎛⎫ ⎪⎛⎫== ⎪ ⎪⎝⎭⎪⎝⎭, 解得972625PMN S =, ∴PMN 面积的最小值为972625. 【点睛】本题考查了等腰直角三角形、特殊角的三角函数、相似三角形的判定及性质、勾股定理、垂径定理和圆周角定理等相关知识,有点难度,属中考压轴题,能够将第(3)问转化为利用圆的相关知识和相似三角形的性质解决是解决本题的关键.11.A解析:(1) 149,212⎛⎫⎪⎝⎭;(2) 257t =;(3)存在,见解析 【解析】 【分析】(1)已知抛物线的2点,代入可直接求解;(2)根据A 、B 的坐标,得出AD 、AB 的长,通过推导可证ABCQDB ∆∆,利用相似得到的比例线段即可求得DQ 、PD 的长,从而得出t ;(3)根据轴对称的最短路径先作C 关于对称轴的对称点,即点A ,连接AO 与对称轴的交点即为点M .【详解】(1)抛物线()240y ax bx a =++≠与x 轴交于()()3,0,4,0A C -两点 164409340a b a b ++=⎧∴⎨-+=⎩ 解这个方程组,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的解析式为211433y x x =-++ 221111494333212y x x x ⎛⎫=-++=--+ ⎪⎝⎭。

相关文档
最新文档