基于PLC三相步进电动机控制系统设计(三相步进电动机PLC控制系统)
基于PLC的步进电机控制 (课程设计)

本文介绍了本实验旨在完成使用PLC(Programmable Logic Controller)控制步进电机的整步运行、正反转运行、快慢速运行以及定位运行。
文中指出本次使用的编程思想主要为模块化设计即为完成任务可对程序划分为主程序及子程序。
由于步进电机需要脉冲来运行,所以本程序使用PTO高速脉冲输出脉冲。
在定位程序中则应用到中断子程序命令。
另外,本文为更好的阐述实验内容,加入了与之前完全不同的方式的对比实验。
在对比试验中则应用计时器来完成步进电机的脉冲产生,另步进电机的各种功能则使用了一般的设计方式来实现。
二者完成完全相同的功能。
关键词:PLC 步进电机 PTO高速脉冲1 实验内容 (1)1.1实验任务 (1)1.2实验要求 (1)2 实验设备 (2)2.1步进电机简介 (2)2.2 PLC简介 (2)3 设计过程 (3)3.1设计思想 (3)3.2程序设计 (4)4 对比实验 (12)4.1对比程序思想 (12)4.2对比程序 (14)谢辞 (15)参考文献 (16)1实验内容1.1实验任务本次实验要求改变PLC脉冲输出信号的频率,实现步进电机的速度控制。
同时按下K1、K2、K3按钮,步进电机进行整步运行。
按下慢/快按钮,电机慢/快速运行。
用PLC 输出脉冲的个数,实现步进电机的精确定位。
在整步运行状态下,设脉冲数为一固定值,并用计数器进行计数,实现电机的精确定位控制。
按下停止按钮,系统停止工作。
1.2实验要求本设计要求使用步进电机。
选用的步进电机为二项混合式,供电电压24VDC,功率30W,电流1.7A,转矩0.35NM,步矩角1.8º/0.9º,并配有细分驱动器,实现细分运行,减少震荡。
本设计要求选用PLC设计出输出频率可变的控制程序,实现对步进电机的速度、方向、定位、细分等控制功能。
本设计旨在培养综合设计能力、创新能力、分析问题与解决问题的能力。
掌握PLC 控制的步进电机控制系统的构成及设计方法;掌握PLC控制程序设计、调试的方法。
步进电机的三菱PLC控制

步进电机的三菱P L C控制Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】摘要:设计一种基于PLC的步进电机控制系统, 通过微型变速箱将步进电机角位移转化为直线位移, 进而带动直线伸缩机构运行。
该系统结构简单、性能稳定、经济价值和使用效果突出, 能够满足毫米级精确位移的使用需求。
关键词: PLC; 步进电机; 驱动器; 脉冲;方向。
目录第1章绪论设计背景步进电动机已成为除直流电动机和交流电动机以外的第三类电动机,传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。
可是在人类社会进入自动化时代的今天,传统电动机的功能已不能满足工厂自动化和办公自动化等各种运动控制系统的要求。
为适应这些要求,发展了一系列新的具备控制功能的电动机系统,其中较有自己特点,且应用十分广泛的一类便是步进电动机。
步进电动机的发展与计算机工业密切相关。
自从步进电动机在计算机外围设备中取代小型直流电动机以后,使其设备的性能提高,很快地促进了步进电动机的发展。
另一方面,微型计算机和数字控制技术的发展,又将作为数控系统执行部件的步进电动机推广应用到其他领域,如电加工机床、小功率机械加工机床、测量仪器、光学和医疗仪器以及包装机械等。
任何一种产品成熟的过程,基本上都是规格品种逐步统一和简化的过程。
现在,步进电动机的发展已归结为单段式结构的磁阻式、混合式和爪极结构的永磁式三类。
爪极电机价格便宜,性能指标不高,混合式和磁阻式主要作为高分辨率电动机,由于混合式步进电动机具有控制功率小,运行平稳性较好而逐步处于主导地位。
最典型的产品是二相8极50齿的电动机,步距角°/°(全步/半步);还有五相10极50齿和一些转子100齿的二相和五相步进电动机,五相电动机主要用于运行性能较高的场合。
到目前,工业发达国家的磁阻式步进电动机已极少见[1]。
用FX2NPLC主机控制三相步进电动机的方法

;
’
l
l
f
f
l
收 稿 日期 :2 0 — 4 0 0 70 — 8
l f
l 厂 1 l l 广 r —丁 —一1
i} l i;
-L l1 _I J_ 忡 l r
i i ;; ;
l I l f
Z1 』
l
-一
A _ 1 l 厂 『 l 1]
lj广 丁
l
_} _ 一
皇
【 a )传 动 简 图
—
A C D B dmm) ( ) 电机 运 行 频 率
关键 词 :三相 步进 电动 机 ;可编程 控制 器 (L ;控 制 P C)
中 图 分 类 号 :T 2 文 献 标 识 码 :A 文 章 编 号 : 10 — 6 3 (0 7 0 — 4 - 2 P3 0 2 6 7 2 0 ) 4 10 0
0 引 言
早期 的可 编程 控制 器 没 有高 速脉 冲输 出功能 ,没 有 高速 计数 功能 。输 出脉 冲的频 率 比较 低 。难 以满 足控 制
化至 5 0 z 0 H
F N 系 列 可编 程 控 制 器 的输 出有 三种 形 式 :晶体 X2 管 输 出 、可 控 硅 输 出 和 继 电 器 输 出 。控 制 步 进 电动 机 时 。 能采 用 晶体 管输 出型 。F N 系 列 可编 程控 制 器 只 X2
基于PLC的步进电动机软起、停控制设计

t e se p rmo o a e s f sat/ t p mo t l o e s r h h tp e t rc n b o t r so s s o hy t n u e t e t s
sa iiy On t e o h rtm e,h ma r qu n y l e i c e s d t blt . h t e i te x fe e c wilb n r a e
机时 的平稳性 。同时可 使 步进电 动机 的最高 运行 频率 提高
2—8 而 不 失 步 。 倍 关键 词 :L R MP; 进 电动 机 ; 起 动 P C;A 步 软
中图分类号 : M3 36 T 8 .
Байду номын сангаас
文献标识码 : A
文 章 编 号 :04— 0 8 20 )9— 0 5— 2 10 7 1 (0 6 0 0 2 0
O Y NGS n—ti, H U Qn , U U A a a Z O i O  ̄NGX i ( . n nIstt o E gneig X a g n4 0 C ia 1 Hu a ntue f n ier , int 1 4, hn ; i n a 1 1 2 S a g a Daj U i ri ,h n h i 0 2 0 C ia3 E s C iaJ oo gU i r t, ac a g 3 0 3 C ia . h nh i i i nv sy S ag a 2 0 4 , hn ;. at hn i t nv sy N nh n 0 1 , hn ) n e t a n ei 3
A bsr c Th u c in t e fa u e n h ppy m eh d t a t: e f n to s,h e t r sa d t e a l t o s
基于plc技术的步进电动机控制系统及其智能保护

2 0 o O “s , 最高频率的周期为 整脉冲周期的增量值 : 周期 的增量 值=【 E
= us / 周期 式中的E TC 、 I 和 Q分别是该段最 高 频率 的周期 、 初始 时的周期和 脉冲数 由上面的计 算过程式可 知 , 对于 给定 了初始 频率 、 运 行频率 以及行程 。 可 以 根公式计算出频率上升的斜率 , 基于此原则, 可以在子程序中设定外部给定的 三个变量: 初始频率、 运行频率, 脉冲数, 计算出各段运行脉冲数。 根据此原理进 行 对程序 的设 计 。
通过脉冲输出指令P L s 启动脉冲的输出。 如果采用 . 1 作为高速脉冲串输出, 对应的特殊寄存器分别是 s Mw7 8 和s MD8 2 。
2 . 3 . 2加减 速运 行的 设计
通过
程序从外都输入脉冲数值 , 并能实现正反转运行 。 初始周期为 ¨s , 则对于第一段包络线来说 , 脉冲发生器调
.
1电动机 简介
步进电动机和一般电动机一样, 分为定子和转子两大部分。 定子有硅钢片 叠成, 装上一定相数的控制绕组, 有环形分配器送来的电脉冲对多相定子绕组 轮流进行励磁t 转子用硅钢片叠成或用软磁材料做成凸极结构, 步进电动机的 位移量与输入脉冲数严格成比例。 其转速与脉冲频率和步距角有关。 [ 1 陟 进电 动机是受其输入信号而动作的, 脉冲发生器所产生的电脉冲信号。 通过环形分 配器按一定的顺序加到电动机的各相绕组上。 为使电动机能够输出足够的功 率, 经环形分配器所产生的信号还焉进行功率放大 。 2 . 1 . 2步进电动机的选择 在选择步进电动机时主要考虑的是步进电动机的类型选择 , 根据系统要
求, 确定步进 电 动机的电压值、 电 流值以及有无定位转矩和使用螺栓机构的定 位装置 , 从而就可以确定步进电动机的相数和拍数。 臼 l
PLC控制步进电机的系统设计(毕业设计)

摘要本文主要阐述了三相三拍步进电动机结构和步进电机原理,以及对步进电机的调速和正反转的研究。
采用PLC基本逻辑指令和常用指令的方法对步进电机调速很正反转控制。
步进电机是一种将脉冲信号转换成直线位移或角位移的执行元件。
步进电机的输出位移量与输入脉冲个数成正比,其速度与单位时间内输入的脉冲数(即脉冲频率)成正比,其转向与脉冲分配到步进电机的各相绕组的相序有关。
所以只要控制指令脉冲的数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移量、速度和方向。
步进电机具有较好的控制性能,其启动、停车、反转及其它任何运行方式的改变都可在少数脉冲内完成,且可获得较高的控制精度,因而得到了广泛的应用。
SummaryThis paper describes the structure of three-phase three-beat stepper motors and stepper motor principle,and the stepper motor speed control and reversing research. Using PLC basic logic instructions and common method of instruction is reversing the stepper motor speed control.Stepper motor is a pulse signal into a linear displacement or angular displacement of the actuator.The output of the stepper motor displacement is proportional to the number of input pulses,the speed and unit time input pulses (ie pulse frequency)is proportional to its steering and pulse distribution phase stepper motor winding phase sequence of the.So long as the control command pulse number, frequency and phase sequence of the motor windings are energized,the output can be controlled stepper motor displacement, velocity and direction.Stepper motor has good control performance, and its start,stop,reverse and other changes in the way of any operation can be completed within a few pulses, and the availability of high control accuracy,and have been widely used。
基于S7-1200PLC的步进电机控制系统

图1 步进电机控制系统总体设计方案图
3 硬件系统设计
步进电机控制系统主要包括供电电源、上
位机PC、下位机S7-1200PLC、两相混合式安川
42HD2404步进电机和雷赛DM320C步进电机驱动器
等组成。
如图2所示。
石有计,铁岭师范高等专科学校,教授,研究方向:电气自动化技术。
在编写PLC程序时,I/O接口会根据接线情况自动分配信号,对应的信号得以分配后。
信号控制会以输入输出口为主,将I/O接口作为主导。
输入变量如下:步进电机起动I0.0、步进电机停止I0.1、步进电机复位I0.2、步进电机向后点动I0.3、启动调速I0.4、启动预订速度I0.5、启动手动调速I0.6、手动加速I0.7、手动减速I1.0、转动距离1(3200)I1.1、转动距离2(32000)I1.3、转动距离3(64000)I1.3、转动距离4(96000)I1.4、步进电机向前点动I1.5。
输出变量如下:步进电机转动Q0.0、步进电机方向控制Q0.1、步进电机启动指示
4.2 PLC程序设计
本文采用S7-1200PLC作为主控器,结合硬件设计情况,对步进电机控制系统进行设计,并通过系6 结语
本文采用西门子S7-1200PLC,使用博途V15编程软件,进行步进电机控制系统设备组态及编程,有效实现步进电机控制要求。
实验结果表明,该系统动态特性好、精度高,达到了步进电机运行状态可视化和控制智能化的目的。
该系统具备控制过程的参考价值,对于高效率、小步距、低振动和低噪
图2 硬件接线设计图
表1 细分数和电流选择
图3 触摸屏运行界面。
毕业设计(论文)-基于PLC控制的多段调速系统实现

摘要随着工业控制要求的发展,对电机速度的控制越来越高。
传统的模拟信号控制方式存在抗干扰能力差、对设备要求复杂、控制精度不高等问题,难以适应日益复杂的工业环境。
本文主要介绍了多段调速系统的结构,并完成了以PLC为控制器,以增量式光电编码器为速度采集的闭环PID控制系统,通过RS-485对变频器的控制实现了三相异步电机的多段调速。
关键字:PLC;RS-485;多段调速;光电编码器AbstractWith the requirements of the development of industrial control, the speed of motor control is more and more strict. The traditional analog signal control mode has poor capacity of resisting disturbance, the requirement of complex equipment, the control precision low and some other problems, it is difficult to adapt to the increasingly complex industrial environment. In this article, mainly introduces the structure of various speed system, and completed the closed loop PID control system through the PLC as controller and incremental photoelectric encoder for speed acquisition, achieve the multistage speed control three-phase asynchronous motor through Frequency converter based on RS-485.Key words: PLC; RS-485; multistage speed; encoder目录第一章概述 (4)1.1 课题研究的背景及意义 (4)1.2 课题研究现状 (5)1.3 本课题研究的主要内容 (6)第二章系统分析 (7)2.1 PLC基本知识 (7)2.1.1 PLC的基本功能 (8)2.1.2 PLC的特点 (9)2.1.3 PLC的展望 (11)2.2 变频器基本知识 (12)2.2.1 变频器的应用 (12)2.2.2 变频器的分类 (13)2.2.3 变频器控制的展望 (14)2.3 光电编码器 (15)2.3.1 增量式编码器 (15)2.3.2 绝对式编码器 (16)第三章系统设计 (19)3.1 总体方案 (19)3.2 硬件设计 (19)3.2.1 变频器的连接 (20)3.2.2 光电编码器的配置 (20)3.2.3 PLC输入输出口分配 (21)3.3 软件设计 (21)3.3.1 变频器的参数设置 (22)3.3.2 PLC的设计 (23)第四章结论 (28)结束语 (29)致谢 (30)参考文献 (31)第一章概述1.1 课题研究的背景及意义随着计算机技术、电子技术的不断进步,PLC(可编程逻辑控制器)技术、变频(变频器)调速技术的发展极为迅速,已渗透到各个领域,以它们为主导的现代生产技术正以史无前例的速度迅猛发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 概述 (1)1.1 PLC控制步进电机研究的意义 (1)2 基于PLC的步进电机控制系统设计 (9)2.1 系统的组成及功能 (9)2.2 步进电机特性 (9)2.3 PLC介绍 (12)2.4 步进电机控制系统程序设计 (13)3 磁头定位 (20)3.1 硬盘工作原理 (20)3.2 磁头及定位系统 (23)4 难题及解决过程 (24)5 结论 (25)结束语 (28)致谢 (29)参考文献 (30)附录A (31)1 概述1.1 PLC控制步进电机研究的意义基于步进电动机良好的控制和准确定位特性,被广泛应用在精确定位方面,诸如数控机床、绘图机、扎钢机、自动控制计算装置、自动记录仪表等自动控制领域。
PLC作为简单化了的计算机,功能完备、灵活、通用、控制系统简单易懂,价格便宜,可现场修改程序,体积小、硬件维护方便,价格便宜等优点,在全世界广泛应用,为生产生活带来巨大效益方便。
因此,通过研究用PLC来控制步进电动机的,既可实现精确定位控制,又能降低控制成本,还有利于维护。
以往的步进电动机需要靠驱动器来控制,随着技术的不断发展完善,PLC具有了通过自身输出脉冲直接步进电动机的功能,这样就有利于步进电动机的精确控制。
本课题《基于PLC的步进电机磁头定位系统设计》就是利用PLC控制步进电机在硬盘工作时磁头定位的研究。
1.2 国内外关于步进电机和PLC的应用状况1.2.1 步进电机方面步进电机是一种将电脉冲转化为角位移的执行元件。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机、交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
控制涉及到机械、电机、电子及计算机等许多专业知识。
目前,国内生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只有一、二十人,连最基本的设备都没有。
仅仅处于一种盲目的仿制阶段。
这就给用户在产品选型、使用中造成许多麻烦。
签于上述情况,选用步进电机时应该十分注意以下一些指标。
(1)步进电机的静态指标术语相数:产生不同对极N、S磁场的激磁线圈对数。
常用m表示。
拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,或A-B-C-D-A;四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A。
步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。
四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。
定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)。
静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。
此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。
虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过分采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。
(2)步进电机动态指标及术语步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。
用百分比表示,即(误差/步距角)*100%。
不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。
失步:电机运转时运转的步数,不等于理论上的步数,称之为失步。
失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。
最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。
最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。
运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。
电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。
电机的共振点:步进电机均有固定的共振区域,二、四相感应子式的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。
现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。
永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度。
反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。
反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。
混合式步进电机是指混合了永磁式和反应式的优点。
它又分为两相和五相,两相步进角一般为1.8度,而五相步进角一般为 0.72度。
这种步进电机的应用最为广泛。
步进电动机最大的生产国是日本,如日本伺服公司、东方公司、SANYO DENKI和MINEBEA及NPM公司等,特别是日本东方公司,无论是电动机性能和外观质量,还是生产手段,都堪称是世界上最好的。
现在日本步进电动机年产量(含国外独资公司)近2亿台。
当前最有发展前景的当属混合式步进电动机,而混合式电动机又向以下四个方向发展。
趋势一,是继续沿着小型化的方向发展。
随着电动机本身应用领域的拓宽以及各类整机的不断小型化,要求与之配套的电动机也必须越来越小,在57、42机座号的电动机应用了多年后,现在其机座号向39、35、30、25方向向下延伸。
瑞士ESCAP 公司最近还研制出外径仅10mm的步进电动机。
趋势二,是改圆形电动机为方形电动机。
由于电动机采用方型结构,使得转子有可能设计得比圆形大,因而其力矩体积比将大为提高。
同样机座号的电动机,方形的力矩比圆形的将提高30%~40%。
趋势三,对电动机进行综合设计。
即把转子位置传感器,减速齿轮等和电动机本体综合设计在一起,这样使其能方便地组成一个闭环系统,因而具有更加优越的控制性能。
趋势四,向五相和三相电动机方向发展。
目前广泛应用的二相和四相电动机,其振动和噪声较大,而五相和三相电动机具有优势性。
而就这两种电动机而言,五相电动机的驱动电路比三相电动机精密且复杂,因此三相电动机系统的价格比要比五相电动机更低一些。
为了得到更高精度的控制,出现了脉冲细分控制,这种控制方式可以消除电机失步和共振,满足更高精度要求的控制。
其实步进电机控制中已蕴含了细分的机理。
如三相步进电机按A→B→C……的顺序轮流通电,步进电机为整步工作。
而按A→AC→C →CB→B→BA→A……的顺序通电,则为半步工作。
以A→B为例,若将各相电流看作是向量,则从整步到半步的变换,就是在IA与IB之间插入过渡向量IAB,因为电流向量的合成方向决定了步进电机合成磁势的方向,而合成磁势的转动角度本身就是步进电机的步进角度。
显然,IAB的插入改变了合成磁势的转动大小,使得步进电机的步进角度由θb变为0.5θb,从而也就实现了2步细分。
由此可见,步进电机的细分原理就是通过等角度有规律的插入电流合成向量,从而减小合成磁势转动角度,达到步进电机细分控制的目的。
1.2.2 PLC方面(1) PLC的国内外状况世界上公认的第一台PLC是1969年美国数字设备公司(DEC)研制的。
限于当时的元器件条件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。
20世纪70年代初出现了微处理器,将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。
为了方便熟悉继电器、接触器系统的工程技术人员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。
此时的PLC为微机技术和继电器常规控制概念相结合的产物。
20世纪70年代中末期,可编程控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。
更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。
20世纪80年代初,可编程控制器在先进工业国家中已获得广泛应用。
这个时期可编程控制器发展的特点是大规模、高速度、高性能、产品系列化。
这个阶段的另一个特点是世界上生产可编程控制器的国家日益增多,产量日益上升。
这标志着可编程控制器已步入成熟阶段。
20世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。
从控制规模上来说,这个时期发展了大型机和超小型机;从控制能力上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品的配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。
目前,可编程控制器在机械制造、石油化工、冶金钢铁、汽车、轻工业等领域的应用都得到了长足的发展。
我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。
最初是在引进设备中大量使用了可编程控制器。
接下来在各种企业的生产设备及产品中不断扩大了PLC 的应用。
PLC是一种专为工业环境下应用而设计的数字运算操作系统。
它采用可编程序的存储器存储执行逻辑运算、顺序控制、定时计数及算术运算等操作指令,通过数字量、模拟量输入与输出,控制机械运动和生产过程。
可编程控制器,简称PLC(Programmable logic Controller),是指以计算机技术为基础的新型工业控制装置。
在1987年国际电工委员会颁布的PLC标准草案中对PLC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。
采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。
PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。