原子物理学课后习题答案第10章
原子物理学 课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。
1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。
难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。
2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。
第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。
第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。
第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。
原子物理学习题答案(褚圣麟)

7.2 原子的3d 次壳层按泡利原理一共可以填多少电子?为什么?答:电子的状态可用四个量子s l m m l n ,,,来描写。
根据泡利原理,在原子中不能有两个电子处在同一状态,即不能有两个电子具有完全相同的四个量子数。
3d 此壳层上的电子,其主量子数n 和角量子数l 都相同。
因此,该次壳层上的任意两个电子,它们的轨道磁量子数和自旋磁量子数不能同时相等,至少要有一个不相等。
对于一个给定的l m l ,可以取12;,....,2,1,0+±±±=l l m l 共有个值;对每个给定的s l m m ,的取值是2121-或,共2个值;因此,对每一个次壳层l ,最多可以容纳)(122+l 个电子。
3d 次壳层的2=l ,所以3d 次壳层上可以容纳10个电子,而不违背泡利原理。
7.4 原子中能够有下列量子数相同的最大电子数是多少?n l n m l n )3(;,)2(;,,)1(。
答:(1)m l n ,,相同时,s m 还可以取两个值:21,21-==s s m m ;所以此时最大电子数为2个。
(2)l n ,相同时,l m 还可以取两12+l 个值,而每一个s m 还可取两个值,所以l n ,相同的最大电子数为)12(2+l 个。
(3)n 相同时,在(2)基础上,l 还可取n 个值。
因此n 相同的最大电子数是:212)12(2n l N n l =+=∑-=7.5 从实验得到的等电子体系K Ⅰ、Ca Ⅱ……等的莫塞莱图解,怎样知道从钾Z=19开始不填s d 43而填次壳层,又从钪Z=21开始填s d 43而不填次壳层?解:由图7—1所示的莫塞莱图可见,S D 2243和相交于Z=20与21之间。
当Z=19和20时,S 24的谱项值大于D 23的值,由于能量同谱项值有hcT E -=的关系,可见从钾Z=19起到钙Z=20的S 24能级低于D 23能级,所以钾和钙从第19个电子开始不是填s d 43而填次壳层。
原子物理学(褚圣麟)完整答案

F 2Ze 2 / 4 R2和F0 2Ze 2r/ 4 R 3 。可见,原0 子表面处粒子所受的斥力最大,越
靠近原子的中心粒子所受的斥力越小,而且瞄准距离越小,使粒子发生散射最强的垂 直入射方向的分力越小。我们考虑粒子散射最强的情形。设粒子擦原子表面而过。此时受
力为F 2Ze 2 / 4 R2 。可0 以认为粒子只在原子大小的范围内受到原子中正电荷的作
Z2
Li
Z
2 H
9
c) 第一激发能之比:
E
2 He
E He
1
E2H E 1 H
22 E1 22
E
1
12 22
E1 E
22
12 12 1 12
4
E
2 Li
E Li
1
E2H E 1 H
22 E1 32
E
1
12 22
E1 E
32
12 12 1 12
9
d) 氢原子和类氢离子的广义巴耳末公式:
{ v~ Z R (2
达到的最小距离多大又问如果用同样能量的氘核(氘核带一个 e电荷而质量是质子的 两倍,
是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大
解:当入射粒子与靶核对心碰撞时,散射角为180 。当入射粒子的动能全部转化为两
粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得:
1 Mv2 K 2
解:设 粒子和铅原子对心碰撞,则 粒子到达原子边界而不进入原子内部时的能量有 下式 决定:
1 Mv2 2
2Ze 2 / 4 R 10016 焦耳 103电子伏特
由此可见,具有106 电子伏特能量的粒子能够很容易的穿过铅原子球。粒子在到达原子
原子物理学(褚圣麟)课后答案

原子物理学(褚圣麟)课后答案原子物理学习题解答原子物理学习题解答原子物理学习题解答原子物理学习题解答刘富义刘富义刘富义刘富义编编编编临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系理论物理教研室理论物理教研室理论物理教研室理论物理教研室第一章原子的基本状况1.1若卢瑟福散射用的粒子是放射性物质镭放射的,其动能为电子伏?''C67.6810?特。
散射物质是原子序数的金箔。
试问散射角所对应的瞄准距离多大?79Z?150 b解:根据卢瑟福散射公式:20022cot4422KMvbbZeZe得到:米2192150152212619079(1.600)3.97104(48.510)(7.681010)ZectgctgbK式中是粒子的功能。
212KMv1.2已知散射角为的粒子与散射核的最短距离为??,试问上题粒子与散射的金原子核2202121()(1)4sinmZerMv之间的最短距离多大?mr 解:将1.1题中各量代入的表达式,得:mr2min202121()(1)4sinZerMv1929619479(1.010)1910(1)7.68101.6010sin75米143.02101.3若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个电荷而质量是质子的e?两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为。
当入射粒子的动能全部转化为两180?粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:,故有:220min124pZeMvKr2min04pZerK???米19291361979(1.6010)9101.410101.6010由上式看出:与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代minr替质子时,其与靶核的作用的最小距离仍为米。
大学物理第十章课后答案

题图10-1题10-1解图d第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。
解:(1)设B 、C 板上的电荷分别为B q 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求:(1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
大学物理课后习题详解(第十章)中国石油大学

根据高斯定理可得 方向由的正负确定
10-22 如图所示,在xOy平面内有与y轴平行、位于和处的两条无限长平 行均匀带电直线,电荷线密度分别为和。求z轴上任一点的电场强度。
[解] 无限长带电直线在线外任一点的电场强度 所以 P点的场强 由对称性知合场强的z方向分量为零,x方向分量 而
所以 方向指向x轴负方向 10-23 如图所示,在半径为R,体电荷密度为的均匀带电球体内点处放
所以 证毕。
10-27 电量q均匀分布在长为2l的细杆上,求在杆外延长线上与杆端距离 为a的点P的电势(以无穷远为零电势点)。 [解] 取如图所示的电荷元dq,,它在P点产生的电势为
则整个带电直线在P点产生的电势为
10-28 如图所示,在点电荷+q的电场中,若取图中点P处为电势零点, 则点M的电势为多少? [解] 取P点为电势零点,则M点电势为
10-10 如图所示,一厚度为b的无限大带电平板,其体电荷密度为 (0≤x≤b),式中k为正常量。求:(1)平板外两侧任一点和处的场强大小; (2)平板内任一点P处的电场强度; (3)场强为零的点在何处? [解] (1)过点作一圆柱体穿过无限大带电平板,由高斯定理
即 所以 因此平板外一点的场强与距平板的距离无关, (2)板内(即0≤x≤b区域) (3)若电场强度为0,则 此时,此即为场强为0的点。
10-1l 一半无限长的均匀带电直线,线电荷密度为。试证明:在通过带 电直线端点与直线垂直的平面上,任一点的电场强度 E的方向都与这直 线成45°角。 [解] 如图选择直角坐标系,在棒上取电荷元
它在过棒端的垂直面上任意点贡献场强为
由于
且
所以
总场强的分量为 它与负y方向的夹角是
10-12 一带电细线弯成半径为R的半圆形,线电荷密度,式中为一常 量,为半径R与x轴所成的夹角,如图所示。试求环心O处的电场强度。 [解] 取电荷元
原子物理学课后习题答案
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
大学物理第十章课后习题答案
并联: q = q1 + q2 , U = U1 = U 2 , C =
q q1 q2 = + = C1 + C2 。 U U U
6. 答:导体静电感应时会在导体表面出现感应电荷,电解质极化时在介质表面 出现极化电荷,是两种不同的电荷,静电平衡时导体内部场强为零,电解质极化 时内部场强不为零。 三、 计算 1. 证明:如图所示,设四个面上的电荷面密度分别为 σ 1 、 σ 2 、 σ 3 、 � σ 4 ,在 A 板内取一点 P1 ,设 en 是向右的单位法向矢量, 四个无限大
-4-
自治区精品课程—大学物理学
题库
-5-
自治区精品课程—大学物理学
题库
第十章 静电场中的导体和电介质 参考答案
一、 填空 1. 2. 3. 4. 5. 6. 7. 8. 导体、电介质、半导体。 自由电子,晶体点阵。 零,静电平衡,等势体,等势面。 无,表面。 电荷,大,小。 静电屏蔽。 电容,容纳电荷。 无极,有极,位移,取向。
R 2 , 其间有两层均匀电介质,分界面的半径为 r,内
层电介质的相对介电常数 ε r 1 , 外层电介质的相对介电常数为 ε r 2 。 (1) 求电容 C . (2) 当内球带电 − Q 时,求各介质表面的极化电荷面密度 σ ′ 。 21. 一平行板电容器有两层电介质,介电常数 ε r 1 =4, ε r 2 =2 ,厚度 d1=2mm ,
40rr13用一导线把球和球壳连在一起后球和球壳内壁的电量为0导体球外壁的电荷为qq导体球和球壳的电势相等根据电势的叠加原理有u1u24若将外球接地则球壳外壁的电荷量为0根据电势的叠加原理导体球球心o处的电势为
自治区精品质
一、 填空 1. 根据物质的导电性,可将物质分为 、 和 。 2. 从 物质 的 电结 构 来看 , 金属 导 体具 有 带负 电 的 和 带正 电 的 。 3. 导 体处 于静 电平 衡时 ,导 体内 部各 点 的场 强为 , 这称 为导 体的 条件。静电平衡下的导体是 ,导体的表面是 。 4. 导体处于静电平衡状态时,导体内处处 (填“有”或“无” )净余电荷, 电荷只能分布在导体的 上。 5. 对于孤立导体而言,表面上 的分布与表面曲率有关,表面曲率越大, 电荷面密度越 ,反之越 。 6. 空腔导体内部电场不受腔外电场的影响,接地导体空腔外部的电场不受腔内 电荷的影响,这种隔离作用称为 。 7. 孤立导体的 是指使导体升高单位电势所需的电荷,反映了导体 的性质。 8. 根据分子中正、 负电荷中心的分布, 可将电介质分为 分子和 分 子。将两类电介质放入电场中将分别发生 极化和 极化。 二、 简答 1. 2. 3. 4. 5. 6. 简述导体静电平衡的条件及特点。 简述静电屏蔽。 简述处于静电平衡的空腔导体,空腔内场强处处为零。 简述孤立导体的电容的计算公式及物理意义。 分别推导两个电容器串联和并联后的总电容的计算公式。 电介质的极化现象和导体的静电感应现象两者有什么区别?
原子物理学课后习题答案第10章
第十章 原子核10.1 n H 1011和的质量分别是1.0078252和1.0086654质量单位,算出C 126中每个核子的平均结合能(1原子量单位=2/5.931c MeV ).解:原子核的结合能为:MeV m Nm ZE E A H 5.931)(⨯-+= 核子的平均结合能为:AE E =0 MeV MeV m Nm ZE AE A n H 680.75.931)(1=⨯-+=∴ 10.2 从下列各粒子的质量数据中选用需要的数值,算出Si 3014中每个核子的平均结合能:007825.1,973786.29008665.1,014102.2,000548.01130141021→→→→→H Si n H e解:MeV MeV m Nm Zm AA E E ASi n H 520.85.931)(110110=⨯-+==10.3Th 23290放射α射线成为αR 22888.从含有1克Th 23290的一片薄膜测得每秒放射4100粒α粒子,试计算出Th 23290的半衰期为10104.1⨯年.解:根据放射性衰变规律:t e N Nλ-=0如果在短时间dt 内有dN 个核衰变,则衰变率dt dN /必定与当时存在的总原子核数目N 成正比,即:t e N N dtdNλλλ-==-0 此式可写成: 0N dtdN e t-=-λλ……(1) 其中2023023''0102612321002.6,232,1002.6,1;1,4100⨯=⨯⨯==⨯=⨯===--=-N A N AN N t dt dN N dt dNe t 故克克秒λλ将各已知量代入(1)式,得:182010264110264100⨯=⨯=-λλe……(2) 因为Th 23290的半衰期为10104.1⨯年,所以可视λ为很小,因此可以将λ+e 展成级数,取前两项即有:λλ+≈+1e这样(2)式变为:181026411⨯=+λλ 由此得:年秒秒101818104.110438.02ln /1058.1⨯=⨯==⨯=-λλT所以,Th 23290的半衰期为10104.1⨯年.10.4 在考古工作中,可以从古生物遗骸中C 14的含量推算古生物到现在的时间t .设ρ是古生物遗骸中C 14和C 12存量之比,0ρ是空气中C 14和C 12存量之比,是推导出下列公式:2ln )/ln(0ρρTt =式中T 为C 14的半衰期.推证:设古生物中C 12的含量为)(12C N ;刚死时的古生物中C 14的含量为)(140C N ;现在古生物遗骸中C 14的含量为)(14C N ;根据衰变规律,有:t e C N C N λ-=)()(14014由题意知: )()(1214C N C N =ρ;古生物刚死时C 14的含量与C 12的含量之比与空气二者之比相等, )()(121400C N C N =ρ 所以:t e λρρ=0因此得:2ln )/ln(ln 1ln000ρρρρλρρλTt t ==∴=10.5 核力在原子核大小的距离内有很强的吸引力,它克服了质子间的(元素氢除外,那里只有一粒质子)库仑推斥力的作用而使原子核结合着,足见在原子核中核力的作用超过质子间的库仑推斥力作用;从质子间推斥力的大小可以忽略地了解到核力大小的低限。
(整理)原子物理学杨福家1-6章 课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 原子核
n H 1011和的质量分别是和质量单位,算出C 12
6中每个核子的平均结合能(1原子量单位
=2
/5.931c MeV ).
解:原子核的结合能为:MeV m Nm ZE E A H 5.931)(⨯-+= 核子的平均结合能为:A
E E =
0 MeV MeV m Nm ZE A
E A n H 680.75.931)(1
=⨯-+=
∴ 从下列各粒子的质量数据中选用需要的数值,算出Si 30
14中每个核子的平均结合能:
007825
.1,973786.29008665.1,014102.2,000548.011
3014
102
1→→→→→H Si n H e
#
解:MeV MeV m Nm Zm A
A E E ASi n H 520.85.931)(1
10110=⨯-+==
Th 23290
放射α射线成为αR 22888.从含有1克Th 232
90的一片薄膜测得每秒放射4100粒α粒
子,试计算出
Th 232
90
的半衰期为10104.1⨯年.
解:根据放射性衰变规律:t
e N N λ-=0
如果在短时间dt 内有dN 个核衰变,则衰变率dt dN /必定与当时存在的总原子核数目N 成
正比,即:
t e N N dt
dN
λλλ-==-
0 此式可写成: 0
N dt
dN e t -
=
-λλ……(1) 其中
20
23
023''
010261232
1002.6,232,1002.6,
1;1,4100⨯=⨯⨯==⨯=⨯===--
=
-N A N A
N N t dt dN N dt dN
e t 故克克秒λλ。
将各已知量代入(1)式,得:
18
20102641
10264100⨯=⨯=
-λλe (2)
因为
Th 23290
的半衰期为10104.1⨯年,所以可视λ为很小,因此可以将λ+e 展成级数,取
前两项即有:λλ
+≈+1e
这样(2)式变为:18
10
2641
1
⨯=
+λλ 由此得:
年
秒秒
10
1818104.110438.02
ln /1058.1⨯=⨯==
⨯=-λ
λT
所以,
Th 23290
的半衰期为10104.1⨯年.
在考古工作中,可以从古生物遗骸中C 14
的含量推算古生物到现在的时间t .设ρ是古
生物遗骸中C 14和C 12存量之比,0ρ是空气中C 14和C 12
存量之比,是推导出下列公
式:2
ln )/ln(0ρρT
t =式中T 为C 14
的半衰期.
?
推证:设古生物中C 12的含量为)(12
C N ;刚死时的古生物中C 14
的含量为)(140C N ;现在
古生物遗骸中C 14
的含量为)(14
C N ;根据衰变规律,有:t e C N C N λ-=)()(14014
由题意知: )
()
(12
14C N C N =ρ; 古生物刚死时C 14的含量与C 12
的含量之比与空气二者之比相等, )
()(121400C N C N =ρ 所
以:
t e λρ
ρ=0
因此得:
2
ln )
/ln(ln 1
ln
000ρρρρλρ
ρλT
t t ==∴=
核力在原子核大小的距离内有很强的吸引力,它克服了质子间的(元素氢除外,那里
只有一粒质子)库仑推斥力的作用而使原子核结合着,足见在原子核中核力的作用超过质子间的库仑推斥力作用;从质子间推斥力的大小可以忽略地了解到核力大小的低限。
试计算原子核中两粒质子间的库仑推斥力的大小(用公斤表示)。
(质子间的距离用15
10
-米)
解:库仑力是长程力,核力的一个质子与其它所有的质子都要发生作用,所以在Z 个质子间的库仑排斥势能将正比于Z(Z-1),当Z>>1时,则正比于2Z 。
根据静电学的计算可知,
每一对质子的静电斥力能是R
e E 562=,R 是核半径。
若二质子间的距离为R ,它们之间的库
仑力为f ,则有E fR =,由此得:
2
256R e R E f ==
*
采用SI 制,则:
.
18.2848.27656412
2
0公斤牛顿===R e f πε
所以:原子核中二质子之间的库仑力为28.18公斤.
算出
He a p Li 4
273
),(的反应能.有关同位素的质量如
下:015999.7,;002603.4,;007825.1,7
34
21
1Li He H .
解:核反应方程式如下:
He
He p Li 4
2421173
+→+
MeV
MeV c m m m m Q 35.175.931)]002603.42()007825.13015999.7[()]()[(2
3210=⨯⨯-+=+-+=
反应能是MeV 35.17,大于零,是放能反应.
在第六题的核反应中,如果以1MeV 的质子打击Li ,问在垂直于质子束的方向观测到的He 4
2能量有多大
—
解:根据在核反应中的总质量和联系的总能量守恒,动量守恒,可知,反应所产生的两
个相同的He 4
2核应沿入射质子的方向对称飞开。
如图所示。
根据动量守恒定律有:321P P P
+=
矢量321,,P P P
合成的三角形为一个等腰三角形,二底角皆为θ.
又因为32m m =,因而有32E E =
已知反应能MeV Q 35.17=,由能量守恒定律得:132E E E Q -+=其中MeV E 11= 由此可得: MeV E Q E E 175.9)(2
1
132=+=
= 反应所生成的α粒子其能量为.
He 42
核飞出方向与沿入射质子的方向之间的夹角为θ:
·
θ
cos 2212
22123P P P P P -+=
由于ME P 22
= 所以得:θcos 2)1()1(3
2121131232A E E A A E A A
E A A Q ---+
= (质量之比改为质量数之比)
'
16850825.043
2cos cos 4
3
2:4,1211
22112321οθθθ=∴=--=∴--====E E E Q E E E E E Q A A A 代入上式得 由此可知,垂直于质子束的方向上观察到的He 4
2的能量近似就是。
试计算1克
U 235
裂变时全部释放的能量约为等于多少煤在空气中燃烧所放出的热能
(煤的燃烧热约等于6
1033⨯焦耳/千克;13
10
6.11-⨯=MeV 焦耳)。
解:裂变过程是被打击的原子核先吸收中子形成复核,然后裂开。
!
Y
X U n U +→→+236921023592
我们知道,在A=236附近,每个核子的平均结合能是;在A=118附近,每一个核子的
平均结合能量是 MeV 。
所以一个裂为两个质量相等的原子核并达到稳定态时,总共放出的能量大约是:
MeV MeV MeV 2106.72365.82
236
2=⨯-⨯⨯
=ε 而13
106.11-⨯=MeV 焦耳,所以:焦耳11
10
36.3-⨯=ε。
1克
U 235
中有N 个原子;
焦耳1021
106.81056.2⨯==⨯==
εN E A
MN N 它相当的煤质量吨公斤6.2106.23
=⨯=M 。
计算按照()式中前四式的核聚变过程用去1克氘所放出的能量约等于多少煤在空气中燃烧所放出的热能(煤的燃烧热同上题)。
"
解:四个聚变反应式是:
完成此四个核反应共用六个H 2,放出能量 MeV ,平均每粒H 2放出 MeV ,单位质量的H 2
放出 MeV 。
1克氘包含N 粒H 2
,则
230
100.3⨯==
A
MN N 所以1克氘放出的能量约等于:
焦耳1124105.3102.22.7⨯=⨯=⨯=MeV MeV N E
与它相当的煤:吨公斤6.10106.103=⨯≈=
a
E
M 包围等离子体的磁通量密度B 是2
/2米韦伯,算出被围等离子体的压强。
解:根据公式:0
2
0222μμ外
内内B B P =+
得: 0
2
0222μμ外
内内B B P -=
,式中内P 是等离子体的压强;B 是磁通密度;0μ是真空中的磁导率,
等于米亨/1047
-⨯π,设内B 小到可以忽略,则得到:250
2
/1092.152米牛顿外
内⨯==μB P
因 24/1013.101米牛顿大气压⨯=,故 大气压
内7.15=P。