中国海洋大学分子生物学_复习资料
分子生物学复习资料

分子生物学复习资料分子生物学是研究生命体内分子结构和功能的一门学科,其研究范围包括基因表达和调控、蛋白质结构和功能、DNA重复和修复、细胞信号传递等多个方面。
以下是分子生物学复习资料,帮助大家复习此学科。
DNA1. DNA是双螺旋结构,由磷酸、核糖和四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成。
2. DNA的复制包括三个步骤:解旋、合成和连接。
3. DNA合成是通过DNA聚合酶进行的,这些酶在模板链上添加互补碱基。
4. DNA可以通过DNA甲基化调节基因表达。
5. DNA可以被DNA锁蛋白等转录因子识别和结合。
RNA1. RNA是由核糖、磷酸和四种碱基 (腺嘌呤、尿嘧啶、胸腺嘧啶和鸟嘌呤)组成。
2. RNA主要分为三种类型:mRNA (信使RNA)、rRNA (核糖体RNA)和tRNA (转运RNA)。
3. 基因表达分为两个步骤:转录和翻译。
4. 转录过程分为三个步骤:启动、延伸和终止。
5. tRNA担任将氨基酸与相应的密码子匹配的角色。
蛋白质1. 蛋白质是由氨基酸组成的长链。
2. 氨基酸有20种类型,它们是由不同的侧链区分的。
3. 蛋白质折叠形态对其功能至关重要。
4. 蛋白质可以通过转录调节子的活性来控制基因表达。
5. 蛋白质可以通过磷酸化、甲基化和泛素化等方式进行修饰,从而调节其功能。
细胞信号传递1. 细胞信号传递是细胞中信号分子相互作用的过程。
2. 细胞信号分为内部信号和外部信号。
3. 细胞膜可以通过受体蛋白与外部信号相互作用。
4. 内部信号分子可以通过传递信号的级联反应来控制基因表达等生物过程。
5. 蛋白激酶和蛋白磷酸酶是关键的信号传递分子。
总结以上是分子生物学的复习资料,包括DNA、RNA、蛋白质和细胞信号传递等方面的知识点。
学习分子生物学需要积累大量的概念和实验技术,以便理解分子间相互作用和影响它们在细胞和生物中的功能。
希望此资料对大家的复习有所帮助。
基础分子生物学重点整理

基础分子生物学重点整理Key Notes for Molecular Biology——Filed by Double Smile·Lee1.作为遗传物质染色体特征·分子结构相对稳定·能够自我复制,使亲子代之间保持连续性·能够指导蛋白质合成,从而控制整个生命过程·能够产生可遗传变异2.染色体在细胞分裂间期表现为染色质。
伸展的染色质形态上有利于在它上面的DNA储存的信息的表达。
而高度螺旋化了的棒状染色体则有利于细胞分裂中的遗传物质的平分。
3.原核细胞染色体:·一般只有一条大染色体且大都带有单拷贝基因;·整个染色体DNA几乎全部由功能基因和调控序列所组成;·几乎每个基因序列都与它所编码蛋白质序列呈线性对应关系。
4.真核细胞染色体的组成:真核生物染色体中DNA相对分子质量一般大大超过原核生物,并结合有大量的蛋白质,结构非常复杂。
其具体组成成分为:组蛋白、非组蛋白、DNA5.组蛋白是染色体的结构蛋白,其与DNA组成核小体。
根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。
6.组蛋白的特性:·进化上极端保守性,其中H3、H4最保守,H1较不保守。
·无组织特异性。
精细胞染色体的组蛋白是鱼精蛋白。
·肽链上氨基酸分布的不对称性。
碱性氨基酸集中分布在N端的半条链上。
·组蛋白的修饰作用·组蛋白H5富含赖氨酸7.基因组含有两类遗传信息:一类是传统意义上的遗传信息:即DNA序列所提供的遗传信息。
另一类是表观遗传学信息:它提供了何时、何地、以何种方式应用遗传信息的指令。
8.非组蛋白的量大约是组蛋白的60%-70%,具有组织专一性和种属专一性。
非组蛋白包括酶类、骨架蛋白、核孔复合物蛋白以及肌动蛋白、肌球蛋白等。
它们也可能是染色质的组成成分。
几类常见的非组蛋白:HMG蛋白与超螺旋结构有关;DNA结合蛋白,与复制与转录有关的酶或者调节物质。
分子生物学总复习期末考试总复习

分子生物学课程重点,以及一份真题。
1、绪论(1)分子生物学的概念分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
(3)经典历史事迹1928年格里菲斯证明了某种转化因子是遗传物质1944年艾弗里做了肺炎双球杆菌转换实验1953年沃森和克里克提出双螺旋结构桑格尔两次诺贝尔学奖2、染色体与 DNA(1)真核生物染色体具体组成成分为:组蛋白、非组蛋白和DNA。
在真核细胞染色体中,DNA与蛋白质完全融合在一起,其蛋白质与相应DNA的质量之比约为2:1。
这些蛋白质在维持染色体结构中起着重要作用。
(2)组蛋白组蛋白是染色体的结构蛋白,其与DNA组成核小体。
根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。
组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。
H2A、H2B 介于两者之间。
H1易分离,不保守;组蛋白的特性:①进化上的极端保守,②无组织特异性;③肽链上分布的不对称性;组蛋白的修饰作用⑤富含赖氨酸的组蛋白H5(3)C值反常现象C值:一种生物单倍体基因组DNA的总量。
一般情况,真核生物C值是随着生物进化而增加,高等生物的C值一般大于低等生物。
(4)DNA的结构•DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
•DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA;另一类是左手螺旋,即Z-DNA。
DNA三级结构:是双螺旋进一步缠绕,形成核小体,染色质,染色体等超螺旋结构,5、每轮碱基数10•DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
超螺旋结构是DNA高级结构的主要形式(非唯一形式),可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶(通过催化DNA链的断裂和结合,从而影响DNA的拓扑状态。
(完整版)分子生物学期末复习.doc

(完整版)分子生物学期末复习.doc第一讲染色体与DNA一染色体(遗传物质的主要载体)1DNA作为遗传物质的优点:储存遗传信息量大;碱基互补,双螺旋结构使遗传稳定;核糖2′ -OH脱氢使在水中稳定性大于RNA;可以突变以进化,方便修复以稳定遗传2真核细胞染色体特点:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。
3 染色体蛋白主要分为组蛋白和非组蛋白两类。
真核细胞的染色体中, DNA与组蛋白的质量比约为 1:14组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。
组蛋白含有大量的赖氨酸和精氨酸,其中 H3、H4富含精氨酸, H1富含赖氨酸。
H2A、H2B介于两者之间。
5 组蛋白具有如下特性:①进化上的极端保守性(不同种生物组蛋白的氨基酸组成十分相似)②无组织特异性(只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有 H5)③ 肽链上氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。
碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合)④存在较普遍的修饰作用(如甲基化、乙基化、磷酸化及ADP核糖基化等。
修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)二DNA1 真核细胞基因组的最大特点是它含有大量的重复序列2 C值反常现象:①所谓 C值,通常是指一种生物单倍体基因组DNA的总量②同类生物不同种属之间DNA总量变化很大。
从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。
3 真核细胞DNA序列可被分为3类:①不重复序列(它占DNA 总量的 10%~80%。
不重复序列长约750~ 2 000bp ,相当于一个结构基因的长度)②中度重复序列(各种rRNA、 tRNA以及某些结构基因如组蛋白基因等都属于这一类)③高度重复序列—卫星 DNA(只存在于真核生物中,占基因组的 10%~60%,由 6~100个碱基组成)三染色体与核小体1 染色质 DNA的 Tm值比自由 DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用2 在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA 复制和转录活性大大低于在自由DNA 中的反应3 DNA片段均为 200bp基本单位的倍数,核小体是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体(由 H2A、H2B、 H3、 H4各两个分子生成)组成四级压缩:第一级(DNA+组蛋白→核小体)第二级(核小体→螺线管)第三级(螺线体→超螺旋)第四级(超螺线体→染色体)4 原核生物基因组原核生物的基因组很小,大多只有一条染色体,且 DNA含量少主要是单拷贝基因整个染色体 DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。
(完整版)分子生物学与基因工程复习资料

(完整版)分子生物学与基因工程复习资料分子生物学与基因工程绪论1、分子生物学与基因工程的含义从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。
基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。
2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型;60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型;70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子;80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术;90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”3、分子生物学与基因工程的专业地位与作用。
核酸概述1、核酸的化学组成2、核酸的种类与特点:DNA和RNA的区别(1)DNA含的糖分子是脱氧核糖,RNA含的是核糖;(2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替;(3)DNA通常是双链,而RNA主要为单链;(4)DNA的分子链一般较长,而RNA分子链较短。
3、DNA作为遗传物质的直接和间接证据;间接:(1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。
多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。
(2)DNA在代谢上较稳定。
(3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。
(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。
分子生物学复习资料精选全文

可编辑修改精选全文完整版分子生物学复习资料名词解释:复制叉:复制时,双链DNA要解开成两股链分别进行,所以,这个复制起点呈现叉子的形式,被称为复制叉。
复制子:单独复制的一个DNA单元被称为一个复制子,是一个可移动的单位。
一个复制子在任何一个细胞周期只复制一次。
Klenow片段:用枯草杆菌蛋白酶处理大肠杆菌DNA聚合酶而从全酶中除去5’-3’外切酶活性的肽段后的大片段肽段。
外切酶:是一类能从多核苷酸链的一端开始按序催化水解3、5-磷酸二酯键,降解核苷酸的酶。
内切酶:是一种能催化多核苷酸的链断裂的酶,只对脱氧核糖核酸内一定碱基序列中某一定位置发生作用,把这位置的链切开。
前导链:在DNA复制过程中,与复制叉运动方向相同,以5'-3'方向连续合成的链。
冈崎片段:在DNA复制过程中,前导链连续合成,而滞后链只能是断续的合成5’-3’的多个短片段,这些不连续的片段称为冈崎片段。
端粒:是真核生物线性基因组DNA末端的一种特殊结构,它是一段DNA序列和蛋白质形成的复合体。
端粒酶:是负责染色体末端(端粒)复制,是由 RNA 和蛋白质组成的核糖核蛋白.其中的 RNA 成分是端粒复制的模板.(因此端粒是逆转录酶) 作用:维持端粒长度.DNA复制参与的酶和蛋白:拓扑异构酶,解链酶,单链结合蛋白(SSB蛋白),引发酶,DNA聚合酶,DNA连接酶。
线性DNA末端复制方式:1)环化;2)末端形成发卡结构;3)某些蛋白质的启动。
DNA修复的方式:错配修复,切除修复,重组修复,DNA直接修复,SOS反应。
AP位点:所有细胞中都带有不同类型、能识别受损核酸位点的糖苷水解酶,它能特异性切除受损核苷酸上的N-β糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。
AP修复:DNA分子中一旦产生了AP位点,AP核酸内切酶就会把受损核苷酸的糖苷-磷酸键切开,并移去包括AP位点核苷酸在内的小片段DNA,由DNA聚合酶Ⅰ合成新的片段,最终由DNA连接酶把两者连成新的被修复的DNA链。
分子生物学复习资料全

分子生物学复习资料全1. 概述- 分子生物学是研究生物体分子层面结构和功能的科学领域。
- 分子生物学主要关注DNA、RNA、蛋白质等生物分子的合成、结构和功能。
2. DNA- DNA是遗传物质,储存了生物体的遗传信息。
- DNA由核苷酸组成,包括脱氧核糖核苷酸和四种碱基:腺嘌呤、鸟嘌呤、胸腺嘧啶和鳕嘧啶。
- DNA的双螺旋结构由两条互补链以螺旋形式相互缠绕而成。
3. RNA- RNA在细胞中起着重要的生物学功能。
- RNA由核苷酸组成,包括核糖核苷酸和四种碱基:腺嘌呤、鸟嘌呤、尿嘧啶和胞嘧啶。
- RNA分为多种类型,包括mRNA、tRNA和rRNA等。
4. 蛋白质合成- 蛋白质合成是通过转录和翻译两个过程完成的。
- 转录是将DNA转录成mRNA的过程。
- 翻译是将mRNA翻译成蛋白质的过程。
5. 基因调控- 基因调控是控制基因表达水平的过程。
- 基因调控包括转录因子的结合、DNA甲基化和染色质重塑等。
6. 克隆技术- 克隆技术是复制生物体基因或DNA序列的方法。
- 主要克隆技术包括限制性内切酶切割、聚合酶链式反应和DNA串联。
7. PCR- PCR是一种通过体外扩增DNA片段的技术。
- PCR包括三个步骤:变性、退火和延伸。
8. 分子遗传学- 分子遗传学研究基因在遗传传递中的分子机制。
- 分子遗传学主要研究基因突变、基因重组和基因表达等。
9. DNA测序- DNA测序是确定DNA序列的方法。
- DNA测序技术包括Sanger测序和高通量测序等。
10. 基因工程- 基因工程是利用DNA技术修改或转移基因的技术。
- 基因工程在农业、医药和生物学研究等领域有着广泛的应用。
以上是关于分子生物学的简要复习资料,希望能对你的学习有所帮助。
《分子生物学》复习指南

《分子生物学》复习指南《分子生物学》复习指南答案一、名解1、基因:是含有生物信息的DNA片段,根据这些生物信息可以编码具有生物功能的产物,包括RNA和多肽链。
(课件)2、分子伴侣(Molecular Chaperone):又称为伴侣蛋白,是一类在序列上没有相关性但有共同功能的保守性蛋白质,在细胞内协助其它多肽结构完成正确的折叠、组装、转运和降解,在功能完成后与之分离,不构成这些蛋白质结构执行功能时的组份。
3、RFLP:即限制性片段长度多态性。
高度重复序列中的无间隔反向重复序列很容易形成限制性内切酶识别位点,也很容易由于突变产生或失去一个酶切位点,因而可以造成限制性片段长度多态性。
即用同一种限制性内切酶消化不同个体的同一段DNA时,由于碱基组成的变化而改变限制性内切酶识别位点,从而会产生长度不同的DNA片段,这种方法称为限制性片段长度多态性,简称RFLP技术。
4、DNA的复制(replication):以构成基因组的全套核酸分子为模板,精确合成一套新的核酸分子的过程。
遗传信息通过亲代DNA 分子的复制传递给子代,在保持生物物种遗传的稳定性方面起着重要的作用。
5、反转录:又称逆转录(reverse transcription),是以RNA为模板,在逆转录酶的催化下,合成双链DNA的反应。
6、克隆载体:可携带插入的外源DNA片段并可转入受体细胞中大量扩增的DNA分子。
该分子中含有能够在受体细胞中自主复制的序列和筛选标记,常用于外源基因的克隆,如噬菌体或质粒。
7、功能基因组:细胞内所有具有生物学功能的基因。
表达一定功能的全部基因所组成的DNA序列,包括编码基因和调控基因。
8、核不均一RNA:即hnRNA,即前体mRNA,在真核生物中,最初转录生成的RNA,存在于真核生物细胞核中的不稳定、大小不均的一组高分子RNA之总称。
由外显子和内显子组成,需经过剪接加工及各种修饰后,形成成熟的mRNA。
9、分子杂交:由来源不同的两个脱氧核糖核酸单链或核糖核酸单链结合成双链分子的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第0章 绪论1.分子生物学广义层次:在分子水平上研究生命活动及其规律的科学。
狭义层次:生物学分支,研究生物大分子结构、功能、相互作用,从分子水平揭示生物遗传变异机制。
2. 分子生物学的新学科:功能基因组学:依附于对DNA 序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特征序列表达谱。
蛋白质组学:以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。
生物信息学:对DNA 和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和传输。
系统生物学:是在细胞、组织、器官和生物体整体水平研究结构和功能各异的各种分子及其相互作用,并通过计算生物学来定量描述和预测生物功能、表型和行为。
结构分子生物学:是以分子生物物理学为基础,结合化学和分子生物学方法测定生物大分子复合体的空间结构、精细结构以及结构的运动,阐明其相互作用的规律和发挥生物功能的机制,从而揭示生命现象本质的科学 。
第1章 遗传的物质基础1.证明核酸是遗传物质的经典实验:肺炎链球菌转化实验Hershey and Chase T 2噬菌体转导实验————→DNA 是遗传物质 TK gene 进行的真核细胞转染实验烟草花叶病毒病毒重建实验————————→RNA 也是遗传物质(transformation)指将质粒或其他外源DNA 导入处于感受态的宿主细胞,并使其获得新的表型的过程。
转导(transduction)由噬菌体和细胞病毒介导的遗传信息转移过程也称转导。
(transfection)指真核细胞主动或者被动导入外源DNA 片段而获得新表型的过程。
2.核酸——基本单位是核苷酸每分子核苷酸包含一个碳、氮原子的杂环化合物(碱基)、一个环状五碳糖(戊糖)和一个磷酸分子基团。
碱基分为嘌呤和嘧啶两种。
戊糖分为2-脱氧核糖和核糖。
3.核苷酸的连接5’-三磷酸核苷酸是核酸合成的前体。
三磷酸的5’末端与多聚核苷酸链末端的 3’-OH 基团反应,释放三磷酸的两个末端磷酸基团(γ和β),α磷酸与多聚 核苷酸链末端的糖的3’-OH 成键。
4.概念Antiparalle (反向平行):DNA 双链沿相反的方向构成,一条链的5’端对应另一条链的3’端。
Base pairing (碱基配对):在DNA 双链中碱基存在特异的相互作用,A T 互补,CG 互补,以氢键结合。
Complementary (互补):碱基配对是由DNA 双链中的配对作用决定的,A T 配对,CG 配对。
Supercoiling (超螺旋):空间中闭环双链DNA 进一步旋曲形成的三级结构。
5. 是具有特定的核苷酸顺序的核酸分子中一个片段,是携带有特定遗传信息的功能单位。
6. DNA 一级结构——DNA 分子中核苷酸的排列顺序(即碱基顺序) 7. DNA 二级结构——双螺旋double helix主链(backbone ):脱氧核糖和磷酸基通过酯键交替连接而成。
二条主链绕一共同轴心以右手方向盘旋、反向平行形成双螺旋构型。
主链处于螺旋外则。
碱基对(base pair ):碱基位于螺旋的内则,以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。
同一平面的碱基在二条主链间形成碱基对。
配对碱基总是A 与T 和G 与C 。
碱基对以氢键维系,A 与T 间形成两个氢键,G 与C 间形成两个氢键。
大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。
小沟位于双螺旋的互补链之间,而大沟位于相核苷酸链毗邻的双股之间。
这是由于连接于两条主链糖基上的配对碱基并非直接相对, 从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。
在大沟和小沟内的碱基对中的N和O原子朝向分子表面。
结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
8.DNA构象的多样性B-DNA, A-DNA, C-DNA, D-DNA, S-DNA 的共同特征:右手双螺旋。
Z-DNA:嘌呤与嘧啶交替排列(GGCGCG);左手双螺旋;只有一个螺旋沟,狭而深;细胞DNA分子中确实存在Z-DNA。
9.DNA三级结构包括:链的扭结和超螺旋、单链形成的环、环状DNA的连环体。
10.检测DNA三级结构的方法密度梯度离心凝胶电泳————————————→电镜观察11.DNA的碱基组成通常用GC百分含量表示,注意所谓百分含量是指摩尔百分比。
12.变性&复性变性(denaturation)/解链(melting):稳定的双螺旋结构DNA分子由于维持稳定性的氢键和疏水键的断裂,松解为无规则线性结构的现象。
不涉及一级结构的改变,导致一些理化性质的变化。
复性(renaturation):指变性DNA 在适当条件下,二条互补链全部或部分恢复到天然双螺旋结构的现象,它是变性的一种逆转过程。
热变性DNA一般经缓慢冷却后即可复性,此过程称为“退火”(annealing)。
13.260nm具有强烈的吸收峰。
结构越有序,吸收的光越少。
即游离的核苷酸比单链的RNA或DNA吸收更多的光,而单链RNA或DNA的吸收又比双链DNA分子强。
当DNA变性时,其光吸收值增加,这种现象即为增色效应;反之为减色效应。
14.温度称为DNA的融点。
Tm值实际上是目标DNA的一半变性时的温度,它受DNA碱基组成和变性条件的影响。
15.0.18ml/L阳离子浓度)测得的复性率达1/2时的Cot值。
该值与核苷酸对的复杂性成正比。
Co为单链DNA的起始浓度,t是以秒为单位的时间。
16.核酸分子杂交技术原理:分子杂交(简称杂交,hybridization)是核酸研究中一项最基本的实验技术。
其基本原理就是应用核酸分子的变性和复性的性质,使来源不同的DNA(或RNA)片段,按碱基互补关系形成杂交双链分子(heteroduplex)。
杂交双链可以在DNA与DNA链之间,也可在RNA与DNA链之间形成。
17.PCR技术原理:以合成的两条已知序列的寡核苷酸为引物,在DNA聚合酶作用下,利用dNTP为原料,将位于两引物之间的特定DNA片段进行复制。
这样经过变性、退火、延伸一个循环,每一个循环的产物作为下一个循环的模板,如此循环30次。
每完成一个循环需2~4分钟,2~3h就能将带扩目的基因扩增放大几百万倍。
18.有关DNA双链的几个概念:转录(transcription):根据DNA模板合成RNA的过程,通过转录得到几种不同的RNA,其中三中典型的RNA为mRNA、tRNA和rRNA。
Coding strand编码链/sense strand有义链:该链的序列与mRNA相同。
Template strand模板链/antisense strand 反义链:该链的DNA序列通过碱基互补指导mRNA的合成,该链的序列与mRNA互补。
19.tRNA的结构与功能→tRNA的二级结构——三叶草形氨基酸接受臂:由5’端和3‘端碱基配对形成,在3’端有一个游离的CCA顺序,此臂负责携带特异的氨基酸。
氨基酸通过共价键与A上的2’-OH或3’-OH相连。
TψC臂:ψ是假尿嘧啶。
该臂常由5bp的茎和7Nt环组成,一般均存在TψC的顺序,负责和核糖体的rRNA识别结合。
反密码子臂:常由5bp的茎区和7Nt的环区组成,在反密码子环的中间是三联的反密码子,负责和密码子的识别。
二氢尿嘧啶臂(D臂):名称由来源于环中含有二氢尿嘧啶,茎区长度为4bp,负责和氨基酰tRNA 聚合酶结合。
额外臂:变化最大的区域,可分为两类,一类仅含3-5个核苷酸,另一类含有一条较大的臂,其功能是在tRNA 的L 型三维结构中负责连接两个区域(D 环-反密码子环和T ψC-受体臂)。
→tRNA 的三级结构——倒L 型(靠氢键维持)D 环和T ψC 环形成了“L ”的转角,氨基酸受体臂位于L 型的一侧, 距反密码子环约70A 。
这种结构与AA-tRNA 合成酶对tRNA 的识别有关。
受体臂顶端的碱基 位于“L ”的一个端点,而反密码子臂的套索状结构生成了“L ”的另一 端点,分子中两个不同的功能基团是最大限度分离的。
这个结构形式满足 肽链合成延伸位点与mRNA 分别位于核糖体大、小亚基的空间结构的要求。
→tRNA 的功能:①tRNA 作为连接子(adaptor )介导了mRNA 中的三联体密码子与氨基酸之间的相互关联。
tRNA 具备作为“接头”的双重特性,既能识别氨基酸也能识别密码子。
3’末端的腺苷酸可与一氨基酸共价连接,反密码子则与mRNA 中的密码子碱基配对。
②在逆转录中作为合成互补DNA 链的引物。
③参与细菌细胞壁、叶绿素、脂多糖和氨酰磷脂酰甘油的合成。
→tRNA 的种类:起始tRNA (能特异地识别mRNA 模板链上起始密码子的tRNA ) tRNA 携带甲酰甲硫氨酸(fMet )真核生物中,起始tRNA 携带甲硫氨酸(Met )延伸tRNA同工tRNA :一种氨基酸可能有多个密码子,为了识别也就有多个tRNA ,即多个tRNA 代表一种氨基酸,这些tRNA 称为~。
校正tRNA :由校正基因突变产生,通过改变反密码子区校正无义突变和错义突变。
无义突变(无义抑制):某个核苷酸的改变提前产生了终止密码子,合成无功能的多肽。
错义突变(错义抑制):某个核苷酸的改变造成了肽链合成的错误。
20. rRNA真核生物&原核生物mRNA 的比较示意图21. mRNA→单顺反子(Monocistronic ):mRNAs represent only a single gene 。
→多顺反子(Polycistronic ):sequences coding for several proteins 。
22. 真核生物mRNA 的“帽子”结构真核基因转录常从嘌呤核苷三磷酸(A,G)开始,第一个核苷酸保留5’三磷酸基团,以3’位与下一核苷酸5’位形成磷酸二酯键。
转录起始序列可示为5’PPP A P N P N P N P ...;转录后由鸟苷酰转移酶催化在5’加G ,G 与起始核苷酸是以5’-5’三磷酸键相连;这一结构称为“帽子”,5’G PPP A P N P N P N P ...第一个甲基位点在5’端鸟嘌呤7位上,所有真核生物中均存在。
具有该甲基化基团的帽子称帽子0;甲基加到次末端碱基上,具有两个甲基基团的帽子叫帽子1。
以帽子1为底物,在第三个碱基再加上一个甲基,则称帽子2。
23. mRNA 的poly(A)尾大多数真核mRNA 的3’端有多聚腺苷酸序列;poly(A)序列不是DNA 编码,是转录后加上的;mRNA 初进入细胞质时,其poly(A)尾长度大致与核中长度相同,随后逐渐缩短。
组蛋白mRNA 不含poly(A) 结构。