谐振转换器工作原理
llc谐振变换器原理

LLC谐振变换器是一种高效的电力转换器,常用于直流-直流(DC-DC)和直流-交流(DC-AC)的能量转换应用。
它采用谐振技术,在输入和输出之间实现高效能量传输。
LLC谐振变换器的原理如下:
1.输入滤波器:LLC谐振变换器的输入端通常包含一个电感、电容和滤波器电路。
它
的作用是滤除输入电源中的高频噪声,并提供稳定的输入电压。
2.变换器拓扑:LLC谐振变换器的核心是一个组合了电感(L)、电容(C)和电阻(R)
的谐振电路。
这个谐振电路通常呈LC串联并联的形式,形成了谐振回路。
3.开关控制:LLC谐振变换器通过开关管(通常是MOSFET)来控制能量的流动。
开
关管的状态由控制电路根据需求进行调整。
4.谐振过程:在LLC谐振变换器中,开关管周期性地打开和关闭,从而使能量在谐振
电路中流动。
当开关管关闭时,电感和电容形成谐振回路,储存能量;当开关管打
开时,谐振回路释放能量到输出端。
5.控制和调整:LLC谐振变换器的控制电路负责监测输入和输出的电压、电流,以及
开关管的状态,并根据需要进行调整。
通过精确控制开关管的开关频率和占空比,
可以实现高效的能量转换和稳定的输出。
LLC谐振变换器利用谐振技术,在开关管的开启和关闭过程中实现零电压或零电流切换,减少了开关损耗和开关噪声,提高了转换效率。
同时,谐振电路的特性使得LLC谐振变换器具有较好的抗干扰能力和较低的电磁干扰(EMI)。
总而言之,LLC谐振变换器利用谐振原理实现高效的能量转换和稳定的输出,适用于多种功率转换应用,如电源适配器、电动车充电器、太阳能逆变器等。
谐振回路的工作原理

谐振回路的工作原理谐振回路(Resonant Circuit)是一种电路,它在特定的频率下具有理想的电阻和电流特性。
谐振回路主要由电感(Inductor)和电容(Capacitor)组成,并通过振荡器(Oscillator)产生频率稳定的交流电。
一、电感的作用电感是由导线卷绕而成的线圈,通过电流的变化而产生磁场。
当交流电通过电感时,由于电流的改变会产生磁场的变化,从而导致电感中产生感应电动势(EMF)。
根据安培定律,感应电动势的方向与电流改变的方向相反。
因此,电感在电路中起到阻碍电流改变的作用。
二、电容的作用电容是由两个导体板和介质之间的绝缘体组成。
当电容器两端施加电压时,正极上将积聚正电荷,负极上将积聚负电荷,形成电场。
电容器存储电荷的能力称为电容,通常以法拉(Farad)为单位。
电容的作用是存储和释放电荷。
三、谐振频率的计算当谐振回路处于谐振时,电感和电容之间的磁场和电场之间的能量会不断互相转换。
这种能量转换以理想情况下没有能量损耗的形式发生。
谐振频率的计算公式如下:f = 1 / (2 * π * √(LC))其中,f表示谐振频率,L表示电感,C表示电容。
四、谐振回路的工作原理当谐振回路的谐振频率与输入交流电源的频率相等时,谐振回路可以产生共振。
在共振状态下,电感和电容之间的能量转换达到最大值,电路中的电流和电压也达到最大值。
当输入交流电源的频率不是谐振频率时,谐振回路的阻抗会增加,导致电流和电压减小。
这是因为电感和电容对频率不同的信号有不同的阻抗特性,它们共同抵消了外部电源的能量。
在谐振回路中,电感和电容之间的互相作用产生了阻抗,即电路对交流电的阻抗特性。
在谐振频率下,电感和电容之间的阻抗互补,导致总阻抗最小。
在其他频率下,电感和电容之间的阻抗不互补,导致总阻抗增加。
因此,谐振回路可以用作选择特定频率的信号,或用作滤波器来消除非期望的频率。
谐振回路在通信、广播和无线电技术等领域中广泛应用。
LLC谐振电路工作原理及参数

实现方式
通过调整电路元件的参数 或添加阻抗变换器来实现 阻抗匹配。
影响
阻抗匹配可以提高信号传 输效率,减小信号损失和 反射,提高系统的稳定性。
04
LLC谐振电路设计
设计流程
确定目标输出电压和电流
根据应用需求,确定LLC谐振电路的 目标输出电压和电流。
选择合适的磁性元件
根据目标输出电压和电流,选择合适 的变压器和电感器。
当LLC转换器工作在容性工作状态时, 转换器的输入电压低于其输出电压。 此时,转换器的效率较低,输出功率 较小。
03
LLC谐振电路参数
品质因数Q
01
定义
品质因数Q是衡量电感或电容的 储能与耗能之间的比值,用于描 述电路的频率选择性。
02
03
计算公式
影响
$Q = frac{2pi f_0W}{P}$,其中 $f_0$是谐振频率,W是储能,P 是耗能。
根据谐振频率和电感器的值,计算电容器的容量。
确定电阻的阻值
根据输出电压和电流,确定电阻的阻值,以实现电流限制或电压调 节。
仿真与优化
使用仿真软件进行电路仿真
使用仿真软件对LLC谐振电路进行建模和仿真, 以验证设计的正确性和性能。
优化电路参数
根据仿真结果,优化电路参数,以提高效率、 减小体积或降低成本。
LLC谐振电路工作原理及 参数
• LLC谐振电路概述 • LLC谐振电路工作原理 • LLC谐振电路参数 • LLC谐振电路设计 • LLC谐振电路性能测试 • LLC谐振电路实际应用案例
01
LLC谐振电路概述
定义与特点
定义
LLC谐振电路是一种电子电路,由 电感、电容和电抗元件组成,通 过调整元件参数,使电路在特定 频率下产生谐振。
了解电力电子技术中的谐振变换器电路拓扑

了解电力电子技术中的谐振变换器电路拓扑谐振变换器电路拓扑是电力电子技术中常见的一种电路结构,其通过谐振实现能量的高效转换和控制。
本文将就谐振变换器的基本原理、不同类型的谐振变换器及其特点进行介绍和分析。
第一部分:谐振变换器的基本原理谐振变换器是一种能量转换电路,其基本原理是在电路中引入谐振元件(如电感和电容),通过合理的谐振频率使能量在不同电路元件之间进行转移和控制。
谐振变换器的基本原理可以用以下几个关键要点来概括:1. 谐振频率:谐振变换器的谐振频率是实现能量高效转换的关键。
在设计谐振变换器时,需要合理选择电路元件的数值以确保电路能够在所需的频率范围内谐振。
2. 谐振元件:谐振元件是谐振变换器中的核心元件,通常包括电感和电容。
它们通过谐振的方式控制能量的转移和传递,从而实现高效的能量转换。
3. 控制方式:谐振变换器的控制方式可以分为开关控制和调制控制两种。
开关控制通过控制开关元件(如MOSFET)的开关状态来调节能量的转移和传输;调制控制则是通过改变谐振频率或者改变开关周期来实现能量的控制。
第二部分:谐振变换器的主要类型及其特点1. 单端拓扑谐振变换器单端拓扑谐振变换器常见的有LLC谐振变换器和LCC谐振变换器。
LLC谐振变换器是一种常用的谐振变换器,具有输出电流平滑、转换效率高等特点;LCC谐振变换器则适用于功率较大的应用场景,具有较高的功率密度和较小的开关失真等特点。
2. 双端拓扑谐振变换器双端拓扑谐振变换器在应用中也非常广泛,常见的有LLC谐振变换器、LLCC谐振变换器和LLCL谐振变换器。
LLC谐振变换器在电力电子领域被广泛使用,具有功率密度高、体积小、转换效率高等优点;LLCC谐振变换器在高压应用中具有优秀的性能;LLCL谐振变换器则适用于高频应用,具有较高的输出精度和转换效率。
3. 其他谐振变换器除了上述单端和双端谐振变换器外,还存在一些其他类型的谐振变换器,如ZVS谐振变换器和HZVS谐振变换器。
半桥llc谐振变换器工作原理_概述及解释说明

半桥llc谐振变换器工作原理概述及解释说明1. 引言1.1 概述本篇文章主要介绍了半桥LLC谐振变换器的工作原理,从基础概念出发,逐步深入解释其原理和设计考虑。
半桥LLC谐振变换器作为一种高效率、高稳定性的电源转换器,在工业、计算机以及新能源领域应用广泛。
通过该文章的阅读,读者可以全面了解半桥LLC谐振变换器的内部结构、工作原理以及应用案例分析,并对实现该变换器的关键要点有所掌握。
1.2 文章结构本文共分为五个主要部分:引言、半桥LLC谐振变换器工作原理、实现半桥LLC 谐振变换器的要点、实际应用案例分析以及结论与展望。
在引言中,将简要概括文章内容并说明目的,帮助读者对全文有一个初步的认识和预期。
接下来,我们将详细介绍半桥LLC谐振变换器的工作原理,包括概述、原理详解以及关键参数和设计考虑。
然后,我们将讨论实现该变换器所需注意的要点,包括控制策略选择与设计、调节回路设计与优化以及功率传输与效率提升技术。
随后,通过实际应用案例分析,我们将覆盖工业、计算机和新能源领域中半桥LLC谐振变换器的具体应用情况。
最后,在结论与展望部分,对文章进行总结,并展望未来该领域的研究方向。
1.3 目的本文的目的是介绍半桥LLC谐振变换器的工作原理及其相关要点和应用案例,为读者提供一个全面深入的了解。
通过本文,读者将能够掌握该变换器的基本概念、内部结构以及关键设计参数和考虑因素。
此外,通过实际应用案例分析,读者可以更好地了解半桥LLC谐振变换器在不同领域中的具体应用场景和效果。
最后,在结论与展望部分,我们会对该领域未来发展方向进行初步讨论。
希望通过这篇文章,读者可以加深对半桥LLC谐振变换器的理解,并在相关领域中有所应用和创新。
2. 半桥LLC谐振变换器工作原理2.1 谐振变换器概述谐振变换器是一种常用的电力电子转换器,其主要目的是将电能从一个形式转换为另一个形式。
在半桥LLC谐振变换器中,输入直流电压会被转换成高频交流电压,并通过输出侧得到所需的功率输出。
llc谐振变换器工作原理及作用

llc谐振变换器工作原理及作用
谐振变换器(LLC)是一种常用的电力电子变换器,它广泛应用于直流-
交流转换器中。
下面我将为您介绍LLC谐振变换器的工作原理和作用。
LLC谐振变换器的工作原理如下:首先,输入电压经过整流和滤波,得
到一个直流电压。
然后,这个直流电压经过谐振电感和谐振电容,并与主开
关的开关动作交替,形成一个交流电压。
这个交流电压经过变压器,输出到
负载。
LLC谐振变换器的主要作用是将输入直流电压转换为需要的交流电压。
它可以实现高效能的功率转换,并具有以下几个重要的特点:
1. 高效能:LLC谐振变换器采用谐振电感和谐振电容,能够减小开关损
耗和开关噪音,提高能量转换的效率。
2. 高可靠性:谐振变换器的主开关只在零电压或零电流下进行开关动作,减少了开关元件的压力和损耗,从而提高了系统的可靠性和寿命。
3. 可调性:LLC谐振变换器可以通过改变谐振电感和谐振电容的数值来
调整输出电压和电流的大小,从而满足不同负载的需求。
4. 低电磁干扰:谐振变换器通过谐振电路将电压和电流在零交流压力点
进行开关,减少了开关瞬态和电磁辐射,降低了对其他电子设备的干扰。
LLC谐振变换器是一种高效、可靠、可调的电力电子变换器,具有广泛
的应用前景。
它可以在直流-交流转换器中将输入直流电压转换为需要的交
流电压,同时还具备较低的开关损耗、低电磁干扰等优点。
dcdc中llc谐振变换器工作原理

dcdc中llc谐振变换器工作原理
LLC谐振变换器是一种常用的高频变换器,其工作原理如下:
1.输入电压加工作在非导通状态的功率开关管(如MOSFET)并接入电感Lr,产生电流。
2.当MOSFET导通时,电感Lr储存了能量,这时MOSFET截止且电容C输出电压被输出。
3.MOSFET截至后,电感Lr和电容C形成一个谐振电路。
谐
振电路中的能量开始通过二极管D输出。
4.当谐振电路中的能量完全输出后,再次触发MOSFET的导
通操作,使得新一轮的能量传输开始。
LLC谐振变换器的工作原理遵循以下几点特点:
1.谐振电路要求电感Lr和电容C的谐振频率与输入电压的频
率相同,以实现高效能量传输。
2.通过合理调整开关频率和占空比,可以实现谐振电路中能量
的最大化输出。
3.LLC谐振变换器采用谐振方式工作,能够实现高效能量转换
和低损耗。
4.通过控制开关管的导通和截止状态,可以实现输出电压的稳
定调节。
综上所述,LLC谐振变换器利用谐振电路的特性,实现了高效能量转换和稳定调节的功能。
LLC半桥谐振开关电源原理介绍与逆变电路

LLC半桥谐振开关电源原理介绍与逆变电路LLC半桥谐振原理介绍随着开关电源技术的研究与发展,高效电路模块(软开关)技术得到了广泛的应用,主要为谐振型的软开关拓扑和 PWM 型的软开关,近几年来,随着半导体器件制造技术的发展,开关管的导通电阻、电容和反向恢复时间越来越小了,对于谐振变换器来说,如果设计得当,能实现软开关变换,使得开关电源具有较高的效率,LLC 谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而 LLC 谐振是调频型(PFM)电源电路。
0928ELLC半桥谐振电源开关原理框图在工作中,半桥串联谐振的DC-DC转换器通过改变开关管的开关频率进行转换,谐振网络的输入电压频率也将同步发生改变,谐振网络的阻抗也将发生改变,并 进一步影响负载端的电压发生相应的变化。
由于这种分压作用,串联谐振变换器的直流电压增益≤1,当电路的开关频率工作在谐振频率Lr和Cr谐振点时,谐振网络的阻抗达到最小,输入的电压绝大部分传递到负载端,此时变换器的直流电压增益最大为1。
LLC半桥谐振逆变电路根据负载结构的不同形式,逆变器分为两种形式:串联谐振逆变器,即电容与负载串联连接,也称电压源型逆变器;并联谐振逆变器,即电容与负载并联连接,也称电流源型逆变器。
本文主要对串联谐振逆变器的主电路结构、控制和调功方法进行研究。
全桥串联谐振逆变器串联谐振逆变器分为全桥串联谐振逆变器和半桥串联谐振逆变器两类,首先对全桥串联谐振逆变器进行介绍,其电路结构如下所示。
0928F 串联型逆变器根据负载工作状态的不同可以分为三种工作模式:容性状态、感性状态和谐振状态,状态下负载电压和电流的相位关系,分别为负载电压、负载电流的波形,负载电压与负载电流之间的相位角。
桥臂谐振电容与负载串联,而不是自成回路,即流过负载的电流将全部流过开关管IGBT,因此,在这种电路中一般采用多个开关管并联,两类半桥串联谐振逆变器结构上的不同在于对于第1类半桥串联谐振逆变器,谐振电容与负载槽路直接串联,此类逆变器一般应用于小功率领域;半桥串联谐振逆变器,两个谐振电容相当于是两个桥臂,一般用于较大功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.主开关电源电路
(1)LLC谐振转换器工作原理
随着开关电源的发展,软开关技术得到了广泛的发展和应用,已推出了不少高效率的电路,尤其是谐振型的软开关电源和PWM型的软开关电源。
近几年来,随着半导体器件制造技术的发展,开关管的导通电阻、寄生电容和反向恢复时间越来越小,这为谐振变换器的发展提供了又一次机遇。
对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。
LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。
LLC谐振电路简图如图10所示,工作波形图如图11所示。
电路中有两只功率MOs管(S1和S2),其工作的占空比均为0.5。
谐振电容为Cs。
Tr为匝数相等的中心抽头变压器,其漏感为Ls,激磁电感为Lm(Lm在某个时间段也是一个谐振电感)。
从图11中不难看出,在LLC谐振变换器中,谐振元件主要由谐振电容Cs、电感Ls和激磁电感Lm组成,LLC变换器的稳态工作原理如下:
当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体内二极管导通。
此阶段D1导通,Lm上的电压被输出电压钳位,因此只有Ls和Cs参与谐振。
当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。
此时Cs和Ls参与谐振,而Lm不参与谐振。
当t =t3时,S1仍然导通,而D1与D2处于关断状态,T:副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。
由于实际电路中Lm>>Ls,因此在这个阶段中,可以认为激磁电流和谐振电流都保持不变。
当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体内二极管导通。
此阶段D2导通,Lm上的电压被输出电压钳位,因此只有Ls和Cs参与谐振。
当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。
此时仅Cs和Ls参与谐振,Lm上的电压被输出电压钳位,而不参与谐振。
当t =t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时Lm、Ls和Cs 一起参与谐振。
实际电路中Lm> >Ls ,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。
(2)主开关电源电路分析
该电源板主开关电源电路主芯片L6599DIC2)的引脚功能与实测电压见表3所示。
1)启动控制
IC2的供电电路如图12所示,T2B绕组的感应电压经D10整流,Q5、Z3稳压后输出Vcc2 (14V 左右),供给PFC芯片,并通过Q9、Z4稳压后输出Vcc3 (12V左右)供给L6599D12脚。
过流、过压、ON/OFF信号通过光耦IC4控制Q5的导通状态,进而控制PFC、LLC电路是否工作,以实现过压、过流保护与开/关机功能。
当IC2的12脚加上电压后,通过IC的内部电路给①脚(CSS)外接电容C27充电,如图13所示。
此时C26可视为短路,R57与R61并联(阻值较小),L6599D的振荡频率升高,电源功率下降。
当C27充满电时,C27可视为开路,振荡频率由R57决定,振荡频率降低,电源输出正常,由此实现变频软启动功能。
同时,VDC1电压经电阻R7-R9及R45分压后加到IC2的⑦脚。
R45上并联的电容C17用来旁路噪声干扰。
当⑦脚(Line)电压低于1.25V时,关闭IC;当高于1.25V但低于6V时,IC正常工作,通过对VDC的电压检测,实现欠压保护功能。
IC完成软启动后,内部振荡器开始振荡,从15脚(HVG)与11脚(LVG)输出占空比接近50%
的脉冲,驱动MQS管正常工作。
2)稳压控制
次级电压通过取样电阻加在光耦OC3)内发光管上,并与TL431 (ICS1)的基准电压进行比较,ICS1的稳压值由上偏电阻RS25//RS30和下偏电阻RS26、RS27决定,见图13所示。
当负载由满载转向空载时,输出电压上升,ICS1的R极的电压将上升,而R极的电压被ICS1内部电路稳定在2.5V,这将引起ICS1的AK极间流过的电流增大,光耦IC3内发光二极管中通过的电流增大,IC3的③、④脚内光敏三极管上流过的电流也增大。
IC3内的光敏三极管相当于一个可变电阻,与R58,R59串联起来接到IC2的④脚(RFMIN),此时IC3内光敏三极管的电阻变小,IC 振荡频率升高,则输出电压下降。
反之,当负载由空载转向满载时,输出电压降低,其稳压过程与上述相反。
3)L6599D的SCP(过流)保护控制
当T1次级短路时,输出电压会降低,这一电压变化会通过光耦IC3反馈到L6599D的④脚(RFMIN),引起L6599D振荡频率降低,由于此时IC3内光敏三极管等效于开路,振荡频率大大偏离LLC谐振电路的谐振点,C8上的振荡电压急剧增大,通过C19,R46-D12,D13全波整流输入到⑥脚(ISEN),当⑥脚电压高于0.8V时,L6599D的②脚开始对C28充电(随后C28对R54放电),同时IC内部电路对①脚外接软启动电容放电,导致工作频率上升(功率下降),②脚反馈电压快速上升到3.5V,内部电路在关闭对电容充电的同时,芯片也停止振荡。
延迟保护时间由②脚外接电阻R54和外接电容C28决定。
当C28通过R54放电到C28两端电压降为0.3V时,L6599D重新启动。
由于IC2的②脚电压在3.5V和0.3V间不断变化,IC在保护与正常工作状态间跳动,输出电压也会波动,即工作在间歇保护模式下(只有在次级OCP一直没有启动的情况下,才会出现这样的情况),L6599D的SCP过流保护是不锁定的,只要其②脚电压降到0.3V时又会重新工作。
5.次级OCP过流)与OVP(过压)保护
次级OCP(过流)与OVP(过压)保护电路如图14所示,低功率低电压双比较器LM393 (ICS3)为OCP保护电路控制芯片;QS2,QS3组成自锁电路
在主电源次级输出电路中,电阻RS 19、RS20分别将+12V,+24V的输出电流转化为电压信号,即C1、B1信号,分别送往ICS3的⑥脚和②脚。
当+12V或+24V电压输出过流时,则C1、B1电压大幅下降,ICS3的输出端输出高电平,二极管DS13或DS9导通,QS2、QS3饱和导通,将光耦IC4内部发光二极管的供电大幅拉低,发光二极管截止,则IC4的③、④脚内的光敏三极管也截止,其c、e极间电阻为无穷大,Q5因无基极偏压而截止,L6562D与L6599D均失电停止工作,以达到过流自锁保护的目的。
值得一提的是,由于L6599D也具有过流(SCP)保护功能,故要求次级OCP电路具有延时保护特点,以避免出现控制冲突,具体过程如下:当运放ICS3检测到过流时,其输出端输出的高电平对CS36充电,同时通过RS 16和RS 17分压后给CS34充电。
由于L6599D第一次检测到过流时,IC2的②脚设定的延时时间很短,这时电容CS36、CS34两端的电压很低,QS3不能导通,次级OCP 保护电路不启动。
当L6599D的②脚电压通过R54放电从3.5V降到0.3V时,L6599D重新工作,过流检测电路再次对CS36、CS34充电,此时CS34两端的电压已能使QS3导通,QS2也随之导通,即次级OCP电路起控。
在检修中,有时会看到输出电压刚出现就消失,这是因为次级的OCP电路要在L6599D的SCP电路第二次动作后才实现保护,所以次级的OCP电路在保护时间上要滞后于L6599D的SCP电路,大概相差40ms左右,具体时间由其外接的延时电阻、电容决定。
在次级OVP(过压)保护电路中,三只稳压二极管ZS2~ZS4分别监测24V、16.5V和12V电压的高低,当其中任意一路输出电压过高时,相应的稳压二极管便会反向击穿,QS2、QS3饱和导通,保护电路动作并自锁。