5 溶液-相平衡学习资料
第五章 相平衡

衡时的p-x相图如右图
g
A
xB
B
三、二组分气-液平衡系统
例题二:在p=101.3 kPa,85℃时,由甲苯(A)及苯(B)组成的 二组分液态混合物即达到沸腾。该液态混合物可视为理想液 态混合物。试计算该理想液态混合物在101.3 kPa及85℃沸腾 时的液相组成及气相组成。已知85℃时纯甲苯和纯苯的饱和 蒸气压分别为46.00 kPa和116.9 kPa。
b、具有最低会溶温度的系统 如H2O-(C2H5)3N系统 TB=291K
c、具有两种会溶温度的系统 如H2O-(C2H5)3N系统 曲线内为两相共存 曲线外是互溶单相区
d、不具有两种会溶温度的系统 如H2O-乙醚系统
T/K
291
H2O x
481
T/K
(C2H5)3N
333
H2O x
烟碱
五、二组分液-固平衡系统
pA*
p pA pB pA* xA pB* xB
pA* (1 xB) pB* xB
pB* pA* xB pA*
A
xB
B
压力与液相组成图(T一定)
设A在气相中的摩尔分数为yA,B为yB,则有
yA
pA p
pA* xA p
yB
pB p
pB* xB p
yA pA* xA yB pB* xB
继续降低压力至D,气液达到平衡
此时,液相组成为C点
p T一定 a
气相组成为E点
C点和E点称为相点 CE称为联结线
继续降低压力至F
pA*
CN
D
F
pB*
EM
此时,液相已经全部蒸发
气相组成为F点 继续降低压力
气相的简单状态变化
化工热力学第五章 相平衡

热平衡
力平衡
化学位相等
温度: T p 压力: y 组成: i
i 1, 2, 3, N
V 相:
i=1,2,....,N 相L i=1,2, ....,N
T 温度: 压力:p 组成:x i
ˆ f ˆ fi i
在一定温度T,压力p下处于平衡状态的多相多组分 系统中,任一组分i在各相中的分逸度必定相等。
方 法 EOS 法
V i
i
s i s i i i
法
p
汽液平衡 计算公式
ˆ ˆ yi xi
V i
L i
Vi L ˆ pyi p x exp dp s RT p
i
1.不需要标准态, 2.只需要选择 EOS,不需要相平衡数据; 3.易采用对比态原理; 优点 4.可用于临界区和近临界区。
1. 活度系数方程和相应的系数较全; 2. 温度的影响主要反应在对 f i
L
上,对
i 的影响不大;
3. 适用于多种类型的溶液, 包括聚合物、 电解质系统。
1. EOS 需要同时适用于汽液两相,难度大; 1. 需要其他方法求取偏摩尔体积,进而 2. 需要搭配使用混合规则, 且其影响较大; 缺点 3. 对极性物系,大分子化合物和电解质系 统难于应用。 4. 基本上需要二元交互作用参数 kij,且 kij 也需要用实验数据回归。 适用 范围 原则上可适用于各种压力下的汽液平衡,但 更常用于中、高压汽液平衡 中、 低压下的汽液平衡, 当缺乏中压汽液 平衡数据时,中压下使用很困难。 求算摩尔体积; 2. 需要确定标准态; 3. 对含有超临界组分的系统应用不便, 在临界区使用困难。
第五章 相平衡
5.1.2相律
所谓相律,就是在相平衡状态下,系统的变量之间存在一定互相依赖 的 关系。这种关系,是多组分多相平衡系统都必须遵循的规律。
第5章 相 平 衡

相与相:明显界面;机械方法可分开;
宏观界面性质突变;与物质量无关。
相数:体系中所含相的数目,记为P。
自然界中物质有三种存在形态(s,l,g)
气态:一般能无限混合 ——单相
液态:完全互溶 —— 单相
不完全互溶 —— 多相
固态:一般不能互溶 —— 多相
固溶体 —— 单相
2. 组分和组分数
组分(元,Component),也称独立组分(元) 描述体系中各相组成所需最少的、能独立存在 的物质(讨论问题方便)。
溜冰人在冰刀上产生的压强为:
mg 60 9.8 p2 1.575 108 / Pa 2 As 2 1.867 10 6
p1 1.01325 105 / Pa源自T1 273.16 / K
trs H m T2 ln 来计算:T2=262.19K ◎用 p trsVm T1 trs H m T ◎用 p 来计算:T2=261.96K trsVm T1
1. 点、线、面的意义 线:两相平衡,为单变量系 —— P = 2 f =1 OA:液(水)-气(水蒸气)平衡线,水蒸气压曲线 p = 22088.85kPa C p 临界点 A T = 647K 水 OF :过冷水-水蒸气平衡 p2 不稳定 p1 冰 O F 水蒸气 OB:固(冰)-气(水蒸气) 平衡,冰升华曲线 B OC:固(冰)-液(水)平衡,
trs H m | trs H m | | trs H m | dp p 2 dT T trsVm TVm, g RT
dlnp | trs H m | 或 dT RT 2
| trs H m | 1 1 p2 ln ( ) p1 R T2 T1
| trs H m | p A' ln B' B' p RT T | trs H m | p B' A lg B p 2.303RT 2.303 T
物理化学 第五章 相平衡

一、基本概念和公式 (一)几个基本概念 1. 相和相数 (1)相 (phase) 系统内部物理和化学性质完全均匀的部分称为相。 特点 相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。 (2)相数 (number of phase) 系统中相的总数称为相数,用 表示。 气体:
(三)二组分系统的相图及应用
(3) 同时具有最高、最低会溶温度 (4) 不具有会溶温度
(三)二组分系统的相图及应用
4. 不互溶双液系 (1) 特点 如果A,B 两种液体彼此互溶程度极小,以致可忽略 不计。则A与B共存时,各组分的蒸气压与单独存在时一 样,液面上的总蒸气压等于两纯组分饱和蒸气压之和。 * * 即: p pA pB 当两种液体共存时,不管其相对数量如何,其 总蒸气压恒大于任一组分的蒸气压,而沸点则恒低 于任一组分的沸点。 (2) 水蒸气蒸馏
CaF2 ( A)
0 .6
0 .8
1 .0 CaCl2 ( B)
(三)二组分系统的相图及应用
(3) 相合熔点 A和B形成的化合物有确定的熔点,完全熔化时不 分解,在熔点时液相和固相的组成相同,所以稳定化 合物的熔点称为相合熔点。 (4) 不相合熔点 因为C没有自己的熔点,将C加热,到O点温 度时分解成 CaF2 (s) 和组成为B的熔液,所以将O点 的温度称为转熔温度(peritectic temperature)也 叫异成分熔点或不相合熔点。
(四)三组分系统的相图及其应用
(d) 如果代表两个三个组分 系统的D点和E点,混合成新 系统的物系点O必定落在DE 连线上。哪个物系含量多, O点就靠近哪个物系点。 O点的位置可用 杠杆规则求算。
mD OD mE OE
第5章- 相平衡

1 (2) CO O 2 CO 2 2 1 (3) H 2 O 2 H 2O 2
这三个反应中只有两个是独立的,所以 R=2
独立组分数:C= S – R – R′
浓度限制条件:R′ 例如,在真空容器中发生如下反应:
2NH3 (g) N2 (g) 3H2 (g)
第五章
相平衡
相数的确定
系统中相的总数称为相数,用 表示。
气体,不论有多少种气体混合,只有一个气相; 液体,按其互溶程度可以组成一相、两相或三相共存;
固体,一般有一种固体便有一个相。两种固体粉末无论混 合得多么均匀,仍是两个相(固溶体除外,它是单相);
自由度
确定平衡系统的状态(既不产生新相也不消失
* nA (g) pA * nB (g) pB
2、 工业应用:水蒸气蒸馏
简单的低共熔二元相图
1.0Bi
a
A
0.4Cd 1.0Cd 0.2Cd 0.7Cd b c d e H A'
F
p
A
H 596
熔化物(单相)
546
C
F
T /K
C
B
413
D D' E
G
M
熔化物+Cd(s)
G E 413 Bi(s)+熔化物 D BBi
0.2
0.4
0.6
0.8
wCd
1 Cd
Cd-Bi二元相图的绘制
Cd-Bi二元相图的绘制
w(Cd) 0.2
的步冷曲线
b
T /K
f* 2
C
D
f * 1
1. 加热到b点,Bi-Cd全部熔化 Φ 1 f * 2 1 Φ 2 温度可以下降,组成也可变 2. 冷至C点,固体Bi开始析出 Φ 2 f * 2 1 Φ 1 温度可以下降 3.D点固体Bi、Cd同时析出
第五章 相平衡(10个)

第五章 相平衡一、本章基本要求1.掌握相、组分数和自由度的意义。
2.了解相律的推导过程及其在相图中的应用。
3.了解克劳修斯—克拉珀龙方程式的推导,掌握其在单组分两相平衡系统中的应用。
4.掌握各种相图中点、线及面的意义。
5.根据相图能够画出步冷曲线,或由一系列步冷曲线绘制相图.6.掌握杠杆规则在相图中的应用.7.结合二组分气液平衡相图,了解蒸馏与精馏的原理。
8.对三组分系统,了解水盐系统的应用,相图在萃取过程中的应用及分配定律的应用。
二、 基本公式和内容提要(一)基本公式相律的普遍形式:f K n =-Φ+ 克拉珀龙方程:mm d ln d V T H T p ∆∆= 克劳修斯—克拉珀龙方程的各种形式:微分式: 2m vap d ln d RT H T p ∆= vap m H ∆与温度无关或温度变化范围较小vap m H ∆可视为常数,定积分:vap m 211211ln ()H p p R T T ∆=- 不定积分式:vap mln H p C RT ∆=-+ 特鲁顿规则:K)J/(mol 88b mvap ⋅≈∆T H杠杆规则:以系统点为支点,与之对应的两个相点为作用点,有如下关系:1122()()n x x n x x -=-其中n 1 、n 2 分别表示平衡两相的摩尔数,x 、x 1、x 2分别表示系统的组成及其对应的平衡两相的组成。
(二)内容提要1.单组分系统 单组分系统相律的一般表达式为:f =1-Φ+2=3-Φ图5-1 水的相图可见单组分系统最多只能有三相平衡共存,并且最多有两个独立变量,一般可选择温度和压力。
水的相图为单组分系统中的最简单相图之一。
图5—1中三条曲线将平面划分成固、液及气相三个区.单相区内f =2。
AB 、AD 和AE 分别表示气液、气固和固液两相平衡线。
两相共存时f =1.虚线AC表示应该结冰而未结冰的过冷水与水蒸气平衡共存。
A 点为三相点,这时f =0,水以气、液、固三相共存。
物理化学:相平衡

相平衡是热力学在化学领域中的重要应用之一。研究 多相体系的平衡在化学、化工的科研和生产中有重要的 意义,例如:溶化、蒸馏、重结晶、萃取、提纯及金相 分析等方面都要用到相平衡的知识。
一、基本概念
第一节 相律
1、 相(phase) 体系内部物理和化学性质完全均匀的 部分称为相。相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。体系中相的总数 称为相数,用Φ表示。
三、自由度数(f)
自由度: 确定平衡体系的状态所必须的独立强度变量的
数目称为自由度,用字母 f 表示。这些强度变量通常是
压力、温度和浓度等。
以水为例〔注意是商量平衡态〕∶ a. 当φ=1时,例如液态水的T、p可在肯定范围内改变, φ不变 ∴ f=2 b. 当φ=2时,例如气-液平衡,指定p外,则Tb确定; 而指定T,则水有确定的平衡蒸气压p,∴ f=1 c. 当φ=3时,即气-液-固三相平衡共存时〔三相点〕,T、 p是确定的〔273.16K、6.1×102Pa、由水的性质所决定〕, ∴ f=0,如果变化T或p,则不可能三相共存〔即φ≠3〕。
一、水的相图 水的相图是依据实验绘制的。图上有:
水 的 相 图
(1) 气、液、固单相区∶f=1-1+2=2
(2) 两相平衡线∶
f=1-2+2=1
OC线∶气-液平衡
T与液态水的饱和蒸气压p蒸气的关系
或沸点Tb与p外的关系
OA线∶液-固平衡 凝固点Tf与p外的关系
OB线∶气-固平衡
T与冰的饱和蒸气压p蒸气的关系
dp/dT=ΔHm / T·ΔVm 此方程适合于任何纯物质的两相平衡
2、对于气-液或气-固两相平衡体系 近似处理∶a. 假设蒸气遵守理想气体状态方程
物理化学第5章相平衡

(2) 保持压力不变,得 T-x 图 常用
这三个变量通常是T,p 和组成 x。所以要表示二组分系统状态图,需用三个坐标的立体图表示。
一. 合金体系 1、相图绘制—— 热分析法 §5.7 具有简单低共熔混合物的固液二组分系统 Cd-Bi二元相图
①对拉乌尔定律有较大正偏差:
在T-x图上就有最低点,这最低点称为最低恒沸点
最低恒沸混合物是混合物而不是化合物,它的组成在定压下有定值。
在标准压力下, 的最低恒沸点温度为351.28 K,含乙醇 95.57 。
改变压力,最低恒沸点的温度也改变,它的组成也随之改变。
属于此类的系统有:
5.8 有化合物生成的固液二组分系统
5.4 完全互溶的双液系统
5.2 单组分系统的克-克方程
5.9 三组分系统
5.7 具有简单低共熔混合物的固液二组分系统
5.1 相律
5.3 水的相图
第五章 相平衡
相平衡是热力学在化学领域中的重要应用之一 研究多相系统的平衡在化学、化工的科研和生产中有重要的意义,例如:溶解、蒸馏、重结晶、萃取、提纯及金相分析等方面都要用到相平衡的知识 相律(phase rule);相图(phase diagram)
2、分析相图
区:图上有4个相区 ( 1) AEH线之上, 熔液(l)单相区 (2) ABE之内, Bi(s)+ l 两相区 (3) HEM之内, Cd(s)+ l 两相区 (4)BEM线以下, Bi(s)+Cd(s)两相区
线:有三条多相平衡曲线
(1)ACE线,Bi(s)+熔液 共存时的熔液组成线。
组成为F的气体冷到E
有组成为x1的液体出现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-2 理想溶液与拉乌尔定律 (p. 208, 212)
如B难挥发 pB 0
p = pA + pB pA = pA XA
Raoult’s 定律的 另一种表达式
溶液蒸气压 与 气相组成:
pA = pYA
分压定律
蒸气压与气液组成之间: pA XA= pA = pYA
若对于 A与 B两组分,A 更易挥发, 即 pA > p, 则 XA < YA
分子间相互作用力:主要 A-A;极少量 B-B。
溶剂 A 分子在溶液中的环境与纯态时非常接近
—— 同理想溶液
Raoult’s Law
p pX
A
AA
A- 溶剂
p.208 (5-2-1a)
5-3 理想稀溶液与拉乌尔定律和亨利定律 (p. 209, 215)
Henry’s Law
溶质B分子几乎完全处于A 分子的环境中
5-2 理想溶液与拉乌尔定律 (p. 208, 212)
Raoult’s Law
p pX
B
BB
XB < 1, pB < pB
XB 1, pB pB
溶液蒸气压,
蒸气-- 理想
气体
p = pB
p = pA + pB pA < p < pB
p
120
Dbezene
Ctoluene
100
Bbenzene+toluene
5-3 理想稀溶液与拉乌尔定律和亨利定律 (p. 209, 215)
不同浓度单位时,Henry’s 定律: (p.201)
pB = KBCB
CB : mol·dm-3
pB = KBbB pB = KB%B pB = KBaB
bB : mol·kg-1
aB : activity
1
1
KB可由实验数据外推 获得, 为一假想状态
A与B的相互溶解过程是稀释过程
CH3OH-CH3CH2OH; Fe-Mn; Sn-Bi; 同分异构体
热力学函数变量 H = 0 , S > 0, G< 0
理想溶液是一种理想化极限状态,实际溶液在一定条 件下可与之相近。
5-2 理想溶液与拉乌尔定律 (p. 208, 212)
溶液的蒸气压
B的蒸气分压 固液界面 B分子转移平衡
多组分单相系统: 两种或两种以上的物质以分子、原子或离子
大小,相互混合所形成的均匀系统。 ---系统内各部分具有相同物理化学性质。
混合物:以相同标准态(如100kPa纯液体的状态)和相同方
法所研究的单相系统。
溶液: 单相系统中组分区分为溶质(B)和溶剂(A),且对
二者选用不同的标准态和不同方法所研究的单相系统。
由实验也可由热力学推导
Henry’s Law
pB = KBXB
p.209 (5-2-2a)
XB << 1, KB 为 Henry 常数.
KB 取决于溶质 B,也取决于溶剂 A 的性质。 p.209 表5-2-1 KB 越大 B-A 间作用越弱 B 蒸气压越高 KB 可由实验、部分也可由手册中获得,KB 为一假想状态
80
T p*(ben)
60
p*(tol)
40
20
0
0.0
0.2
0.4
0.6
toБайду номын сангаасuene
x(benzene)
0.8
1.0
benzene
p-x gragh for the mixture of benzene and toluene
苯-甲苯,水-重水, Ag-Au, Fe-Mn, …
pB ---- B组分的标准状态
(一)多组分系统热力学 (p.206-229)
5-1 基本概念和组成表示法 5-2 理想溶液与拉乌尔定律 5-3 理想稀溶液与拉乌尔定律和亨利定律 5-4 理想溶液和理想稀溶液的热力学基础 5-5 稀溶液的依数性 5-6 活度与活度因子 5-7 分配定律
5-1 基本概念和组成表示法 (p.206-208)
l g l (B) = g (B), 等…
➢ 相平衡时气相热力学性质 溶液性质
➢ 理想溶液 实际溶液 概念、公式、相图
➢ 理想稀溶液 实际溶液 概念、公式、相图
5-2 理想溶液与拉乌尔定律 (p. 208, 212)
理想溶液模型 具有相近的分子间相互作用力的两组分所
形成的溶液。 A 与 B在溶液中的性质与纯态时近似相同
B (l) c v o a n p do e r n in s B ig ( ng g)
B 的表面覆盖度, pB xB
理想溶液任一组分满足 --Raoult’s Law
p pX
p.208
B
B B (5-2-1a)
pB, xB 和 pB 分别是任一 组分B在溶液状态下的分压、溶液 中摩尔分数和纯B的蒸气压。
许多实际溶液,如 O2 和 CO2 的水溶液、 O2 和 CO2溶于金 属中形成的溶液、血液等为稀溶液。
5-3 理想稀溶液与拉乌尔定律和亨利定律 (p. 209, 215)
5-3 理想稀溶液与拉乌尔定律和亨利定律
Ideal-dilute solutions, Raoult’s Law and Henry’s Law (p. 209, 215)
理想稀溶液模型 溶质B浓度极低( XB 0, XA 1 ),在
溶液中对溶剂A的性质几乎无影响;溶液中大量的A分子主要 与A相互作用。
混合物
气态混合物 液态混合物 固态混合物
溶液
液态溶液 固态溶液
5-1 基本概念和组成表示法 (p.206-208)
组成表示法 1. 物质B的物质的量分数
nB --物质的量 w --物质的质量
xn n,
B
B
B
B
2. 物质B的质量分数
x B 1 B% -- 物质的百分比浓度 B mA -- 溶剂的质量
w w w ,
B
B
B
B
w B 1 B
B % w B w B 1,00 B % 100
B
B
3. 物质B的物质的量浓度 cB= nB V
4. 物质B的质量摩尔浓度 bB= nB mA
5-2 理想溶液与拉乌尔定律 (p. 208, 212)
Ideal solutions and Raoult’s Law 溶液与其气相达相平衡时,
5 溶液-相平衡
第五章 多组分系统热力学与相平衡 (p.206-)
5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
基本概念和组成表示法 理想溶液与拉乌尔定律 理想稀溶液与拉乌尔定律和亨利定律 理想溶液和理想稀溶液的热力学基础 稀溶液的依数性 活度与活度因子 分配定律 相律 单组分系统热力学 二组分系的气液平衡 二组分凝聚系相图