全国大学生数学建模竞赛题目

合集下载

2023国赛数学建模赛题

2023国赛数学建模赛题

1. 问题描述:某城市的交通网络由多个路口和道路组成。

每个路口都有一个繁忙程度指标,表示该路口的交通流量。

现在需要选取一个路口作为交通枢纽,使得离该路口最近的其他路口的平均距离最短。

请设计一个数学模型,并找出最佳的交通枢纽路口。

2. 问题描述:某公司有多个产品线,每个产品线的市场需求量不同,并且不断变化。

公司想要确定产量的分配策略,使得总成本最小。

已知每个产品线的生产成本和市场需求,以及各个产品线的最大产能。

请设计一个数学模型,并确定最优的产量分配方案。

3. 问题描述:一家快递公司需要设计一个最优的快递路线,以便在规定时间内完成所有快递的派送任务。

已知快递员的工作时间、快递的数量和派送地点之间的距离。

请建立一个数学模型,确定最佳的快递路线,使得总路程最短。

4. 问题描述:某公司的生产线上有多个工序,每个工序的加工时间和工人数量都不同。

公司想要确定每个工序的工人数量,以保证整个生产线的产量最大。

请设计一个数学模型,并找出最佳的工人分配方案。

5. 问题描述:某城市的垃圾处理中心需要合理安排垃圾运输车辆的路线,以最小化运输成本。

已知垃圾产生的位置、垃圾处理中心的位置、路网的拓扑结构以及各路段的运输成本。

请建立一个数学模型,确定最佳的垃圾运输车辆路线,使得总运输成本最小。

2023数学建模竞赛题目

2023数学建模竞赛题目

2023数学建模竞赛题目摘要:一、引言1.介绍2023数学建模竞赛的背景和重要性2.说明竞赛题目的难度和挑战性二、竞赛题目概述1.题目一:数学模型在疫情防控中的应用2.题目二:人工智能与机器学习在金融领域的应用3.题目三:生态环境问题与可持续发展4.题目四:交通拥堵与城市规划三、题目一解析1.题目背景与现实意义2.关键问题与建模思路3.解题过程中的难点与挑战四、题目二解析1.题目背景与现实意义2.关键问题与建模思路3.解题过程中的难点与挑战五、题目三解析1.题目背景与现实意义2.关键问题与建模思路3.解题过程中的难点与挑战六、题目四解析1.题目背景与现实意义2.关键问题与建模思路3.解题过程中的难点与挑战七、竞赛对参赛者的意义与启示1.提升数学建模能力2.增强团队协作与沟通能力3.拓宽学术视野与实际应用能力正文:一、引言数学建模竞赛是检验大学生数学应用能力、创新能力和团队协作精神的重要平台。

每年,来自世界各地的大学生都会积极参与其中,挑战各种具有现实意义的数学建模问题。

2023年数学建模竞赛题目涵盖了疫情防控、人工智能、生态环境和城市规划等多个领域,旨在培养学生的综合应用能力和解决实际问题的能力。

接下来,我们将对今年的竞赛题目进行详细解析。

二、竞赛题目概述1.题目一:数学模型在疫情防控中的应用随着新冠病毒等疫情的不断出现,防控疫情已成为全球关注的问题。

本题要求参赛者针对疫情防控中的关键问题,建立数学模型,为政策制定提供科学依据。

2.题目二:人工智能与机器学习在金融领域的应用人工智能和机器学习技术在金融领域的应用越来越广泛。

本题要求参赛者结合金融领域的实际问题,探讨人工智能和机器学习在其中的应用与优化。

3.题目三:生态环境问题与可持续发展生态环境问题已成为全球共同面临的挑战。

本题要求参赛者针对生态环境问题,构建数学模型,为可持续发展提供解决方案。

4.题目四:交通拥堵与城市规划城市交通拥堵问题日益严重,影响市民的生活质量。

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题1992:A?施肥效果分析 B?实验数据分解1993:A?非线性交调的频率设计 B?足球队排名次1994:A?逢山开路 B?锁具装箱1995:A?一个飞行管理问题 B?天车与冶炼炉的作业调度1996:A?最优捕鱼策略 B?节水洗衣机1997:A?零件参数 B?截断切割1998:A?投资的收益和风险 B?灾情巡视路线1999:A?自动化车床管理 B?钻井布局 C?煤矸石堆积 D?钻井布局2000:A?DNA序列分类 B?钢管购运 C?飞越北极 D?空洞探测2001:A?血管三维重建 B?公交车调度 C?基金使用2002:A?车灯线光源 B?彩票中数学 D?赛程安排2003:A?SARS的传播 B?露天矿生产 D?抢渡长江2004:A?奥运会临时超市网点设计 B?电力市场的输电阻塞管理C?饮酒驾车 D?公务员招聘2005:A 长江水质的评价和预测 B?DVD在线租赁C?雨量预报方法的评价 D?DVD在线租赁?2006:A出版社的资源配置 B 艾滋病疗法的评价及疗效的预测C易拉罐形状和尺寸的最优设计D 煤矿瓦斯和煤尘的监测与控制2007:A 中国人口增长预测 B 乘公交,看奥运C 手机“套餐”优惠几何D 体能测试时间安排2008:A 数码相机定位 B 高等教育学费标准探讨C 地面搜索D NBA赛程的分析与评价2009:A 制动器试验台的控制方法分析 B 眼科病床的合理安排C 卫星和飞船的跟踪测控 D会议筹备2010:A储油罐的变位识别与罐容表标定B 2010年上海世博会影响力的定量评估C输油管的布置D对学生宿舍设计方案的评价2011: A 城市表层土壤重金属污染分析B 交巡警服务平台的设置与调度C 企业退休职工养老金制度的改革D 天然肠衣搭配问题2012: A 葡萄酒的评价B 太阳能小屋的设计C 脑卒中发病环境因素分析及干预D 机器人避障问题2013: A 车道被占用对城市道路通行能力的影响B 碎纸片的拼接复原C 古塔的变形D 公共自行车服务系统2014: A 嫦娥三号软着陆轨道设计与控制策略B 创意平板折叠桌C 生猪养殖场的经营管理D 储药柜的设计2015: A ?太阳影子定位B?“互联网+”时代的出租车资源配置C? 月上柳梢头D? 众筹筑屋规划方案设计。

2023全国数学建模题目

2023全国数学建模题目

2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。

已知|a - 3| + (b + 2)² = 0,则 a + b = _______。

已知一个正方体的棱长是6cm,则它的体积是_______ cm³。

方程2x - 3 = 5 的解是x = _______。

已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。

三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。

解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。

四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。

若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。

求这辆汽车的平均速度。

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国高校生数学建模竞赛题目(四套ABCD)当我第一遍读一本好书的时候,我仿佛觉得找到了一个伴侣;当我再一次读这本书的时候,仿佛又和老伴侣重逢。

我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。

让我们一起到学习啦一起学习吧!2021年高教社杯全国高校生数学建模竞赛题目A题 CT系统参数标定及成像CT(Computed Tomography)可以在不破坏样品的状况下,利用样品对射线能量的吸取特性对生物组织和工程材料的样品进行断层成像,由此猎取样品内部的结构信息。

一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。

X射线的放射器和探测器相对位置固定不变,整个放射-接收系统绕某固定的旋转中心逆时针旋转180次。

对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸取衰减后的射线能量,并经过增益等处理后得到180组接收信息。

CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。

请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸取强度,这里称为“吸取率”。

对应于该模板的接收信息见附件2。

请依据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。

(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。

利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何样子和吸取率等信息。

另外,请具体给出图3所给的10个位置处的吸取率,相应的数据文件见附件4。

全国大学生数学建模竞赛题选

全国大学生数学建模竞赛题选

全国大学生数学建模竞赛题选2001年C题基金使用计划某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。

当前银行存款及各期国库券的利率见下表。

假设国库券每年至少发行一次,发行时间不定。

取款政策参考银行的现行政策。

校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。

校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。

请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。

3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其2003年C 题2002年5月1日,“武汉国际抢渡长江挑战赛”在江城隆重举行,参赛的国内外选手共186人。

虽然选手中专业人员将近一半,但仅34人到达终点。

与此形成鲜明对比的是,于1934年9月9日在武汉首次举办的横渡长江游泳竞赛,参赛的44人中,却有40人到达终点。

究其原因,关键在于游泳者能否根据自己的速度,合理地选择游泳方向。

假设竞渡区域两岸为平行线,它们之间的垂直距离为1160米,从起点正对岸到终点的距离为1000米,见图1。

具体问题如下:1. 假定在竞渡过程中游泳者的速度大小和方向不变,水流速度为1.89米/秒。

已知第一名的成绩为14分8秒,求她游泳的路线,游泳速度的大小和方向;已知一游泳者速度大小为1.5米/秒,求他的游泳方向并估计他的成绩。

2. 在(1)的假设下,如果游泳者始终以和岸边垂直的方向游, 他(她)们能否到达终点?根据你们的数学模型说明为什么1934年 和2002年能游到终点的人数的百分比有如此大的差别;给出能够成功到达终点的选手的条件。

图1. 渡江示意图3. 若流速沿离岸边距离的分布为 (设从武昌汉阳门垂直向上为 y 轴正向) :⎪⎩⎪⎨⎧≤≤<<≤≤=米米秒,米米米秒,米米米秒,米1160960/47.1960200/11.22000/47.1)(0y y y y v游泳者的速度大小(1.5米/秒)仍全程保持不变,试为他选择游泳方向和路线,估计他的成绩。

历年全国大学生数学建模竞赛-题目(1994-2009)

历年全国大学生数学建模竞赛-题目(1994-2009)
B 题 节水洗衣机
我国淡水资源有限,节约用水人人有责。洗衣机在家庭用水中占有相当大的 份额,目前洗衣机已非常普及,节约洗衣机用水十分重要。假设在放入衣物和洗 涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂水-脱水-…-加水-漂水脱水(称“加水-漂水-脱水”为运行一轮)。请为洗衣机设计一种程序(包括运 行多少轮、每轮加多少水等),使得在满足一定洗涤效果的条件下,总用水量最 少。选用合理的数据进行计算。对照目前常用的洗衣机的运行情况,对你的模型 和结果作出评价。
1)建立数学模型分析如何可持续捕获(即每年开始捕捞时渔场中各年龄组 鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量)。
2)某渔业公司承包这种鱼的捕捞业务5年,合同要求鱼群的生产能力不能 受到太大的破坏。已知承包时各年龄组鱼群的数量分别为: 122,29.7,10.1,3.29(×109 条),如果仍用固定努力量的捕捞方式,该公司采取 怎样的策略才能使总收获量最高。
1996 年全国大学生数学建模竞赛
A 题:最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开 发必须适度。一种合理、简化的策略是,在实现可持续收获的前提下,追求最大 产量或最佳效益。
考虑对某种鱼(鲳鱼)的最优捕捞策略:
假设这种鱼分4个年龄组:称1龄鱼,……,4龄鱼。各年龄组每条鱼的平 均重量分别为 5.07,11.55,17.86,22.99(克);各年龄组鱼的自然死亡率均为 0.8(1/年);这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为 1.109 ×105(个);3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和 孵化期为每年的最后4个月;卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产 卵总是 n 之比)为 1.22×1011/(1.22×1011+n).

数学建模国赛题目

数学建模国赛题目

数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。

这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。

可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。

- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。

有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。

通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。

二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。

这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。

我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。

- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。

但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。

我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。

三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。

如果定价太高,同学们就不买了;定价太低,又赚不到钱。

这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。

通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。

- 逻辑:现在有很多网红店,门口总是排着长长的队伍。

这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阐明你的方法的科学性,并说明你的结果是贴近实际的。
说明
1.商业上用“商圈”来描述商店的覆盖范围。影响商店选址的主要因素是商圈内的人流量及购物欲望。
2.为简化起见,假定国家体育场(鸟巢)容量为10万人,国家体育馆容量为6万人,国家游泳中心(水立方)容量为4万人。三个场馆的每个看台容量均为1万人,出口对准一个商区,各商区面积相同。
施阻塞管理:
输电阻塞管理原则:调整各机组出力分配方案使得输电阻塞消除。
2.在当前时段内,市场交易-调度中心根据下一个时段的负荷预报,每台机组的报价、当前出力和出力改变速率,按段价从低到高选取各机组的段容量或其部分(见下面注释),直到它们之和等于预报的负荷,这时每个机组被选入的段容量或其部分之和形成该时段该机组的出力分配预案(初始交易结果)。最后一个被选入的段价(最高段价)称为该时段的清算价,该时段全部机组的所有出力均按清算价结算。
市场交易-调度中心在当前时段内要完成的具体操作过程如下:
监控当前时段各机组出力分配方案的执行,调度AGC辅助服务,在此基础上给出各机组的当前出力值。
作出下一个时段的负荷需求预报。
根据电市场交易规则得到下一个时段各机组出力分配预案。
计算当执行各机组出力分配预案时电网各主要线路上的有功潮流,判断是否会出现输电阻塞。如果不出现,接受各机组出力分配预案;否则,按照如下原则
附录
对观众发放的问卷调查,收回率为33%,三次共收回10000多份。具体数据请在access数据库中索取,其中年龄分4档:1)20岁以下,2)20—30岁,3)30—50岁,4)50岁以上;出行方式分4种:出租、公交、地铁、私车;餐饮方式分3种:中餐、西餐、商场(餐饮);消费额(非餐饮)分6档:1)0—100,2)100—200,3)200—300,4)300—400,5)400—500,6)500以上(元)。
图1
图2
图3
B题电力市场的输电阻塞管理
我国电力系统的市场化改革正在积极、稳步地进行。2003年3月国家电力监管委员会成立,2003年6月该委员会发文列出了组建东北区域电力市场和进行华东区域电力市场试点的时间表,标志着电力市场化改革已经进入实质性阶段。可以预计,随着我国用电紧张的缓解,电力市场化将进入新一轮的发展,这给有关产业和研究部门带来了可预期的机遇和挑战。
注释:
每个时段的负荷预报和机组出力分配计划的参照时刻均为该时段结束时刻。
机组当前出力是对机组在当前时段结束时刻实际出力的预测值。
假设每台机组单位时间内能增加或减少的出力相同,该出力值称为该机组的爬坡速率。由于机组爬坡速率的约束,可能导致选取它的某个段容量的部分。
为了使得各机组计划出力之和等于预报的负荷需求,清算价对应的段容量可能只选取部分。
电力从生产到使用的四大环节——发电、输电、配电和用电是瞬间完成的。我国电力市场初期是发电侧电力市场,采取交易与调度一体化的模式。电网公司在组织交易、调度和配送时,必须遵循电网“安全第一”的原则,同时要制订一个电力市场交易规则,按照购电费用最小的经济目标来运作。市场交易-调度中心根据负荷预报和交易规则制订满足电网安全运行的调度计划――各发电机组的出力(发电功率)分配方案;在执行调度计划的过程中,还需实时调度承担AGC(自动发电控制)辅助服务的机组出力,以跟踪电网中实时变化的负荷。
请你按以下步骤对图2的20个商区设计MS网点:
根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。
假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。
如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。
年全国大学生数学建模竞赛题目
————————————————————————————————作者:
————————————————————————————————日期:
2004年全国大学生数学建模竞赛题目
A题奥运会临时超市网点设计
2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket,以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。
电力市场交易规则:
1.以15分钟为一个时段组织交易,每台机组在当前时段开始时刻前给出下一个时段的报价。各机组将可用出力由低到高分成至多10段报价,每个段的长度称为段容量,每个段容量报一个价(称为段价),段价按段序数单调不减。在最低技术出力以下的报价一般为负值,表示愿意付费维持发电以避免停机带来更大的损失。
设某电网有若干台发电机组和若干条主要线路,每条线路上的有功潮流(输电功率和方向)取决于电网结构和各发电机组的出力。电网每条线路上的有功潮流的绝对值有一安全限值,限值还具有一定的相对安全裕度(即在应急情况下潮流绝对值可以超过限值的百分比的上限)。如果各机组出力分配方案使某条线路上的有功潮流的绝对值超出限值,称为输电阻塞。当发生输电阻塞时,需要研究如何制订既安全又经济的调度计划。
图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。
为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,在附录中给出。
相关文档
最新文档