小升初奥数讲义习题 第4讲 高斯求和、新定义
奥数之高斯求和

承上题
解:项数=(995-104)÷11+1 =891÷11+1 =82
总和=(104+)×82÷2 =1099×82÷2 =45059
课堂练习
1、时钟在1点钟时敲1下,2点钟敲2下,3点钟敲3下, 依次类推,从1至12点钟共敲了几下?
2、丹丹学英语单词,第一天学会了6个单词,以后每天 都比前一天多学会了1个,最后一天学会了26个。丹丹 在这些天中共学会了多少个单词?
例3:求所有加6以后被11整除的三 位数的和。
分析:加“6以后被11整数的三位数,”换一 个说法,也就是“被11除余5的三位数。” 在这些数中最小的三位数是104,最大 的三位数是995,而且相邻两数都相差11, 即这些三位数依次是104、115、 126······995。 显然,它们成等差数列,故可利用等差 数列求和公式求和。
研究目标
若干个数按照一定的顺序规律排列起来就 是一个数列。
如果在这个数列中,任意两个相邻的数 之间的差都相等,我们就把这个数列称为 等差数列。其中第一个数称为首项,最后 一个数称为末项。相邻两个数之间的差称 为公差,这列数中数的个数称为项数。
等差数列求和公式
等差数列的和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差×(项数-1) 首项=末项-公差×(项数+1) 公差=(末项-首项)÷(项数-1)
2、100以内所有加5后是6的倍数的数的和是多少? 3、6个连续偶数的和是1998,这6个数是多少? 4、计算 (7+9+11+······+25)-(5+7+9+······+23) 19971997+9971997+971997+71997+1997+997+97+9 5、有一堆粗细均匀的圆木,最上面有4根,每一层都比上
小学奥数——高斯求和专项讲解

张淑平版权作品 侵权必究
跟 找规律求和:
张
1+2+3=6=2×3
老
1+2+3+4+5=15=3×5
师
1+2+3+4+5+6+7=28=4×7
学
小
1+3+5=9=3×3
学
1+3+5+7+9=25=5×5
奥
1+3+5+7+9+11+13=49=7×7
数
规律:等差数列的和=中间数×项数
张淑平版权作品 侵权必究
师
示
举例: 1,3,5,7,9……
学
小 公差d=__2___ 首项a1=__1____
学 a1=1 a2=a1+d a3=a1+2d a4=a1+3d
奥
a10=a1+_9_×__d a20=_a_1_+19__×__d
数
a100=a1+9_9_×__d an=_a_1_+_9_9_×__d
张淑平版权作品 侵权必究
数 =50
=100 × 50÷2 =5000÷2
=2500
张淑平版权作品 侵权必究
跟 例题解析:
张
(3)电影院的第1排有10个座位,以
老
后每排比前一排多一个座位,电影
师
院共20排,一共有多少个座位?
学
a1=10, d=1 ,n=20
小
学
an=a1+(n-1)d
=10+(20-1)×1
S=(a1+an) ×n ÷2 =(10+29)× 20÷2
四年级奥数《高斯求和》答案及解析

高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+ (31)分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
四年级奥数《高斯求和》答案及解析教学内容

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
四年级奥数-高斯求和

高斯求和一、高斯求和相关定义:若干个数按一定顺序规律排列起来就是一个数列。
如果这个数列中任意两个相邻的数之间的差都相等,我们就把这个数列称为等差数列。
其中第一个数称为首项,最后一个数称为末项。
相邻两个数之间的差称为公差,这数列中数的个数称为项数。
求和公式为: 等差数列的和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)二、例题例1.计算10987654321+++++++++练习 (1) 1917531+++++ (2) 求50以内所有偶数的和。
例2.建筑工地上堆着一些钢管(如图),求这些钢管一共有多少根?练习(1)图中一共有多少个三角形?(2)下图是一垛电线杆的侧面示意图,试计算一下图中共有多少根电线杆?例3.下面一列数是按照一定规律排列的:3,7,11,15,...,95,99.请问:(1)这列数中的第20个数是多少?(2)39是这列数中的第几项?练习:(1)自1开始,每隔三个数数一数,得到数列1,4,7,10......问第100个数是多少?(2)某饭店的餐桌都是能做4人的正方形,如图①所示。
当团体客人在10人以上时,饭店允许客人将餐桌拼成一长条,如图②所示,但每张桌子不能呢个有空位。
问如果团体客人是22人,那么需要几张桌子?例4.计算11+21+31+41+51+61+71+81+91练习:(1)计算:11+13+15+17+19+21+23(2)明明用棋子摆了一个五层图形,每两层棋子的个数相差5,最内层用了18个棋子。
问一共用了多少个棋子?例5.求首项为5,末项为155,公差是3的等差数列的和。
练习:一个有17项的等差数列,末项为117,公差为7,求这个等差数列的和是多少?例6.如图所示,如果用3根火柴摆成一个等边三角形,用这样的方法,按图中所示铺满一个大的等边三角形,如果这个大的等边三角形的底边是10根火柴,那么一共放多少根火柴?练习:如图所示是一个五边形点阵,中心是一个点为第一层,第二层每边两个点,第三层每边三个点,第四层每边四个点,一次类推,如果这个五边形点阵共有100层,那么点阵中一共有多少个点?三、课后练习1、下面数列中,哪些是等差数列?如果是,请指明公差;如果不是,说明理由。
四年级数学上册高斯求和讲解

四年级数学上册高斯求和讲解德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
小学奥数题讲解:高斯求和(等差数列)

德国数学家⾼斯幼年时代聪明过⼈,上学时,有⼀天⽼师出了⼀道题让同学们计算: 1+2+3+4+…+99+100=? ⽼师出完题后,全班同学都在埋头计算,⼩⾼斯却很快算出答案等于5050。
⾼斯为什么算得⼜快⼜准呢?原来⼩⾼斯通过细⼼观察发现: 1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,⼩⾼斯把这道题巧算为 (1+100)×100÷2=5050。
⼩⾼斯使⽤的这种求和⽅法,真是聪明极了,简单快捷,并且⼴泛地适⽤于“等差数列”的求和问题。
若⼲个数排成⼀列称为数列,数列中的每⼀个数称为⼀项,其中第⼀项称为⾸项,最后⼀项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是⾸项为1,末项为100,公差为1的等差数列;(2)是⾸项为1,末项为99,公差为2的等差数列;(3)是⾸项为8,末项为71,公差为7的等差数列。
由⾼斯的巧算⽅法,得到等差数列的求和公式: 和=(⾸项+末项)×项数÷2。
例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,⾸项是1,末项是1999,共有1999个数。
由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。
注意:利⽤等差数列求和公式之前,⼀定要判断题⽬中的各个加数是否构成等差数列。
例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,⾸项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利⽤等差数列求和公式时,有时项数并不是⼀⽬了然的,这时就需要先求出项数。
小学奥数题_高斯求和

《小学奥数教程:高斯求和》专项突破(附答案详解)奥校小学数学竞赛教研中心一、单选题1.在关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要()A. 7天B. 8天C. 9天D. 10天2.现在有100个苹果要分给学生,保证每个学生最少分得一个苹果,并且每个学生分得的苹果数都不相同,则最多可以分给()个同学。
A. 11B. 12C. 13D. 143.小猫咪咪第一天逮了1只老鼠,以后每天逮的老鼠都比前一天多1只,咪咪10天一共逮了()只老鼠.A. 45B. 50C. 55D. 604.你一定知道“少年高斯”速算的故事吧!那么1+2+3+4+…+999的结果是()A. 100000B. 499000C. 499500D. 5000005.用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要用()杯子.A. 100B. 500C. 1000D. 5050二、判断题6.1+2+3+…+2006的和是奇数..三、填空题7.小明在计算器上从1开始,按自然数的顺序做连加练习.当他加到某一数时,结果是1991,后来发现中间漏加了一个数,那么,漏加的那个数是________.8.1+3+5+7+9+11+13+15=________²9.一本书,小红第一天读了3页,以后每天都比前一天多读1页,5天后,小红一共读了________页。
10.一堆钢管的最上层有3根,最下层有13根,每相邻两层相差1根,这堆钢管一共有________根。
11.91+92+93+94+95=93×________=________12.1+2+3+4+5+6+7+8+9……+99=________。
13.学校有一只大钟,一时敲1下,2时敲2下……12时敲12下.你知道它一昼夜一共敲________下14.填上合适的数981+982+983+984+985+986+987=984×________=________15.雅雅家住平安街,礼礼向她打听:“雅雅,你家门牌是几号?”“我住的那条街的各家门牌号从1开始,除我家外,其余各家门牌号加起来恰好等于10000.”雅雅回答说.那么雅雅家住________ 号.16.1+3+5+7+…+97+99=________ =________ 2.17.1+2+3+4+5+6+7+…+99=________.18.计算:9+17+25+…+177=________.19.100以内的偶数和是________ .20.已知2+4+6+8+…+100=2550,那么1+3+5+7+9+…+101=________.21.1﹣64的自然数中去掉其中两个数,剩下62个数的和是2012,去掉的那两个数共有________ 种可能.22.有40块糖,把它分成4份,且后一份比前一份依次多2块,那么最少一份有________ 块.23.9个连续自然数的和是2007,其中最小的自然数是________ .24.1+2+3+4+5…+2007+2008的和是________ (奇数或偶数).25.已知:则:1+2+3+…+99+100+99+98+…+3+2+1=________.26.自然数1、2、3…14、15的和是120,这15个自然数的平均数是________ .27.把自然数1,2,3,…99分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的乘积是________ .28.1+3+5+…+99=________.29.用100个盒子装杯子,每个盒子装的个数都不相同,并且盒子不空,那么至少有________ 个杯子.30.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是________ .31.27个连续自然数的和是1998,其中最小的自然数是________ .四、计算题32.33.想一想,算一算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯求和、新定义
一、高斯求和
德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:
1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?
和=(首项+末项)×项数÷2;(项数=(末项-首项)÷公差+1)
例1、1+2+3+...+1999=11+12+13+...+31=3+7+11+ (99)
例2、在下图中,每个最小的等边三角形的面积是12平方厘米,边长是1根火柴棍。
问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?
举一反三、数一数图中各有多少个三角形。
例3、求100以内除以3余2的所有数的和。
举一反三、在所有的两位数中,十位数比个位数大的数共有多少个?
例4、盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。
这时盒子里共有多少只乒乓球?
举一反三、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。
问:时钟一昼夜敲打多少次?
【巩固练习】
1、计算下图中,共有多少个长方形。
2、奥数6班开学第一天每两位同学互相握手一次,全班10人,共握手多少次?
二、定义新运算
我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
例1、对于任意数a ,b ,定义运算“*”:a*b=a×b-a-b 。
求12*4的值。
举一反三、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
例题2、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么
7*4=________;210*2=________;4*4=________。
举一反三、如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x ※3=54中,x =________。
例题3、规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果
A ⨯=⑧
⑦⑥1
1-1,那么,A 是几?
举一反三、设a ⊙b=4a -2b+ab 2,求x ⊙(4⊙1)=52中的未知数x 。
【巩固练习】
1、对任意两个整数x 和y 定于新运算,“*”:x*y = (其中m 是一个确定的整数)。
如果1*2=1,
那么3*12=________。
2、如果2*1=21,3*2=331,4*3=444
1,那么(6*3)÷(2*6)=________。
3、规定a ◎b 表示a 与b 的积与a 除以b 所得的商的和,求8◎2的值。
4、已知a ※b=(a+b )-(a-b ),求9※2的值。
真题练习:
(2018湘郡培粹):
1、用*表示一种新运算符号,含义是x*y=
))(1(11A y x xy +++。
已知2*1=3
2,则2004*2005的值是 。
2、对于两个数A 、B ,规定A*B=A ×B ÷2,求5*6= 。
(2017麓山国际):
3、自然数1,2,3,4……,998,999的和是 。
4、设a 、b 是两个自然数,规定a △b=4b-(a+b )÷2,则3△(4△6)= 。
5、一把钥匙只能打开一把锁,现有7把钥匙和7把锁,但不知道哪把钥匙开哪把锁,最多要试 次才能配好全部的钥匙和锁。
(2017广益中学):
6、规定A#B=A ×B+A-B ,那么5#6= 。
7、观察图形规律,第8个图形一共有 个小三角形组成。