小学奥数--四年级高斯求和(学生版)6份
小学奥数题讲解:高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列)小学奥数题讲解:高斯求和(等差数列)德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好能够分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
四年级奥数《高斯求和》答案及解析

高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+ (31)分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
四年级奥数高斯求和

第3讲高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
项数=(末项-首项)÷公差+1。
末项=首项+公差×(项数-1)。
对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。
即为中项定理【例题讲解及思维拓展训练】例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
四年级奥数《高斯求和》答案及解析教学内容

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
高斯求和问题奥数

6、计算下图中,共有多少个长方形。
六年级高斯求和问题
1、板书:1+2+3+4+…+99+100=?
2、围绕这一道数学题目,一直流传着这样一个故事。故事的主人翁是高斯,高斯是德国乃至世界著名的数学家,有着“数学王子”的美誉。高斯8岁时聪明过人,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?
现在请同学们计算一下这道题目。
3、讲解
方法一:配对求和
方法二:倒序相加
方法三:公式法
介绍等差数列:小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:
5.有一串数,共有16个,第1个数是5,以后每个数比前一个数大5,最后一个数是90。这串数连加,和是多少?
6、计算下图中,共有多少个长方形。
7、奥数6班开学第一天每两位同学互相握手一次,全班10人,共握手次。
(1)1,2,3,4,5,…,100;(2)1,3,5,7,9;
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为9,公差为2的等差数列。由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
例1:计算:1+2+3+4+…+29+30
分析与解:这串加数1,2,3,…,30是等差数列,首项是1,末项是30,共有30个数。由等差数列求和公式可得原式=(1+30)×30÷2=465。
四年级奥数-高斯求和

高斯求和一、高斯求和相关定义:若干个数按一定顺序规律排列起来就是一个数列。
如果这个数列中任意两个相邻的数之间的差都相等,我们就把这个数列称为等差数列。
其中第一个数称为首项,最后一个数称为末项。
相邻两个数之间的差称为公差,这数列中数的个数称为项数。
求和公式为: 等差数列的和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)二、例题例1.计算10987654321+++++++++练习 (1) 1917531+++++ (2) 求50以内所有偶数的和。
例2.建筑工地上堆着一些钢管(如图),求这些钢管一共有多少根?练习(1)图中一共有多少个三角形?(2)下图是一垛电线杆的侧面示意图,试计算一下图中共有多少根电线杆?例3.下面一列数是按照一定规律排列的:3,7,11,15,...,95,99.请问:(1)这列数中的第20个数是多少?(2)39是这列数中的第几项?练习:(1)自1开始,每隔三个数数一数,得到数列1,4,7,10......问第100个数是多少?(2)某饭店的餐桌都是能做4人的正方形,如图①所示。
当团体客人在10人以上时,饭店允许客人将餐桌拼成一长条,如图②所示,但每张桌子不能呢个有空位。
问如果团体客人是22人,那么需要几张桌子?例4.计算11+21+31+41+51+61+71+81+91练习:(1)计算:11+13+15+17+19+21+23(2)明明用棋子摆了一个五层图形,每两层棋子的个数相差5,最内层用了18个棋子。
问一共用了多少个棋子?例5.求首项为5,末项为155,公差是3的等差数列的和。
练习:一个有17项的等差数列,末项为117,公差为7,求这个等差数列的和是多少?例6.如图所示,如果用3根火柴摆成一个等边三角形,用这样的方法,按图中所示铺满一个大的等边三角形,如果这个大的等边三角形的底边是10根火柴,那么一共放多少根火柴?练习:如图所示是一个五边形点阵,中心是一个点为第一层,第二层每边两个点,第三层每边三个点,第四层每边四个点,一次类推,如果这个五边形点阵共有100层,那么点阵中一共有多少个点?三、课后练习1、下面数列中,哪些是等差数列?如果是,请指明公差;如果不是,说明理由。
小学奥数--高斯求和练习(学生版)

高斯求和练习1、1+2+3+∙∙∙+302、4+7+10+13+16+193、3+6+9+12+15+18+21+24+27+304、3+7+11+15+19+23+27+315、3+5+7+9+∙∙∙+356、2+5+8+11+14+∙∙∙+627、4+7+10+13+∙∙∙∙∙∙(共20项)8、6+10+14+18+∙∙∙∙∙∙(共20项)9、3+8+13+18+∙∙∙∙∙∙(共10项)10、1000-2-5-8-10-14-∙∙∙∙∙∙-62 11、40+41+42+43+∙∙∙+80 12、8+12+16+20+∙∙∙(共20项)13、1000-1-2-3-∙∙∙∙∙∙-40 14、9+16+23+30+37+44+5115、1+4+7+10+13+∙∙∙∙∙∙(共21项)16、1.5.9.13 ∙∙∙∙∙∙求这组的第21项是多少? 17、300-1-2-3-∙∙∙∙∙∙-2018、1+4+7+10+∙∙∙(共20项)19、50-49+48-47+46-45+∙∙∙-3+2-1 20、2000-1-2-3-∙∙∙-40 21、2310-2-4-6-8-∙∙∙-100高斯求和(解决问题)练习题1、在13和25两个数之问插入3个数,使这5个数构成等差数列,你知道插入的3个数分别是多少吗?2、5个连续奇数和是45,求这5个数是多少?3、一个剧场设置了22排座位,第一排有20个座位,往后每排都比前一排多2个座位,这个剧场共有多少个座位?3、一堆木材叠在一起,一共是20层,第l层有12根,第2层有13根,……下面每层比上一层多1根,这堆木材共有多少根?5、一个剧场设置了22排座位,第一排有36个座位,往后每排多2个座位,这个剧场共有多少个座位?6、在10和30两个数之间插入4个数,使这6个数构成等差数列,你知道插入的4个数分别是多少吗?7、有9个连续偶数和是180,求这9个数是多少?8、一个剧场设置了30排座位,第一排有20个座位,往后每排都比前一排多1个座位,这个剧场共有多少个座位?9、小马虎存计算从1加到100的和时,把其中一个数漏掉了,得出的和是5000,请问他把哪个数丢了?10、甲乙二人都住在同一个胡同一侧,这一侧的门牌号码是连续的奇数甲住在21号,乙住在193号,甲乙二人的住处相隔多少个门?11、我家在一条短胡同里,这条胡同门牌从1挨着编下去,如果除我家外,其余各家门牌号加起来,减去我家门牌号数,恰好等于100,我家门牌号是几?12、把一些圆柱形铁管按如图的样子摆在一起,如果正好摆了40层,共有多少根铁管?13、一个剧场设置了20排座位。
最新四年级奥数《高斯求和》答案及解析

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯求和
德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:
1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:
(1)1,2,3,4,5, (100)
(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
项数=(末项-首项)÷公差+1。
末项=首项+公差×(项数-1)。
对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。
即为中项定理
【例题讲解及思维拓展训练】
例1 1+2+3+…+1999=?
分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得
原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
【思维拓展训练一】
1、11+12+13+…+31=?
分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
2、3+7+11+…+99=?
分析与解:3,7,11,…,99是公差为4的等差数列,
项数=(99-3)÷4+1=25,
原式=(3+99)×25÷2=1275。
例2 求首项是25,公差是3的等差数列的前40项的和。
解:末项=25+3×(40-1)=142,
和=(25+142)×40÷2=3340。
利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。
【思维拓展训练二】
1、求首项是34,公差是5的等差数列的前50项的和。
例3 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。
问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?
分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:
由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。
解:(1)最大三角形面积为
(1+3+5+…+15)×12=[(1+15)×8÷2]×12=768(厘米2)。
(2)火柴棍的数目为
3+6+9+…+24
=(3+24)×8÷2=108(根)。
答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。
【思维拓展训练三】
1、盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。
这时盒子里共有多少只乒乓球?
分析与解:一只球变成3只球,实际上多了2只球。
第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。
因此拿了十次后,多了
2×1+2×2+…+2×10
=2×(1+2+ (10)
=2×55=110(只)。
加上原有的3只球,盒子里共有球110+3=113(只)。
综合列式为:
(3-1)×(1+2+…+10)+3
=2×[(1+10)×10÷2]+3=113(只)。
例题4 建筑工地有一批砖,码成如下图的形状,最上层2块砖,第2层6块砖,第3层10块砖…,依次每层都比它上面一层多4块砖,已知最下一层2106块砖,问中间一层有多少块砖?这堆砖共有多少块?
【思维拓展训练三】
1、求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
2、连续九个自然数的和为54,则以这九个自然数的末项作为首相的连续九个自然数的和是多少?
高斯求和【课堂巩固训练题】
1.计算下列各题:
(1)2+4+6+...+200;(2)17+19+21+ (39)
(3)5+8+11+14+...+50;(4)3+10+17+24+ (101)
2.求首项是5,末项是93,公差是4的等差数列的和。
3.求首项是13,公差是5的等差数列的前30项的和。
4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。
问:时钟一昼夜敲打多少次?
5.求100以内除以3余2的所有数的和。
6.在所有的两位数中,十位数比个位数大的数共有多少个?
7、100个连续自然数(从小到大排列)的和是8450,取出其中第1个,第3个,…,第99个数,再把剩下的50个数相加,和是多少?
8、把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么第1个数和第6个数各是多少?
9、把27枚棋子放入7个不同的空盒中,如果要求每个盒子都不空,且任意两个盒子里的棋子数目都不一样多,问能否办到,若能,写出具体方案,若不能,说明理由。