四年级奥数巧妙求和
四年级奥数专题 巧妙求和

四年级奥数专题巧妙求和【一】求1~20这20个连续自然数的所有数字之和。
练习1、求1~50这50个连续自然数的所有数字之和。
2、求3~19连续自然数的全部数字之和。
【二】一把钥匙只能开一把锁。
现在有4把钥匙和4把锁,但不知道哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?练习1、现在有8对钥匙和锁混在一起,不知道哪把钥匙配哪把锁,最多要试多少次就可以把它们全部配成对?2、有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最多称多少次,就可以找到那颗较轻的钢珠?【三】思雨读一本长篇小说,他第一天读20页,从第二天起,他每天读的页数都比前一天多2页,第11天读了40页,正好读完,这本书共有多少页?练习1、王师傅做一批零件,第一天做了40个,以后每天都比前一天多做3个,第15天做了82个,正好做完,这批零件共有多少个?2、张琳读一本故事书,她第一天读了15页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了40页恰好读完,这本书共有多少页?【四】45把锁的钥匙都搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?练习1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2、有一些锁的钥匙搞乱了,已知至多要试45次,就能使每把锁都配上自己的钥匙,问一共有几把锁的钥匙搞乱了?【五】某班有30个同学,每两个同学互通一次电话,那么他们一共通了多少次电话?练习1、竹苑小学进行象棋比赛,每个参赛选手都要和其他所有的选手各赛一场,如果有15人参加比赛,问一共要进行多少场比赛?2、一次生日party中,参加的有20位同学和3位老师,每两人之间握一次手。
那么一共握了几次手?【六】求1~99中连续自然数的所有数字之和。
练习1、求1~199的199个连续自然数的所有数字之和。
2、求1~999的999个连续自然数的所有数字之和。
3、求1~210连续自然数的全部数字之和。
4、求1~299连续自然数的全部数字之和。
小学四年级奥数讲解:巧妙求和

小学四年级奥数讲解:巧妙求和一、知识要点某些问题,能够转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
二、精讲精练【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?【思路导航】根据条件“他每天读的页数都比前一天多3页”能够知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11.所以能够很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习1:1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。
练习2:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
四年级奥数巧妙求和一学习教案

➢ (2)6+7+8+…+74+75
➢ (3)100+99+98+…+61+60
第8页/共14页
第九页,共14页。
例4:求等差数列(děnɡ chā shù liè)2,4,6,…, 48,50的和。
➢ 解析:这个(zhè ge)数列是等差数列,我们可以用公式计算。
➢ 要求这一数列的和,首先要求出项数是多少:
➢ 1+2+3+…+99+100=(1+100)×100÷2=5050 ➢ 上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的
公式求和: ➢ 等差数列总和=(首项+末项)×项数÷2 ➢ 这个公式也叫做等差数列求和公式。
第7页/共14页
第八页,共14页。
对应(duìyìng)练习
➢ (1)1+2+3+…+49+50
➢ (2+4+6+…+100)-(1+3+5+…+99) ➢ =(2-1)+(4-3)+(6-5)+…+(100-99) ➢ =1+1+1+…+1 ➢ =50
四年级奥数巧妙求和

巧妙求和
基本概念
1 数列:若干个数排成一列,称为数列
2 项:数列中的每一个数
首项:数列中的第一项
末项:数列中的最后一项
项数:数列中项的个数
3 等差数列:从第二项开始,后项与前项之差都相等的数列
公差:后项与前项的差
4 等差数列求和
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
例1:数列4,10,16,22…52共有多少项?
例2:等差数列9,12,15,18…,2004,这个数列共有多少项?
例3:等差数列1000,993,986,979,…20,这个数列共有多少项?
例4:已知等差数列3,7,11,15,…,则该等差数列第100项是多少?
例5:求等差数列1,6,11,16,…的第61项。
例6:求等差数列307,304,301,298,…第99项。
例7:有这样一列数:1,2,3,4,…98,99,100.请求出这列数各项相加之和。
例8:求等差数列2,4,6,…48,50的和。
例9:用简便方法计算(100+102+104+...+200)-(1+5+9+13+ (97)
作业:
1.3+5+7+9+…+63
2.100+110+120+…+350
3.160+154+148+…+16
4.2+3-4+5+6-7+8+9-10+11+12-13+…+101+102-103。
四年级巧妙求和奥数题

四年级巧妙求和奥数题摘要:一、引言二、四年级巧妙求和奥数题的类型与解题思路1.数字求和2.图形求和3.逻辑求和三、解题技巧与方法1.利用数学公式2.寻找规律3.转化思维四、实例解析1.数字求和实例2.图形求和实例3.逻辑求和实例五、结尾正文:一、引言随着数学教育的不断推进,奥数题已经成为许多小学生课外学习的热门话题。
其中,四年级巧妙求和奥数题备受孩子们喜爱。
这类题目既能锻炼孩子们的思维能力,又能培养他们的创新精神。
那么,如何解决这类题目呢?接下来,我们就来探讨一下。
二、四年级巧妙求和奥数题的类型与解题思路1.数字求和数字求和题主要涉及到加法运算,孩子们需要运用加法公式和运算规律来解决。
例如,给出一些数字,让孩子们找到一个合适的规律,使得这些数字相加等于一个特定的和。
2.图形求和图形求和题要求孩子们通过观察图形,找到图形的面积或周长与数字之间的联系。
这类题目需要孩子们具备一定的观察能力和几何知识。
3.逻辑求和逻辑求和题主要以故事或问题的形式出现,让孩子们在理解题意的基础上,通过逻辑推理找到答案。
这类题目对孩子的思维逻辑能力有较高要求。
三、解题技巧与方法1.利用数学公式在解决四年级巧妙求和奥数题时,可以尝试运用数学公式,简化运算过程。
例如,利用平方差公式、完全平方公式等,将复杂数字求和问题转化为简单的计算。
2.寻找规律观察题目中的数字、图形或故事,找到潜在的规律。
例如,数字求和题中,数字之间可能存在等差、等比等关系;图形求和题中,图形的边长、角度等可能存在一定的规律。
3.转化思维当遇到困难时,可以尝试转换思维角度,从另一个角度审视问题。
例如,将问题从一个维度转化为另一个维度,或者从整体到局部,再从局部到整体进行分析。
四、实例解析1.数字求和实例题目:1,2,3,4,5,…,99的和是多少?解:利用等差数列求和公式,求和=(首项+末项)×项数÷2,可得答案。
2.图形求和实例题目:一个正方形的面积是16平方厘米,周长是16厘米,求正方形的边长。
四年级奥数巧妙求和

四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
这一周学习“等差数列求和”。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
小学四年级奥数巧妙求和

四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
这一周学习“等差数列求和”。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
四年级奥数第13讲巧妙求和

第13讲巧妙求和(一)
一、知识要点
若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
二、练习
练习1:
1.等差数列中,首项1.末项39,公差
2.这个等差数列共有多少项?
2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?
练习2:
1.求1.4,7,10……这个等差数列的第30项。
2.求等差数列2.6,10,14……的第100项。
练习3:
计算下面各题。
(1)1+2+3+…+49+50
(2)6+7+8+…+74+75
(3)100+99+98+…+61+60
练习4:
计算下面各题。
(1)2+6+10+14+18+22
(2)5+10+15+20+…+195+200
(3)9+18+27+36+…+261+270。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数专题
巧妙求和(一)
专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
这一周学习“等差数列求和”。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+ (项数—1)x公差
项数公式:项数=(末项—首项)十公差+ 1
求和公式:总和=(首项+末项)X项数十2
例1 :有一个数列:4, 10, 16, 22,…,52,这个数列共有多少项?
分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52- 4)十6+仁9,即这个数列共有9项。
练习一
1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?
2,有一个等差数列:2, 5, 8, 11,…,101,这个等差数列共有多少项?
3,已知等差数列11, 16, 21, 26,…,1001,这个等差数列共有多少项?
例2:有一等差数列:3, 7, 11, 15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差X(项数—1)”进行计算。
第100 项=3+4 X( 100—1) =399
练习
1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?
2,求1, 4, 7, 10……这个等差数列的第30项
3,求等差数列2, 6, 10, 14……的第100项
例3:有这样一个数列:1, 2, 3, 4,…,99, 100o请求出这个数列所有项的和。
分析与解答:如果我们把1, 2, 3, 4,…,99, 100与列100, 99,…,3, 2, 1相加,则得到
(1+100) + (2+99) + (3+98) +…+ (99+2) + (100+1),其中每个小括号内的两个数的和都是101,一共有100个101 相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
1+2+3+…+99+100= (1+100)X 100*2=5050
上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)X项数* 2
这个公式也叫做等差数列求和公式。
练习三
计算下面各题。
(1) 1+2+3+…+49+50
(2) 6+7+8+…+74+75
(3) 100+99+98+…+61+60
例4:求等差数列2, 4, 6,…,48, 50的和
分析与解答:这个数列是等差数列,我们可以用公式计算。
要求这一数列的和,首先要求出项数是多少: 项数=(末项—首项)十公差+1= (50- 2)十2+仁25
首项=2,末项=50,项数=25
等差数列的和=(2+50)X 25- 2=650
练习四
计算下面各题。
1) 2+6+10+14+18+22
(2) 5+10+15+20+…+195+200
(3) 9+18+27+36+…+261+270。