小学四年级奥数讲解:巧妙求和

合集下载

四年级奥数专题 巧妙求和

四年级奥数专题 巧妙求和

四年级奥数专题巧妙求和【一】求1~20这20个连续自然数的所有数字之和。

练习1、求1~50这50个连续自然数的所有数字之和。

2、求3~19连续自然数的全部数字之和。

【二】一把钥匙只能开一把锁。

现在有4把钥匙和4把锁,但不知道哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?练习1、现在有8对钥匙和锁混在一起,不知道哪把钥匙配哪把锁,最多要试多少次就可以把它们全部配成对?2、有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最多称多少次,就可以找到那颗较轻的钢珠?【三】思雨读一本长篇小说,他第一天读20页,从第二天起,他每天读的页数都比前一天多2页,第11天读了40页,正好读完,这本书共有多少页?练习1、王师傅做一批零件,第一天做了40个,以后每天都比前一天多做3个,第15天做了82个,正好做完,这批零件共有多少个?2、张琳读一本故事书,她第一天读了15页,从第二天起,每天读的页数都比前一天多5页。

最后一天读了40页恰好读完,这本书共有多少页?【四】45把锁的钥匙都搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?练习1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2、有一些锁的钥匙搞乱了,已知至多要试45次,就能使每把锁都配上自己的钥匙,问一共有几把锁的钥匙搞乱了?【五】某班有30个同学,每两个同学互通一次电话,那么他们一共通了多少次电话?练习1、竹苑小学进行象棋比赛,每个参赛选手都要和其他所有的选手各赛一场,如果有15人参加比赛,问一共要进行多少场比赛?2、一次生日party中,参加的有20位同学和3位老师,每两人之间握一次手。

那么一共握了几次手?【六】求1~99中连续自然数的所有数字之和。

练习1、求1~199的199个连续自然数的所有数字之和。

2、求1~999的999个连续自然数的所有数字之和。

3、求1~210连续自然数的全部数字之和。

4、求1~299连续自然数的全部数字之和。

小学奥数之巧妙求和

小学奥数之巧妙求和

五年级思维提升今天的成绩是以往勤奋的表现,而一生的成绩还依靠毕生的勤奋。

坚持就是胜利,毅力对最后的成功有决定意义。

巧妙求和一、某些问题可以转化为若干个数的和。

在解决这些问题时,同样要先判断是否是求等差数列的和。

如果是等差数列求和,才可用等差数列公式求和。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

二、经典例题解析例1 刘俊读一本长篇小说,他第一天读30页,第二天起他每天读的页数都比前一天多3页,第11天读60页,正好读完。

这本书共有多少页?解:答:想一想:如果把“第11天读60页,正好读完”,改成最后一天读60页,正好读完。

该怎样解答?解:习题:丽丽学英语单词,第一天学会了6个,以后每天多学会1个,最后一天学会了16个。

丽丽在这些天中学会了多少个单词?解:答:例2 把30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试多少次?解:答:习题:有一些锁的钥匙搞乱了,已知至多要试28次,都能使每把锁都配上自己的钥匙,问一共有几把锁的钥匙搞乱了?解:答:例3 实验小学304个小朋友围成若干个圈(一圈套一圈)做游戏。

已知内圈24人,最外圈52人。

如果相邻两圈相差的人数相等,那么相邻两圈相差多少人?解:(1)(2)答:习题:小明练习写毛笔字。

第一天写4个大字,以后每天比前一天多写相同数量的大字,最后一天写34个,共写589个大字。

小明每天比前一天多写几个大字?解:(1)(2)答:课后跟踪习题一、填空:1、若干个数排成一列,称为。

数列中的每一个数称为一项,其中第一项称为,最后一项称为。

数列中的数的个数称为。

2、从第二项开始,后项与其相邻的前项之差都相等的数列称为。

后项与前项的差称为。

3、学习等差数列求和三个常用的公式。

1)求等差数列的和=2)项数=3)末项=二、解答题1、等差数列中,首项=1,末项=39,公差=2。

求这个等差数列有多少项?解:答:2、有一个等差数列2、5、8、11......101,这个等差数列共有多少项?解:答:3、有这样的一个数列1、2、3、4,......99、100,请你求出这个数列各项相加的和。

四年级奥数巧妙求和

四年级奥数巧妙求和

巧妙求和
基本概念
1 数列:若干个数排成一列,称为数列
2 项:数列中的每一个数
首项:数列中的第一项
末项:数列中的最后一项
项数:数列中项的个数
3 等差数列:从第二项开始,后项与前项之差都相等的数列
公差:后项与前项的差
4 等差数列求和
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
例1:数列4,10,16,22…52共有多少项?
例2:等差数列9,12,15,18…,2004,这个数列共有多少项?
例3:等差数列1000,993,986,979,…20,这个数列共有多少项?
例4:已知等差数列3,7,11,15,…,则该等差数列第100项是多少?
例5:求等差数列1,6,11,16,…的第61项。

例6:求等差数列307,304,301,298,…第99项。

例7:有这样一列数:1,2,3,4,…98,99,100.请求出这列数各项相加之和。

例8:求等差数列2,4,6,…48,50的和。

例9:用简便方法计算(100+102+104+...+200)-(1+5+9+13+ (97)
作业:
1.3+5+7+9+…+63
2.100+110+120+…+350
3.160+154+148+…+16
4.2+3-4+5+6-7+8+9-10+11+12-13+…+101+102-103。

小学四年级奥数巧妙求和

小学四年级奥数巧妙求和

四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

这一周学习“等差数列求和”。

需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。

3,求等差数列2,6,10,14……的第100项。

例3:有这样一个数列:1,2,3,4,…,99,100。

请求出这个数列所有项的和。

分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。

四年级奥数第13讲巧妙求和

四年级奥数第13讲巧妙求和

第13讲巧妙求和(一)
一、知识要点
若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
二、练习
练习1:
1.等差数列中,首项1.末项39,公差
2.这个等差数列共有多少项?
2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?
练习2:
1.求1.4,7,10……这个等差数列的第30项。

2.求等差数列2.6,10,14……的第100项。

练习3:
计算下面各题。

(1)1+2+3+…+49+50
(2)6+7+8+…+74+75
(3)100+99+98+…+61+60
练习4:
计算下面各题。

(1)2+6+10+14+18+22
(2)5+10+15+20+…+195+200
(3)9+18+27+36+…+261+270。

四年级奥数第8讲:巧妙求和-教案

四年级奥数第8讲:巧妙求和-教案

(四年级)备课教员:* * *第八讲巧妙求和一、教学目标:知识目标1.认识等差数列及各个相关名称。

2.利用规律来简便求出等差数列的项数。

能力目标根据实际情况会判断所求的总和是否是求等差数列的总和。

情感目标善于发现善思考,提高计算能力。

培养良好的审题习惯和思维习惯。

二、教学重点:利用规律来简便求出等差数列的项数。

三、教学难点:理解等差数列的意义,知道等差数列中各部分的名称,掌握求尾项和项数的公式。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:故事引入,提高学生学习兴趣。

】师:今年上课前,老师要给大家讲一个数学家高斯的故事。

高斯7岁那年开始上学。

10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。

数学教师是布特纳,他对高斯的成长也起了一定作用。

一天,老师布置了一道题,1+2+3……这样从1一直加到100等于多少。

高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。

”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101……1加到100有50组这样的数,所以50×101=5050。

布特纳对他刮目相看。

他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。

”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。

他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

师:听了故事后,你有什么感想?生:学生回答。

师:高斯是利用什么方法去求1至100这100个数的和?生:分组的方法。

师:是的,就是把头尾两两分组。

为什么要这样分组呢?生:因为这样分组后,每组的和都是一样的。

师:这位同学讲的太棒了!是的,这样分组,刚好每组的两个数的和是一样的。

这也是我们在计算中一种重要的方法,也就是分组法。

接下来我们就要用这种方法去解答我们数学问题。

四年级奥数举一反三第八课巧妙求和附作业

四年级奥数举一反三第八课巧妙求和附作业

8讲巧妙求和(一)第一、知识要点.若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项2.有一个等差数列:,8,11.…,101.这个等差数列共有多少项3.已知等差数列,,…,1001.这个等差数列共有多少项【例题2】有一等差数列:,,……,这个等差数列的第100项是多少【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100)”进行计算。

1公差×(项数-+首项=项,可根据“末项.第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少2.求,7,10……这个等差数列的第30项。

3.求等差数列,10,14……的第100项。

【例题3】有这样一个数列:,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把,…,99,100与列100,99,…,相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。

四年级奥数举一反三-巧妙求和(二)

四年级奥数举一反三-巧妙求和(二)

3、 丽丽学英语单词,第一天学会了6个, 以后每天都比前一天多学1个,最后一天学 会了16个。丽丽在这些天中学会了多少个 单词?
【例题2】
30把锁的钥匙搞乱了,为了使每把锁都配上自己 的钥匙,至多要试几次?
举一反三2
1、有80把锁的钥匙搞乱了,为了使每把锁 都配上自己的钥匙,至多要试多少次?
2、有一些锁的钥匙搞乱了,已知至多要试 28次,就能使每把锁都配上自己的钥匙。 一共有几把锁的钥匙搞乱了?
3、有10只盒子,44只羽毛球。能不能把44只羽毛球 放到盒子中去,使各个盒子里的羽毛球不相等?
【例3】
某班有51个同学,毕业时每人都和其他 的每个人握一 次手。那么共握了多少次 手?
举一反三3
1、学校进行乒乓球赛,每个选手都要和其他所有 选手各赛一场。如果有21人参加比赛,一共要进 行多少场比赛?
巧妙求和(二)
专题简析
某些问题可以转化为求若干个数的和,在解决 这些问题时,同样要先判断是否是求某个等差数 列的和。如果是等差数列求和,才可以用等差数 列公式求和。
在解决自然数的数字问题时,应根据题目的具 体特点,有时可考虑将题中的数字适当分组,并 将每组中的数字合理配对,使问题得以顺利解决。
【例题1 】
2、星星电影院共有座位630个。已知第一排有座位 18个,最后一排有座位52个,而且每相邻两排相差 的座位数相等,那么相邻两排相差多少个座位?
3、用1320页纸由少到多地装订不同规格的练 习本。已知第一本18页,最后一本102页,而 且前后两本纸张的相差页数相等,那么相邻 的前后两本相差多少页?
2、一次同学聚会中,一共到43位同学和4位老师, 每一位同学或老师都要和其他人握一次手。那 么一共握了多少次手?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学四年级奥数讲解:巧妙求和
一、知识要点
某些问题,能够转化为求若干个数的和,在解决这些问题时,同
样要先判断是否求某个等差数列的和。

如果是等差数列求和,才可用
等差数列求和公式。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考
虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利
解决。

二、精讲精练
【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。


本书共有多少页?
【思路导航】根据条件“他每天读的页数都比前一天多3页”能
够知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。

要求这本书共多少页也就是求出这列数的和。

这列
数是一个等差数列,首项=30,末项=60,项数=11.所以能够很快得解:(30+60)×11÷2=495(页)
想一想:如果把“第11天”改为“最后一天”该怎样解答?
练习1:
1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多
做2个,第15天做了48个,正好做完。

这批零件共有多少个?
2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读
的页数都比前一天多5页。

最后一天读了50页恰好读完,这本书共有
多少页?
3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多
学1个,最后一天学会了16个。

丽丽在这些天中学会了多少个英语单词?
【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?
【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打
开第29把锁,剩下的最后一把不用试,一定能打开。

所以,至多需试
29+28+27+…+2+1=(29+1)×29÷2=435(次)。

练习2:
1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至
多要试多少次?
2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都
配上自己的钥匙。

一共有几把锁的钥匙搞乱了?
3.有10只盒子,44只羽毛球。

能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?
【例题3】某班有51个同学,毕业时每人都和其他的每个人握一
次手。

那么共握了多少次手?
【思路导航】假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第
三个人握了48次。

依次类推,第50个人和剩下的一人握了1次手,
这样,他们握手的次数和为:
50+49+48+…+2+1=(50+1)×50÷2=1275(次).
练习3:
1.学校实行乒乓球赛,每个选手都要和其他所有选手各赛一场。

如果有21人参加比赛,一共要实行多少场比赛?
2.在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。

那么一共握了多少次手?
3.假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?
【例题4】求1 ~ 99 这99个连续自然数的所有数字之和。

【思路导航】首先应该弄清楚这题是求99个连续自然数的数字之和,而不是求这99个数之和。

为了能方便地解决问题,我们不妨把0算进来(它不影响我们计算数字之和)计算0~99这100个数的数字之和。

这100个数头尾两配对后每两个数的数字之和都相等,是
9+9=18,一共有100÷2=50对,所以,1~99这99个连续自然数的所有数字之和是18×50=900。

练习4:
1.求1~199这199个连续自然数的所有数字之和。

2.求1~999这999个连续自然数的所有数字之和。

3.求1~3000这3000个连续自然数的所有数字之和。

.
【例题5】求1~209这209个连续自然数的全部数字之和。

【思路导航】不妨先求0~199的所有数字之和,再求200~209的所有数字之和,然后把它们合起来。

0~199的所有数字之和为
(1+9×2)×(200÷2)=1900,200~209的所有数字之和为
2×10+1+2+…+9=65。

所以,1~209这209个连续自然数的全部数字之和为1900+65=1965。

练习5:。

相关文档
最新文档