用ANSYS对钢筋混凝土梁进行计算模拟

合集下载

ANSYS分析钢筋混凝土结构技巧及实例详解

ANSYS分析钢筋混凝土结构技巧及实例详解

0 前言利用ANSYS分析钢筋混凝土结构时,其有限元模型主要有分离式和整体式两种模型。

这里结合钢筋混凝土材料的工作特性,从模型建立到非线性计算再到结果分析的全过程讲述了利用ANSYS进行钢筋混凝土结构分析的方法与技巧,并以钢筋混凝土简支梁为例,采用分离式有限元模型,说明其具体应用。

1 单元选取与材料性质1. 1 混凝土单元ANSYS中提供了上百种计算单元类型,其中Solid65单元是专门用于模拟混凝土材料的三维实体单元。

该单元是八节点六面体单元,每个节点具有三个方向的自由度( UX , UY , UZ) 。

在普通八节点线弹性单元Solid45 的基础上,该单元增加了针对于混凝土的材性参数和组合式钢筋模型,可以综合考虑包括塑性和徐变引起的材料非线性、大位移引起的几何非线性、混凝土开裂和压碎引起的非线性等多种混凝土的材料特性。

使用Solid65 单元时,一般需要为其提供如下数据:1)、实常数(Real Constants) :定义弥散在混凝土中的最多三种钢筋的材料属性,配筋率和配筋角度。

对于墙板等配筋较密集且均匀的构件,一般使用这种整体式钢筋混凝土模型。

如果采用分离式配筋,那么此处则不需要填写钢筋实常数。

2)、材料模型(Material Model) :在输入钢筋和混凝土的非线性材料属性之前,首先必须定义钢筋和混凝土材料在线弹性阶段分析所需的基本材料信息,如:弹性模量,泊松比和密度。

3)、数据表(Data Table) :利用数据表进一步定义钢筋和混凝土的本构关系。

对于钢筋材料,一般只需要给定一个应力应变关系的数据表就可以了,譬如双折线等强硬化(bilinear isotropic hardening)或随动硬化模型( kinematic hardening plasticity)等。

而对于混凝土模型,除需要定义混凝土的本构关系外,还需要定义混凝土材料的破坏准则。

在ANSYS中,常用于定义混凝土本构关系的模型有:1)多线性等效强化模型(Multilinear isotropic hardening plas2ticity ,MISO模型),MISO模型可包括20条不同温度曲线,每条曲线可以有最多100个不同的应力-应变点;2)多线性随动强化模型(Multilinear kinematic hardening plas2ticity ,MKIN 模型),MKIN 模型最多允许5个应力-应变数据点;3)Drucker2Prager plasticity(DP)模型。

ANSYS--理论基础(混凝土及钢筋单元)

ANSYS--理论基础(混凝土及钢筋单元)

ANSYS 理论基础一、钢筋混凝土模型1、Solid65单元——模拟混凝土和岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元,可以模拟混凝土中的加强钢筋(或玻璃纤维、型钢等);普通8节点三维等参元,增加针对混凝土材料参数和整体式钢筋模型;基本属性:——可以定义3种不同的加固材料;——混凝土具有开裂、压碎、塑性变形和蠕变的能力;—-加强材料只能受拉压,不能承受剪切力。

三种模型:分离式模型——把混凝土和钢筋作为不同的单元来处理,各自划分单元,或钢筋视为线单元(杆件link-spar8或管件pipe16,20);钢筋和混凝土之间可以插入粘结单元来模拟界面的粘结和滑移;整体式模型——将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料;组合式模型—-分层组合式:在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设(如应变沿截面高度为直线);或采用带钢筋膜的等参单元。

2、本构模型线性弹性、非线性弹性、弹塑性等;强度理论——Tresca、V on Mises、Druck —Prager等;3、破坏准则单轴破坏(Hongnested等)、双轴破坏(修正的莫尔库仑等)、三轴破坏(最大剪应力、Druck—Prager等),三参数、五参数模型;混凝土开裂前,采用Druck—Prager屈服面模型模拟塑性行为;开裂失效准则,采用William-Warnke五参数强度模型.4、基本数据输入混凝土:ShrCf-Op—张开裂缝的剪切传递系数,0~1ShrCf—Ol—闭合裂缝的剪切传递系数,0。

9~1UnTensSt—抗拉强度,UnCompSt—单轴抗压强度,(若取-1,则以下不必要)BiCompSt—双轴抗压强度,HydroPrs—静水压力,BiCompSt—静水压力下的双轴抗压强度,UnCompSt-静水压力下的单轴抗压强度,TenCrFac—拉应力衰减因子。

加固材料(材料号、体积率、方向角)二、其他材料模型在Ansys中,可在Help菜单中查阅各种不同单元的特性.例1、矩形截面钢筋混凝土板在中心点处作用-2mm的位移,分析板的受力、变形、开裂(采用整体模型分析法).材料性能如下:1、混凝土弹性模量E=24GPa,泊松比ν=0。

ANSYS在钢筋混凝土梁热分析中的应用

ANSYS在钢筋混凝土梁热分析中的应用

ANSYS在钢筋混凝土梁热分析中的应用【摘要】在火灾荷载的条件下,钢筋混凝土构件内部的温度场分布,对火灾后的构件能否继续使用,具有重要的作用。

ANSYS作为大型有限元软件,在有限元分析中得到了普遍的应用.本文首先从混凝土梁截面热分析入手,然后进行混凝土构件梁整体热分析,从而比较两者在热分析中的误差,从而得出ANSYS 在热分析中方法及思路。

【关键词】ANSYS;热分析;钢筋混凝土梁Reinforced concreted beam in the application of thermal analysis with ANSYS【Abstract】With the fire load conditions, the inside temperature field distribution of concrete beam has an important role on the components. As large-scale finite element software, the finite element analysis has gained widespread application. Comparing the thermal analysis of concrete beam section with the overall thermal analysis of concrete beams, and then draw the differences and similarities, which take thermal analysis in ANSYS in the methods and ideas.【Key words】ANSYS;Thermal analysis;Reinforced concrete beam1. 前言组成钢筋混凝土梁构件的材料,在火灾荷载作用下,其热工性能和力学性能会产生明显的变化,变形也会明显增大,由于构件在受火时,体积膨胀、截面温度不均匀分布,都会使截面产生自平衡的温度应力和构件弯曲变形[1]。

ANSYS中混凝土的计算问题

ANSYS中混凝土的计算问题

发信人: rubors (宝马), 信区: FEA标题: 混凝土单元的应用(solid65)[转载]发信站: 同舟共济站(2002年09月08日17:16:34 星期天), 站内信件ANSYS中混凝土的计算问题【精华】最近做了点计算分析,结合各论坛关于这方面的讨论,就一些问题探讨如下,不当之处,敬请指正。

一、关于模型钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。

考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。

裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。

离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。

随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。

就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。

而其裂缝的处理方式则为分布裂缝模型。

二、关于本构关系混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。

混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。

就ANSYS而言,其问题比较复杂些。

1.ANSYS混凝土的破坏准则与屈服准则是如何定义的?采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。

ANSYS,ADINA在钢筋混凝土结构非线性分析中的应用与算例分析

ANSYS,ADINA在钢筋混凝土结构非线性分析中的应用与算例分析
根据计算结果,可以对比ANSYS和ADINA在钢筋混凝土结构非线性分析中的准 确性。表1给出了跨中截面的应变和应力计算结果对比,可以看出ANSYS和ADINA 的计算结果非常接近,证明了两种软件在钢筋混凝土结构非线性分析中的可靠性。
表1跨中截面的应变和应力计算 结果对比
结论与展望
结论与展望
通过以上分析和算例对比,我们可以得出以下结论:ANSYS和ADINA在钢筋混 凝土结构非线性分析中均具有较高的准确性和可靠性,二者的计算结果非常接近。 这些软件提供了丰富的建模功能、强大的求解器和灵活的材料本构模型选择,使 得它们能够广泛应用于各种复杂的钢筋混凝土结构非线性分析问题中。
ANSYS和ADINA在钢筋混凝土结构非线性分析中的应用步骤和常见问题
钢筋混凝土结构非线性分析基本原理和方法
ANSYS和ADINA都是广泛用于工程模拟的有限元软件,它们在钢筋混凝土结构 非线性分析中具有相似的应用步骤。具体而言,可以分为以下几个步骤:
钢筋混凝土结构非线性分析基本原理和方法
1、建立模型:根据实际结构,建立相应的计算模型,包括几何形状、材料属 性、边界条件等。
谢谢观看
ANSYS,ADINA在钢筋混凝土结构 非线性分析中的应用与算例分

目录
01 引言
03 表1跨中截面的应变 和应力计算结果对比
02 算例分析 04 结论与展望 Nhomakorabea 内容摘要
ANSYS和ADINA在钢筋混凝土结构非线性分析中的应用与算例分析
引言
引言
钢筋混凝土结构非线性分析在工程实践中具有重要意义,它能够帮助工程师 们更准确地预测结构的性能和行为。在众多非线性分析软件中,ANSYS和ADINA是 最常用的两个工具。本次演示将介绍这两个软件在钢筋混凝土结构非线性分析中 的应用原理、方法和算例,并对其优势和不足进行分析,以期为工程师们提供有 益的参考。

基于ANSYS的钢筋混凝土浅梁单调加载变形的数值模拟

基于ANSYS的钢筋混凝土浅梁单调加载变形的数值模拟
方法大 多基 于试 验 取 得 的数 据 , 复调 整 有 限 元模 反
分析 选用 的单 元 与 所 选有 限元 模 型 紧 密 相关 ,
以往 文献 中 的有 限元 模 型 以分 离 式 和 整 体式 为 主。 A S S公 司 在 最 新 版 本 ( 2 0版 本 ) 推 出 了 组 合 NY 1. 中 单 元 , 于 该 单 元 可 使 用 组 合 式 模 型 对 结 构 和 构 件 基
果 与试 验结 果接 近 , 时 得 出 的参 数 值 很难 具 有 普 此
1 引 言
16 9 7年 ,cre s 人 首 次 将 有 限 元 法 引 入 Sod l 等 i 钢 筋 混 凝 土 梁 构 件 的 分 析 。 通 过 数 值 模 拟 ( 叫 做 或 仿 真 分 析 ) 方 法 对 结 构 和 构 件 的 力 学 性 能 进 行 分 的 析 研 究 , 传 统 的 试 验 分 析 方 法 相 比 , 资 源 的 耗 与 在 费 等 方 面 , 具 有 明 显 的 优 势 。 国 内 外 的 学 者 在 混 都 凝 土 梁 的有 限元 分 析 方 面 做 了 大 量 的 工 作 , 期 的 初 研 究 者 有 不 少 通 过 自 编 的 程 序 和 算 法 , 用 较 多 采
进行分 析 。
型 输 入 参 数 进 行 试 算 , 终 使 得 有 限 元 分 析 数 值 结 最
【 者 简 介 】 李 文 华 (9 3一) 男 , 士 , 程 帅 。 目前 从 事 建 筑 结 构 设 计 工 作 。Ema : hhn5 0 16 Cn 作 18 , 硕 工 - i 1 c i 2 @ 2 .Ol lw a
同时 , 不 能 采 用 相 同 的参 数 设 置 对 其 进 行 分 析 , 能

ANSYS桥梁建模经验1

ANSYS桥梁建模经验1
1.从连续刚构桥纵向来看,保证各个截面具有几何拓扑一致性,对于箱形截面来说,只有空间倒角部位可能出现截面拓扑不一致,在建模时人为将其定义为几何拓扑一致。对于横隔板建模采用后补法来实现。
2.从横截面来看,一般单箱室连续刚构桥具有外轮廓的几何拓扑,因此将其作为截面的拓扑。对于和其拓扑一致或者可以调整为该拓扑结构的连续刚构都能分析。对于箱内倒角为双折线的连续刚构只能近似模拟。具体建模时,我们只需输入外轮廓尺寸,截面纵向位置,APDL命令流即可自动计算其他关键点位置,用循环语句生成实体模型。
442钢筋与混凝土的连接如果采用线单元初应力法模拟预应力有限元模型中钢筋和混凝土的连接主要分为三种即分离式整体式和组合式4252分离式模型把混凝土和钢筋作为不同的单元来处理即混凝土和钢筋各自被划分为足够小的单元两者的刚度矩阵是分开来求解的考虑到钢筋是一种细长的材料通常可以忽略其横向抗剪强度因此可以将钢筋作为线单元处理
3.对于每一根预应力束,定义张拉端为局部坐标原点,通过指定导线点局部坐标,和局部坐标在整体坐标中的位置进行定位。对于双向张拉的预应力束将其分为两根来建模,分割点位于0.5L处(L预应力束总长)。这样做看上去繁琐,但却解决了所有预应力束都可以通过一个宏命令完成预应力束损失的计算,单元的生成,初应变的赋值功能,没有任何局限性,为参数化建模提供了保证。参数的输入只有各导线点局部坐标,局部坐标在整体坐标中坐标,张拉控制力,波纹管类型等计算损失的参数。
1)输入参量: ; ; ; ;
2)计算建模控制点参量 : ;
3)计算上层配筋层纵向配筋率 :
4)返回计算数值 和 进行建模和单元属性赋值。
图4-1配筋率计算示意图
Fig.4-1Schematic plan of ratio of reinforcement calculation

手把手教你学ansys--钢筋混凝土梁

手把手教你学ansys--钢筋混凝土梁

⼿把⼿教你学ansys--钢筋混凝⼟梁⼤家好,我是⽔哥。

⽔哥ansys使⽤经验三年多,既做过重⼤科研项⽬,也做过许多实际项⽬,对ansys的使⽤有⼀定的⼼得体会,本着分享经验的精神,今⽇以⼀个钢筋混凝⼟梁的建模求解过程来简单说明ansys的基本操作步骤。

(我的ansys14.0)总的说来,⽆论⼩项⽬还是⼤项⽬,总体过程⽆⾮定义单元、定义材料、物理模型、有限元模型、加载、约束、求解、查看这⼏个过程,和我们⼯程类的设计软件例如PKPM、SAP2000等基本过程都差不多,只不过最⼤的区别在于ansys的建模实在是蛋疼了⼀些。

废话不多说,以下⾯的⼀根悬臂钢筋混凝⼟梁来教新⼿如何快速进⼊ansys 的⼤堂,每⼀步都有GUI操作,完了之后会有相应部分的命令流,这⾥多说⼀句,⼀个ansys的使⽤⾼⼿必然是⼀个精通apdl编程的能⼿,所以我建议新⼿在学习的时候最好以apdl⼊⼿,GUI操作辅助,这样在学习的时候能节省⼤量时间,⽽不会浪费在GUI毫⽆意义的重复操作上。

此题如下:悬臂梁如下,梁宽200mm,梁顶有两根直径为16的钢筋,钢筋中⼼距梁边的距离为40mm,在梁端附近受集中⼒P=100KN的作⽤.要求对此悬臂梁进⾏完全线弹性分析,结果要显⽰主应⼒迹线。

材料参数:混凝⼟弹性模量为3000MPa,钢筋的弹性模量取200GPa,不考虑材料⾃重。

(建模时注意单位的协调性)⼀、题⽬解读与材料单元定义注意此题要求进⾏完全线弹性分析,此话的意义在于我们可以⽤除solid65 以外的其他实体单元。

在ansys单元中,solid65是专门⽤于模拟钢筋混凝⼟构件的单元,但⽤此单元模拟时,⼀般是需要考虑材料的⾮线性,也即是多⽤于构件的⾮线性分析,并且需要材料的本构模型。

此题要求我们做弹性分析,我们可以⽤link8单元模拟钢筋,⽤solid45单元模拟混凝⼟,注意⾼版本的ansys已经将许多低阶单元合并掉了,以ansys14为例,在link单元中只有180,⽽低阶的link8、link10等已被合并。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、用钢筋混凝土简支梁的数值模拟为实例,对ANSYS的使用方法进行说明
钢筋混凝土简支梁,尺寸为长2000mm,宽150mm,高300mm。

混凝土采用C30,钢筋全部采用HRB335,跨中集中荷载P作用于一刚性垫板上,垫板尺寸为长150mm,宽100mm。

建立分离式有限元模型,混凝土采用SOLID65单元,钢筋采用LINK8单元,不考虑钢筋和混凝土之间的粘结滑移。

创建分离式模型时,将几何实体以钢筋位置切开,划分网格时将实体的边线定义为钢筋即可。

加载点以均布荷载近似代替钢垫板,支座处则采用线约束和点约束相结合。

单元尺寸以50mm左右为宜。

二、命令流
!钢筋混凝土简支梁数值分析
!分离式模型
FINISH
/CLEAR
/PREP7
!1.定义单元与材料属性
ET,1,SOLID65,,,,,,,1
ET,2,LINK8
MP,EX,1,13585 !混凝土材料的初始弹模以及泊松比
MP,PRXY,1,0.2
FC=14.3 !混凝土单轴抗压强度和单轴抗拉强度
FT=1.43
TB,CONCR,1
TBDA TA,,0.5,0.95,FT,-1 !定义混凝土材料及相关参数,关闭压碎
TB,MISO,1,,11 !定义混凝土应力应变曲线,用MISO模型
TBPT,,0.0002,FC*0.19
TBPT,,0.0004,FC*0.36
TBPT,,0.0006,FC*0.51
TBPT,,0.0008,FC*0.64
TBPT,,0.0010,FC*0.75
TBPT,,0.0012,FC*0.84
TBPT,,0.0014,FC*0.91
TBPT,,0.0016,FC*0.96
TBPT,,0.0018,FC*0.99
TBPT,,0.002,FC
TBPT,,0.0033,FC*0.85
MP,EX,2,2.0E5 !钢筋材料的初始弹模以及泊松比
MP,PRXY,2,0.3
TB,BISO,2
TBDA TA,,300,0 !钢筋的应力应变关系,用BISO模型
PI=ACOS(-1)
R,1
R,2,0.25*PI*22*22
R,3,0.25*PI*10*10
TBPLOT,MISO,1 !混凝土材料的数据表绘图TBPLOT,BISO,2 !钢筋材料的数据表绘图
!2.创建几何模型
BLC4,,,150,300,2000
*DO,I,1,19 !切出箍筋位置
WPOFF,,,100
VSBW,ALL
*ENDDO
WPCSYS,-1
WPOFF,,,950 !切出拟加载面
VSBW,ALL
WPOFF,,,100
VSBW,ALL
WPCSYS,-1
WPROTA,,-90
WPOFF,,,30
VSBW,ALL
WPOFF,,,240
VSBW,ALL
WPCSYS,-1
WPOFF,30
WPROTA,,,90
VSBW,ALL
WPOFF,,,45
VSBW,ALL
WPOFF,,,45
VSBW,ALL
WPCSYS,-1
!3.划分钢筋网格
ELEMSIZ=50 !网格尺寸变量,设置为50mm LSEL,S,LOC,X,30
LSEL,R,LOC,Y,30
LA TT,2,2,2
LESIZE,ALL,ELEMSIZ
LMESH,ALL
LSEL,S,LOC,X,75 LSEL,R,LOC,Y,30
LA TT,2,2,2
LESIZE,ALL,ELEMSIZ LMESH,ALL
LSEL,S,LOC,X,120 LSEL,R,LOC,Y,30
LA TT,2,2,2
LESIZE,ALL,ELEMSIZ LMESH,ALL
LSEL,S,LOC,X,30 LSEL,R,LOC,Y,270
LA TT,2,3,2
LESIZE,ALL,ELEMSIZ LMESH,ALL
LSEL,S,LOC,X,120 LSEL,R,LOC,Y,270
LA TT,2,3,2
LESIZE,ALL,ELEMSIZ LMESH,ALL
LSEL,S,TAN1,Z LSEL,R,LOC,Y,30,270 LSEL,R,LOC,X,30,120 LSEL,U,LOC,X,75 LSEL,U,LOC,Z,0 LSEL,U,LOC,Z,2000 LSEL,U,LOC,Z,950 LSEL,U,LOC,Z,1050 LA TT,2,3,2
LESIZE,ALL,ELEMSIZ LMESH,ALL
LSEL,ALL
!4.划分混凝土网格
V A TT,1,1,1 MSHKEY,1
ESIZE,ELEMSIZ VMESH,ALL
ALLSEL,ALL
!5.施加荷载和约束
LSEL,S,LOC,Y,0
LSEL,R,LOC,Z,100
DL,ALL,,UY
LSEL,S,LOC,Y,0
LSEL,R,LOC,Z,1900
DL,ALL,,UY
DK,KP(0,0,100),UX,,,,UZ
DK,KP(0,0,1900),UX
P0=180000
Q0=P0/150/100
ASEL,S,LOC,Z,950,1050
ASEL,R,LOC,Y,300
SFA,ALL,1,PRES,Q0
ALLSEL,ALL
FINISH
!6.求解控制设置与求解
/SOLU
ANTYPE,0
NSUBST,60
OUTRES,ALL,ALL
AUTOS,ON
NEQIT,20
CNVTOL,U,,0.015
ALLSEL,ALL
SOLVE
FINISH
!7.进入POST1查看结果
/POST1
SET,LAST
PLDISP,1 !设定最后荷载步,查看变形
ESEL,S,TYPE,,2
ETABLE,SAXL,LS,1
PLLS,SAXL,SAXL !绘制钢筋应力图
ESEL,S,TYPE,,1
/DEVICE,VECTOR,ON
PLCRACK,1,1 !绘制裂缝和压碎图
三、计算结果
图1 混凝土材料的数据表绘图
图2 钢筋材料的数据表绘图
图3 钢筋的模拟
图4 混凝土梁的模拟
图5 梁在荷载作用下Y方向上的位移图
图5 梁在荷载作用下Z方向上的应力图。

相关文档
最新文档