ansys钢筋混凝土梁的建模方法约束方程法

合集下载

用Ansys或Abaqus分析钢管混凝土结构或构件

用Ansys或Abaqus分析钢管混凝土结构或构件

用Ansys或Abaqus分析钢管混凝土结构或构件以上两个软件国外都有人用来分析钢管混凝土结构,但建模的方法不尽相同。

关键在于钢管和混凝土本构关系的选取以及两者之间的界面处理方法,各位有没有这方面的经验能向我们大家介绍一下。

==========程序中大概只有Drucker-Prager比较适合描述受约束混凝土的本构关系,因为这个模型可以考虑 hydrostatic stress (流体静应力)的影响。

在程序中,需要输入cohesion, angle of internal friction,(one more for ANSYS is the angle of dilatancy)。

值得注意的是,两个软件确定这几个参数的公式各不相同,很是令人头疼。

其实user manuals不可能给出明确的表达式,因为到目前为止,好像没有研究把钢管的强度,混凝土的强度,含钢率等等因素(i.e. the confinement)全部在Drucker-Prager 中考虑进去。

至于两种材料的界面,日本的 Hanbin Ge曾用link element来模拟,但在他的文章中,没有详细的描述。

轴压状况下,好像可以忽略滑移。

偏压可能情况有所不同。

==========韩教授书上的混凝土应力-应变关系,可以简单理解为单向受力的混凝土本构关系(考虑了钢管的约束),因此不能用于多向应力状态下混凝土的有限元分析。

材料非线性有限元分析,需要定义材料的屈服面,流动准则,强化准则,等等。

对受约束的混凝土,还要考虑体积膨胀,钢管对它的约束等因素。

显然,不是一个简单的应力-应变曲线所能概括的。

==========三向有限元分析,需要定义屈服面、流动准则和强化准则等等,而考虑钢管约束的混凝土本构关系,只是应力-应变关系。

对钢管混凝土的有限元分析,主要困难是如何定义屈服面,和模拟两个材料之间的滑移,我曾经用过接触分析(contact analysis)来求轴压构件的承载力,发现最大承载力能够比较精确地求得,但是精确的荷载-位移曲线很难获得,因为商用软件(Ansys\Marc)里面的D-P模型是塑性模型。

如何在ANSYS中模拟钢筋混凝土的计算模型

如何在ANSYS中模拟钢筋混凝土的计算模型

如何在ANSYS中模拟钢筋混凝土的计算模型最近做了点计算分析,结合各论坛关于这方面的讨论,就一些问题探讨如下,不当之处敬请指正。

一、关于模型钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。

考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。

裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。

离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。

随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。

就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。

而其裂缝的处理方式则为分布裂缝模型。

二、关于本构关系混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。

混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。

就ANSYS而言,其问题比较复杂些。

1 ANSYS混凝土的破坏准则与屈服准则是如何定义的?采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。

W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。

理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。

手把手教你学ansys--钢筋混凝土梁

手把手教你学ansys--钢筋混凝土梁

大家好,我是水哥。

水哥ansys使用经验三年多,既做过重大科研项目,也做过许多实际项目,对ansys的使用有一定的心得体会,本着分享经验的精神,今日以一个钢筋混凝土梁的建模求解过程来简单说明ansys的基本操作步骤。

(我的ansys14.0)总的说来,无论小项目还是大项目,总体过程无非定义单元、定义材料、物理模型、有限元模型、加载、约束、求解、查看这几个过程,和我们工程类的设计软件例如PKPM、SAP2000等基本过程都差不多,只不过最大的区别在于ansys的建模实在是蛋疼了一些。

废话不多说,以下面的一根悬臂钢筋混凝土梁来教新手如何快速进入ansys 的大堂,每一步都有GUI操作,完了之后会有相应部分的命令流,这里多说一句,一个ansys的使用高手必然是一个精通apdl编程的能手,所以我建议新手在学习的时候最好以apdl入手,GUI操作辅助,这样在学习的时候能节省大量时间,而不会浪费在GUI毫无意义的重复操作上。

此题如下:悬臂梁如下,梁宽200mm,梁顶有两根直径为16的钢筋,钢筋中心距梁边的距离为40mm,在梁端附近受集中力P=100KN的作用.要求对此悬臂梁进行完全线弹性分析,结果要显示主应力迹线。

材料参数:混凝土弹性模量为3000MPa,钢筋的弹性模量取200GPa,不考虑材料自重。

(建模时注意单位的协调性)一、题目解读与材料单元定义注意此题要求进行完全线弹性分析,此话的意义在于我们可以用除solid65 以外的其他实体单元。

在ansys单元中,solid65是专门用于模拟钢筋混凝土构件的单元,但用此单元模拟时,一般是需要考虑材料的非线性,也即是多用于构件的非线性分析,并且需要材料的本构模型。

此题要求我们做弹性分析,我们可以用link8单元模拟钢筋,用solid45单元模拟混凝土,注意高版本的ansys已经将许多低阶单元合并掉了,以ansys14为例,在link单元中只有180,而低阶的link8、link10等已被合并。

(完整版)ansys钢筋混凝土梁的建模方法约束方程法

(完整版)ansys钢筋混凝土梁的建模方法约束方程法

用约束方程法模拟钢筋混凝土梁结构问题描述建立钢筋线对钢筋线划分网格后形成钢筋单元bhP 位移载荷建立混凝土单元对钢筋线节点以及混凝土节点之间建立约束方程后施加约束以及位移载荷进入求解器进行求解;钢筋单元的受力云图混凝土的应力云图混凝土开裂fini/clear,nostart/config,nres,5000/filname,yue su fang cheng 5 jia mi hun nin tu /prep7/title,rc-beamb=150h=300a=30l=2000displacement=5!定义单元类型et,1,solid65et,2,beam188et,3,plane42!定义截面类型sectype,1,beam,csolid,,0secoffset,centsecdata,8,0,0,0,0,0,0,0,0,0sectype,2,beam,csolid,,0secoffset,centsecdata,4,0,0,0,0,0,0,0,0,0!定义材料属性,混凝土材料属性mp,ex,1,24000mp,prxy,1,0.2tb,conc,1,1,9tbdata,,0.4,1,3,-1!纵向受拉钢筋mp,ex,2,2e5mp,prxy,2,0.3tb,bkin,2,1,2,1tbdata,,350!横向箍筋,受压钢筋材料属性mp,ex,3,2e5mp,prxy,3,0.25tb,bkin,3,1,2,1tbdata,,200!生成钢筋线k,,k,,bkgen,2,1,2,,,hk,,a,ak,,b-a,akgen,2,5,6,,,h-2*akgen,21,5,8,,,,-100 *do,i,5,84,1l,i,i+4*enddo*do,i,5,85,4l,i,i+1l,i,i+2*enddo*do,i,8,88,4l,i,i-1l,i,i-2*enddo!受拉钢筋lsel,s,loc,y,alsel,r,loc,x,alsel,a,loc,x,b-a lsel,r,loc,y,acm,longitudinal,line type,2mat,2secnum,1 lesize,all,50lmesh,allallscmsel,u,longitudinalcm,hooping reinforcement,line!箍筋,受压钢筋type,2mat,2secnum,2lesize,all,50lmesh,all/eshape,1!将钢筋节点建为一个集合cm,steel,node!生成面单元,以便拉伸成体单元a,1,2,4,3lsel,s,loc,y,0lsel,a,loc,y,hlesize,all,,,10lsel,alllsel,s,loc,x,0lsel,a,loc,x,blesize,all,,,20type,3amesh,all!拉伸成混凝土单元type,1real,3mat,1extopt,esize,30extopt,aclear,1vext,all,,,,,-lalls!建立约束方程cmsel,s,hooping reinforcement cmsel,a,longitudinalnsll,s,1ceintf,,ux,uy,uzallsel,all!边界条件约束nsel,s,loc,y,0nsel,r,loc,z,0d,all,uyd,all,uxnsel,s,loc,y,0nsel,r,loc,z,-ld,all,uyd,all,ux!施加外部荷载/solunsel,allnsel,s,loc,y,hnsel,r,loc,z,-1000d,all,uy,-displacement alls!求解nlgeom,on nsubst,200 outres,all,all neqit,100pred,oncnvtol,f,,0.05,2,0.5 allselsolvefinish/post1allselplcrack,0,1plcrack,0,2!时间历程后处理/post26nsel,s,loc,z,-l/2*get,Nmin,node,0,num,min nsol,2,nmin,u,yprod,3,2,,,,,,-1nsel,s,loc,y,0nsel,r,loc,z,0*get,Nnum,node,0,count *get,Nmin,node,0,num,min n0=Nminrforce,5,Nmin,f,y*do,i,2,ndinqr(1,13)ni=ndnext(n0)rforce,6,ni,f,yadd,5,5,6n0=ni*enddoprod,7,5,,,,,,1/1000/axlab,x,uy/axlab,y,p(kn) xvar,3 plvar,7。

ansys约束方程求解算法

ansys约束方程求解算法

ansys约束方程求解算法ANSYS是一种常用的工程仿真软件,它可以用来求解各种不同类型的问题。

其中,约束方程是ANSYS求解算法的关键部分之一。

本文将介绍ANSYS中约束方程的求解算法,并探讨其在工程仿真中的应用。

在ANSYS中,约束方程用于描述物体之间的力学关系,以及边界条件和约束条件。

在求解过程中,需要将这些约束方程纳入计算模型中,以确保模拟结果的准确性和可靠性。

ANSYS中的约束方程求解算法主要包括两个步骤:建立方程和求解方程。

建立方程。

在ANSYS中,可以通过几何约束、材料性质、边界条件等来建立约束方程。

几何约束包括距离、角度、平行等几何关系,材料性质包括弹性模量、泊松比等材料性质参数,边界条件包括固定边界、载荷边界等约束条件。

通过将这些约束条件转化为数学方程,可以建立起模型的约束方程。

求解方程。

ANSYS利用数值计算方法求解约束方程,通常采用有限元法。

有限元法将模拟区域分割为有限个小单元,每个小单元内部的约束方程可以表示为一个线性或非线性方程组。

通过求解这些方程组,可以得到每个小单元内的位移、应力等物理量。

然后,通过将这些物理量进行组合,可以得到整个模拟区域的位移、应力分布情况。

在工程仿真中,约束方程的求解算法在各个领域有着广泛的应用。

以结构分析为例,通过建立约束方程,可以模拟材料在不同载荷下的应力分布情况,从而评估结构的强度和刚度。

在流体力学中,约束方程可以用于描述流体的运动和压力分布,从而分析流体的流动特性。

在电磁场分析中,约束方程可以用于求解电磁场的分布情况,从而评估电磁设备的性能。

除了求解约束方程,ANSYS还提供了丰富的后处理功能。

通过后处理,可以对求解结果进行可视化展示,如绘制变形图、应力云图等,帮助工程师更直观地理解模拟结果。

同时,还可以对模拟结果进行进一步的分析和优化,以满足设计要求。

约束方程的求解算法是ANSYS仿真软件的核心功能之一。

通过建立和求解约束方程,可以模拟各种不同类型的工程问题,并得到准确可靠的仿真结果。

ANSYS分析钢筋混凝土结构技巧及实例详解

ANSYS分析钢筋混凝土结构技巧及实例详解

0 前言利用ANSYS分析钢筋混凝土结构时,其有限元模型主要有分离式和整体式两种模型。

这里结合钢筋混凝土材料的工作特性,从模型建立到非线性计算再到结果分析的全过程讲述了利用ANSYS进行钢筋混凝土结构分析的方法与技巧,并以钢筋混凝土简支梁为例,采用分离式有限元模型,说明其具体应用。

1 单元选取与材料性质1. 1 混凝土单元ANSYS中提供了上百种计算单元类型,其中Solid65单元是专门用于模拟混凝土材料的三维实体单元。

该单元是八节点六面体单元,每个节点具有三个方向的自由度( UX , UY , UZ) 。

在普通八节点线弹性单元Solid45 的基础上,该单元增加了针对于混凝土的材性参数和组合式钢筋模型,可以综合考虑包括塑性和徐变引起的材料非线性、大位移引起的几何非线性、混凝土开裂和压碎引起的非线性等多种混凝土的材料特性。

使用Solid65 单元时,一般需要为其提供如下数据:1)、实常数(Real Constants) :定义弥散在混凝土中的最多三种钢筋的材料属性,配筋率和配筋角度。

对于墙板等配筋较密集且均匀的构件,一般使用这种整体式钢筋混凝土模型。

如果采用分离式配筋,那么此处则不需要填写钢筋实常数。

2)、材料模型(Material Model) :在输入钢筋和混凝土的非线性材料属性之前,首先必须定义钢筋和混凝土材料在线弹性阶段分析所需的基本材料信息,如:弹性模量,泊松比和密度。

3)、数据表(Data Table) :利用数据表进一步定义钢筋和混凝土的本构关系。

对于钢筋材料,一般只需要给定一个应力应变关系的数据表就可以了,譬如双折线等强硬化(bilinear isotropic hardening)或随动硬化模型( kinematic hardening plasticity)等。

而对于混凝土模型,除需要定义混凝土的本构关系外,还需要定义混凝土材料的破坏准则。

在ANSYS中,常用于定义混凝土本构关系的模型有:1)多线性等效强化模型(Multilinear isotropic hardening plas2ticity ,MISO模型),MISO模型可包括20条不同温度曲线,每条曲线可以有最多100个不同的应力-应变点;2)多线性随动强化模型(Multilinear kinematic hardening plas2ticity ,MKIN 模型),MKIN 模型最多允许5个应力-应变数据点;3)Drucker2Prager plasticity(DP)模型。

ANSYS--理论基础(混凝土及钢筋单元)

ANSYS--理论基础(混凝土及钢筋单元)

ANSYS 理论基础一、钢筋混凝土模型1、Solid65单元——模拟混凝土和岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元,可以模拟混凝土中的加强钢筋(或玻璃纤维、型钢等);普通8节点三维等参元,增加针对混凝土材料参数和整体式钢筋模型;基本属性:——可以定义3种不同的加固材料;——混凝土具有开裂、压碎、塑性变形和蠕变的能力;—-加强材料只能受拉压,不能承受剪切力。

三种模型:分离式模型——把混凝土和钢筋作为不同的单元来处理,各自划分单元,或钢筋视为线单元(杆件link-spar8或管件pipe16,20);钢筋和混凝土之间可以插入粘结单元来模拟界面的粘结和滑移;整体式模型——将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料;组合式模型—-分层组合式:在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设(如应变沿截面高度为直线);或采用带钢筋膜的等参单元。

2、本构模型线性弹性、非线性弹性、弹塑性等;强度理论——Tresca、V on Mises、Druck —Prager等;3、破坏准则单轴破坏(Hongnested等)、双轴破坏(修正的莫尔库仑等)、三轴破坏(最大剪应力、Druck—Prager等),三参数、五参数模型;混凝土开裂前,采用Druck—Prager屈服面模型模拟塑性行为;开裂失效准则,采用William-Warnke五参数强度模型.4、基本数据输入混凝土:ShrCf-Op—张开裂缝的剪切传递系数,0~1ShrCf—Ol—闭合裂缝的剪切传递系数,0。

9~1UnTensSt—抗拉强度,UnCompSt—单轴抗压强度,(若取-1,则以下不必要)BiCompSt—双轴抗压强度,HydroPrs—静水压力,BiCompSt—静水压力下的双轴抗压强度,UnCompSt-静水压力下的单轴抗压强度,TenCrFac—拉应力衰减因子。

加固材料(材料号、体积率、方向角)二、其他材料模型在Ansys中,可在Help菜单中查阅各种不同单元的特性.例1、矩形截面钢筋混凝土板在中心点处作用-2mm的位移,分析板的受力、变形、开裂(采用整体模型分析法).材料性能如下:1、混凝土弹性模量E=24GPa,泊松比ν=0。

用ANSYS建立钢筋混凝土梁模型

用ANSYS建立钢筋混凝土梁模型

用ANSYS1立钢筋混凝土梁模型问题描述:钢筋混凝土梁在受到中间位移荷载的条件下的变形以及个组成部分的应力情况。

P=5mm位移L=2000mm图1钢筋混凝土结构尺寸图一、用合并节点的方法模拟钢筋混凝土梁1 .用solid65号单元以及beam188单元时材料特性钢材的应力应变关系混凝土的弹性模量采用线弹性TEMP建立钢筋线对钢筋线划分网格后形成钢筋单元建立混凝土单元合并单元节点后施加约束以及位移载荷进入求解器进行求解钢筋单元的受力云图.4Q2F-0375.269 150,536 225.806 301 . 075 混凝土的应力云图混凝土开裂2使用单元solid45号单元与beam188钢筋的应力应变关系不变,而混凝土应力应变关系为:混凝土单元WK.355713 5.067 11.37S3,11119.644EPS3钢筋单元 力与位移曲线 .13257E弓・51611-0^^9uOS31^-652Q B 2L7 25-7S4~H ・ 793・0190363E a 9Q715&•号E 】 233.34311.113194 ・453272 ・227350p(kn)g105uy、用约束方程法模拟钢筋混凝土梁1 .用solid65号单元以及beam188单元时混凝土以及钢筋采用线弹性关系: 建立钢筋线对钢筋线划分网格后形成钢筋单元建立混凝土单元对钢筋线节点以及混凝土节点之间建立约束方程WFOR.NMQMBFOR后施加约束以及位移载荷进入求解器进行求解;钢筋单元的受力云图MN011905 77.787 155.562 233.337 311.11238.899 116.675 194.45 272,225 350 混凝土的应力云图,1472166,969 13,79 20.612 27.43310.379 17 ・201 24 ・ DEE30.844混凝土开裂*11111112使用单元solid45号单元与beam188使用混凝土的本构关系曲线1255 7 9钢材的本构关系曲线钢筋的von mises应力.116491 77+86830.992155,62116.744 1.94,496233+372 311+124272-246 350混凝土的应力.1287895,695 11,662 17.429 23.195 3-012 B.779 14.545 20*312 26.079用在solid45号单元下,用合并节点法、约束方程法建立模中钢筋与混凝土之间的关系 的时候的一个力与位移全程曲线的比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用约束方程法模拟钢筋混凝土梁结构问题描述
建立钢筋线
对钢筋线划分网格后形成钢筋单元
b
h
建立混凝土单元
对钢筋线节点以及混凝土节点之间建立约束方程
后施加约束以及位移载荷
进入求解器进行求解;钢筋单元的受力云图
混凝土的应力云图
混凝土开裂
fini
/clear,nostart
/config,nres,5000
/filname,yue su fang cheng 5 jia mi hun nin tu /prep7
/title,rc-beam
b=150
h=300
a=30
l=2000
displacement=5
!定义单元类型
et,1,solid65
et,2,beam188
et,3,plane42
!定义截面类型
sectype,1,beam,csolid,,0
secoffset,cent
secdata,8,0,0,0,0,0,0,0,0,0
sectype,2,beam,csolid,,0
secoffset,cent
secdata,4,0,0,0,0,0,0,0,0,0
!定义材料属性,混凝土材料属性mp,ex,1,24000
mp,prxy,1,0.2
tb,conc,1,1,9
tbdata,,0.4,1,3,-1
!纵向受拉钢筋
mp,ex,2,2e5
mp,prxy,2,0.3
tb,bkin,2,1,2,1
tbdata,,350
!横向箍筋,受压钢筋材料属性mp,ex,3,2e5
mp,prxy,3,0.25
tb,bkin,3,1,2,1
tbdata,,200
!生成钢筋线
k,,
k,,b
kgen,2,1,2,,,h
k,,a,a
k,,b-a,a
kgen,2,5,6,,,h-2*a
kgen,21,5,8,,,,-100 *do,i,5,84,1
l,i,i+4
*enddo
*do,i,5,85,4
l,i,i+1
l,i,i+2
*enddo
*do,i,8,88,4
l,i,i-1
l,i,i-2
*enddo
!受拉钢筋
lsel,s,loc,y,a
lsel,r,loc,x,a
lsel,a,loc,x,b-a lsel,r,loc,y,a
cm,longitudinal,line type,2
mat,2
secnum,1 lesize,all,50
lmesh,all
alls
cmsel,u,longitudinal
cm,hooping reinforcement,line
!箍筋,受压钢筋
type,2
mat,2
secnum,2
lesize,all,50
lmesh,all
/eshape,1
!将钢筋节点建为一个集合
cm,steel,node
!生成面单元,以便拉伸成体单元a,1,2,4,3
lsel,s,loc,y,0
lsel,a,loc,y,h
lesize,all,,,10
lsel,all
lsel,s,loc,x,0
lsel,a,loc,x,b
lesize,all,,,20
type,3
amesh,all
!拉伸成混凝土单元
type,1
real,3
mat,1
extopt,esize,30
extopt,aclear,1
vext,all,,,,,-l
alls
!建立约束方程
cmsel,s,hooping reinforcement cmsel,a,longitudinal
nsll,s,1
ceintf,,ux,uy,uz
allsel,all
!边界条件约束
nsel,s,loc,y,0
nsel,r,loc,z,0
d,all,uy
d,all,ux
nsel,s,loc,y,0
nsel,r,loc,z,-l
d,all,uy
d,all,ux
!施加外部荷载
/solu
nsel,all
nsel,s,loc,y,h
nsel,r,loc,z,-1000
d,all,uy,-displacement alls
!求解
nlgeom,on nsubst,200 outres,all,all neqit,100
pred,on
cnvtol,f,,0.05,2,0.5 allsel
solve
finish
/post1
allsel
plcrack,0,1
plcrack,0,2
!时间历程后处理
/post26
nsel,s,loc,z,-l/2
*get,Nmin,node,0,num,min nsol,2,nmin,u,y
prod,3,2,,,,,,-1
nsel,s,loc,y,0
nsel,r,loc,z,0
*get,Nnum,node,0,count *get,Nmin,node,0,num,min n0=Nmin
rforce,5,Nmin,f,y
*do,i,2,ndinqr(1,13)
ni=ndnext(n0)
rforce,6,ni,f,y
add,5,5,6
n0=ni
*enddo
prod,7,5,,,,,,1/1000
/axlab,x,uy
/axlab,y,p(kn) xvar,3 plvar,7。

相关文档
最新文档