过程控制系统电子教案01
过程控制理论课教案2018(36学时)

2
授课日期
3.20
教学目标
通过本节课的学习,要求学生掌握控制算法和各种控制的特点、构成以及工作原理。
教学重点
控制装置的认识。
教学难点
控制算法;控制器的工作原理。
教学方法与手段
主要以课堂讲授为主,以多媒体和板书相结合的方法进行授课。
教
学
基
本
内
容
1.控制装置
(1)控制装置概述
(2)连续比例积分微分控制算法
通过本节课的学习,要求学生了解蒸发器和加热炉的特性和控制。
教学重点
加热炉的控制。
教学难点
加热炉的控制。
教学方法与手段
主要以课堂讲授为主,以多媒体和板书相结合的方法进行授课。
教
学
基
本
内
容
1.蒸发器的控制
(1)蒸发器的特性
(2)蒸发器的主控制回路
(3)蒸发器的辅助控制回路
2.管式加热炉的控制
(1)加热炉的简单控制
(2)预测控制算法
(3)预测控制的工业应用
2.推断控制
3.纯滞后补偿控制
讨论、练习与作业
课后总结及教学反思
《过程控制》课程教案
授课教师 第 14 次
授课题目
第6章 先进控制技术
教学时数
2
授课日期
5.1
教学目标
通过本节课的学习,要求学生掌握解耦控制和智能控制的基本结构和应用。
教学重点
解耦控制和智能控制的类型及基本原理。
讨论、练习与作业
课后总结及教学反思
《过程控制》课程教案
授课教师 第 7 次
授课题目
第四章 简单控制系统
教学时数
过程控制系统教案

过程控制系统教案一、教学目标1. 了解过程控制系统的概念、分类和基本组成。
2. 掌握过程控制系统的常见参数及其作用。
3. 熟悉过程控制系统的典型应用和优点。
4. 学会分析过程控制系统的设计和实施方法。
二、教学内容1. 过程控制系统的概念及分类1.1 过程控制系统的定义1.2 过程控制系统的分类1.3 过程控制系统的基本组成2. 过程控制系统的常见参数2.1 流量参数2.2 压力参数2.3 温度参数2.4 液位参数3. 过程控制系统的典型应用3.1 工业生产过程控制3.2 楼宇自动化控制3.3 环保监测与控制4. 过程控制系统的优点4.1 提高生产效率4.2 保障产品质量4.3 降低能源消耗4.4 提高系统安全性三、教学方法1. 采用案例分析法,结合实际应用场景,让学生了解过程控制系统的原理和作用。
2. 利用仿真软件,让学生动手操作,掌握过程控制系统的参数调整和优化方法。
3. 开展小组讨论,培养学生团队合作能力和问题解决能力。
四、教学资源1. 教学课件:包含过程控制系统的相关理论知识、图片和案例。
2. 仿真软件:用于学生动手实践,如LabVIEW、组态王等。
3. 实际应用案例:涉及工业生产、楼宇自动化、环保监测等领域。
五、教学评价1. 课堂互动:学生参与课堂讨论、提问和回答问题的情况。
2. 课后作业:学生完成相关练习题的情况。
3. 实践操作:学生在仿真软件上的操作成绩。
4. 小组讨论:学生参与小组讨论的表现和成果。
教案剩余章节待您提供要求后,我将为您编写。
六、教学重点与难点教学重点:1. 过程控制系统的概念及其在各个领域的应用。
2. 过程控制系统的基本参数及其调整方法。
3. 过程控制系统的优点及其在提高生产效率和产品质量中的作用。
教学难点:1. 过程控制系统的设计原理和方法。
2. 不同类型过程控制系统的实现技术。
3. 过程控制系统在复杂环境下的性能优化。
七、教学安排课时安排:共计20课时,每课时45分钟。
过程控制实验指导教案(新编)1

过程控制实验指导书辽宁科技大学电信学院前言过程控制是自动化专业教学中一门重要的专业课。
要完成这门课程的教学任务,就应进行必要的教学实验,以指导学生理论联系实际,在实验中加深对过程控制理论的理解。
过程控制课程的主要任务是:1.通过实验进一步了解和掌握过程控制理论的基本概念,控制系统的分析方法和设计方法。
2. 学习和掌握系统控制回路的构成和测试技术。
3. 提高应用计算机的能力和水平,这也是应用本实验系统的特色之一。
为提高学生的实验技能,结合配套的工业控制组态软件不仅能进行验证性、研究型实验,又增加了综合性和设计性实验内容。
目的是培养学生用理论知识和实验手段解决科学技术中实际问题的能力。
实验过程中学生可自由组合单元,自主编制程序。
充分发挥学生的主观能动性和创造性,为学生工程实践能力和科学研究能力的提高奠定了基础。
2010年3月30日实验要求1.实验预习:实验前必须认真预习实验指导书及其相关的理论知识,作好充分准备。
对于设计性实验和综合性实验,学生必须在实验前拿出设计方案,以其达到预期的目标,写出预习报告。
让指导老师检查合格的方可进行实验。
2.实验进行:学生进入实验室,要保持室内整洁安静。
按照预习报告进行实验。
实验中需要改接线的,应关掉电源后才能拆、接线。
实验时应注意观察,若发现有异常现象,应立即关掉电源,保持现场并报告指导老师处理。
3.实验数据:实验过程中应仔细观察实验现象,认真记录实验结果、数据、波形。
所记录的实验结果经指导老师审阅后再拆除实验线路。
4.实验报告:要求学生独立完成实验报告,不许抄袭或请人代劳。
报告内容包括实验目的、实验设备、实验内容、实验电路图、实验数据及仿真曲线、实验思考题等。
要求文字书写整齐清洁。
5.未尽事项由实验教师和认课教师协商决定。
目录前言-----------------------------------------------------------------------------------------------1实验要求-----------------------------------------------------------------------------------------------2目录-----------------------------------------------------------------------------------------------3实验一、实验装置的基本操作与仪表调试-----------------------------------------4实验二、智能仪表温度位式控制系统---------------------------------------------------6实验三、单容水箱对象特性的测试----------------------------------------------------10 实验四、单容水箱液位PID控制系统----------------------------------------------14实验五、流量PID控制系统--------------------------------------------------------------17实验六、双容水箱液位PID控制系统--------------------------------------------20实验七、上下水箱液位串级控制系统------------------------------------------------25附录、实验连线参考---------------------------------------------------------------------28实验一、实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。
过程控制系统教案

过程控制系统教案一、教学目标1. 理解过程控制系统的概念及其重要性。
2. 掌握过程控制系统的分类和基本组成。
3. 了解过程控制系统的性能指标和应用领域。
4. 学会使用过程控制系统的基本工具和软件。
二、教学内容1. 过程控制系统的概念及其重要性1.1 定义及作用1.2 过程控制系统与自动控制系统的区别2. 过程控制系统的分类和基本组成2.1 连续过程控制系统2.2 离散过程控制系统2.3 开环控制系统与闭环控制系统2.4 过程控制系统的硬件和软件组成三、教学方法1. 讲授法:讲解过程控制系统的概念、分类和基本组成。
2. 案例分析法:分析实际应用中的过程控制系统案例,加深学生对过程控制系统的理解。
3. 实验法:安排实验室实践,让学生动手操作过程控制系统。
4. 小组讨论法:分组讨论过程控制系统的设计和应用,提高学生的团队协作能力。
四、教学资源1. 教材:过程控制系统相关教材。
2. 课件:制作精美的课件,辅助讲解过程控制系统相关知识。
3. 实验室设备:供学生进行实验操作的过程控制系统设备。
4. 网络资源:查找与过程控制系统相关的视频、案例等资源,用于课堂拓展。
五、教学评价1. 平时成绩:考察学生的课堂表现、发言和作业完成情况。
2. 实验报告:评估学生在实验室实践过程中的操作能力和分析问题能力。
4. 期末考试:设置相关试题,测试学生对过程控制系统的理解和掌握程度。
六、教学安排1. 课时:本课程共计32课时,包括理论讲授16课时,实验操作16课时。
2. 授课计划:第1-8课时:讲解过程控制系统的概念、分类和基本组成。
第9-16课时:分析过程控制系统的性能指标和应用领域。
第17-24课时:学习过程控制系统的设计方法和工具。
第25-32课时:实验室实践和案例分析。
七、教学注意事项1. 确保学生掌握基本概念和原理,避免过于深入的技术细节。
2. 注重理论与实践相结合,让学生在实际操作中巩固知识。
3. 鼓励学生提问和参与讨论,提高课堂互动性。
过程控制系统第1章-过程控制系统概述课件

2.自动化仪表的发展
自动化仪表是一种“信息机器”,其主要功能是信息形式的转换 和表达,将输入信号转换成输出信号。信号可以按时间域或频 率域表达,信号的传输则可调制成连续的模拟量或断续的数字 量形式。自动化仪表的发展一直适应着工业的需要,经历了自 力式、基地式、单元组合式、智能式和总线式几个发展阶段。 按照工作能源的不同,单元组合仪表还可分为电动单元组合仪 表(DDZ)和气动单元组合仪表(QDZ)两大类,它们都经历了Ⅰ型、 Ⅱ型、Ⅲ型3个阶段。智能仪表就是在普通的模拟仪表基础上增 加微处理器电路而形成的仪表。这里所谓的“智能”,是指现场 仪表具有普通模拟仪表拥有的信号变换、补偿、驱动等常规功 能以外,还具有一定的拟人智能的特性或功能,例如自适应、 自学习、自校正、自诊断和自组织等。
6
1.传递函数
图1-13 环节的输入-输出关系
31
2.框图变换 (1)框图的基本元素 (2)框图运算法则 (3)复杂框图的化简及应用
32
2.框图变换
图1-14 简单控制系统框图
33
(1)框图的基本元素 构成控制系统框图的基本元素包括信息、分支点、汇合点和 环节。 1)信息 2)分支点 3)汇合点 4)环节
4
1.控制理论的发展
自动控制理论是研究自动控制共同规律的技术科学,它的发展 初期是以反馈理论为基础的自动调节原理。根据自动控制技术 发展的不同阶段,自动控制理论相应经历了从经典控制理论、 现代控制理论,到控制论、信息论、系统论等学科交叉的若干 发展阶段。 经典控制理论是指在20世纪40年代到50年代末期所形成的理论 体系,它主要是研究单输入单输出(SISO)线性定常系统的分析 和设计,其理论基础是描述系统输入-输出关系的传递函数,解 决SISO系统的稳定性问题。
《过程控制系统》课程教学大纲

《过程控制系统A》课程教学大纲课程代码:0806503028课程名称:过程控制系统A英文名称:Process Control System A总学时:64 讲课学时:56 实验学时:8学分:4适用对象:自动化专业先修课程:自动控制原理、检测技术与自动化仪表、电气控制与PLC、微机原理及应用、计算机控制技术、现场总线技术及应用一、课程性质、目的和任务过程控制系统课程是自动化(工业自动化)专业的一门专业课。
目的是使学生掌握工业过程控制系统的系统结构、工作原理、一般的分析设计方法和基本实验技能。
了解和基本掌握过程控制新技术如现场总线、组态软件、远程监控及先进的控制策略等,培养学生分析问题和解决实际问题的能力,为从事与本专业相关的科学研究和工程技术等工作打下一定的基础。
二、教学基本要求1.掌握过程控制的基本概念、过程控制常用仪表的原理和工程选用。
2.掌握过程对象特性及建模方法。
3.掌握常规过程控制器的设计方法和系统的参数整定方法。
4.基本掌握先进过程控制策略及各种复杂过程控制系统的系统结构、控制方案与工程设计。
5.基本掌握计算机过程控制系统的原理、组成与应用等知识。
并对过程控制新技术如现场总线、组态软件、远程监控等有一个较全面的了解。
三、教学内容及要求(一)概述掌握过程控制系统的组成和特点、过程控制系统的基本类型、过程控制的质量指标,了解过程控制的发展概况。
1.过程控制系统的组成、特点和分类2.过程控制系统的质量指标3.过程控制的发展概况(二)过程装置掌握过程变量检测与变送仪表、过程执行仪表、过程调节(控制)仪表的结构、原理和工程选用,了解其它数字式过程控制装置的发展状况。
1.检测变送器2.执行器3.调节器(三)单回路控制系统的工程设计及实例掌握过程特性及过程特性对控制品质的影响,过程建模;过程控制系统设计的工程概述,控制方案设计,检测、变送器选择,控制器、执行器选择,过程控制系统的投运和控制器参数整定,单回路控制系统工程设计实例。
过程控制系统课件第一章绪论(共67张PPT)

C= y(∞) - r
y
y3
y1
r
Tp
C
y(∞)
T
t
TS
图1.5 闭环控制系统对设定值的阶跃扰动的响应曲线
共六十七页
第三节
过程控制系统的质量指标
2)衰减(shuāi jiǎn)比n和衰减率
ψ
设第一个波振幅
(zhènfú)为 y 、第三个波振幅为 y
1
3
y1y3
1
1
y1
过程
(guòchéng)
控制系统
Process Control System
共六十七页
自动化技术是信息科学与技术的一个重要分支。
过程控制等工程领域自动控制的理论基础是工程控制论,其
奠基性著作是钱学森先生于1954年发表的《工程控制论》。
控制论的四大应用领域:工程控制、生物(shēngwù)控制、经济
y()
y
y3
y1
r
Tp
C
y(∞)
T
t
TS
图1.5 闭环控制系统对设定值的阶跃扰动的响应曲线
共六十七页
第三节
过程(guòchéng)控制系统的质
量指标
4)过渡过程时间Ts
Ts是指从过渡过程开始(kāishǐ)到过渡过程结束所需的
时间。当被控参数与稳态值间的偏差进入稳态值的±5%
(或±2%)范围内,就认为过渡过程结束。
统的控制质量。
共六十七页
y(t )
二、过程控制系统
的分类
(kònɡ zhìxìtǒnɡ)
(二)按给定值信号分类
1.定值控制系统
过程自动控制原理电子教案

实验辨识法建模:利用输入输出实验数 据建立模型。
例2-1 弹簧阻尼系统中,质量为m的物 体受到外力F的作用,产生位移y,求该系 统的输入—输出描述。
d d m y f y ky F 2 dt dt
2
例2-2 机械旋转系统中,转动惯量为J的 圆柱体,在转矩T的作用下产生角位移 θ,求该系统的输入—输出描述。
K 传递函数: G ( S ) C ( S ) / R( s) 2 2 s 2 s 1 单位阶跃响应:
c(t ) 1 e n t 1 2 sin( d t arctg 1 2
)
ξ为阻尼比(0≤ ξ <1)ω为震荡频率。 弹簧阻尼系统、机械旋转系统、RLC电 路
实例分析
液面控制系统(示意图) 造纸机分部传动系统(示意图) 打印轮控制系统(示意图) 运算放大器
第1-2节 自动控制系统的类型
随动系统(伺服系统)、自动调整系统 (恒值调节系统)、程序控制系统 线性系统与非线性系统 连续系统与离散系统 单变量系统与多变量系统 确定系统与不确定系统 集中参数系统与分布参数系统
自动控制理论
(第3版) 夏德钤 翁贻方 编著
机械工业出版社
参考书
《复变函数与积分变换》刘建亚主编 高等教育出版社 2005年 《自动控制原理》(上、下册)黄家英编 东南大学出版社 《过程装备控制技术及应用》 王毅主编 化学工业出版社
第一章 引论
自动控制:采用控制装置使被控对象自 动地按照给定的规律运行,使表征被控 对象的参数能够在一定的精度范围内按 照给定的规律变化。(举例) 第一代控制理论:古典控制理论 第二代控制理论:现代控制理论 第三代控制理论:大系统理论和智能控 制理论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 过程控制的要求与任务
过程控制(Process Control)是指石油、化工、电力、冶金、轻工等工业部门以连续性物流为主要特征的生产过程的自动控制。
➢过程控制的任务:
在充分了解生产过程的工艺流程和动静态特性的基础上,应用控制理论对系统进行分析与综合,以生产过程中物流变化信息量作为被控量,选用适宜的技术手段和自动化装置,达到优质、高产、低耗的控制目标。
➢过程控制的目标:
安全性越限、事过程控制的目标
故报警;连锁保护;故障预测与诊断;容错
稳定性抑制干扰、保持生产过程的稳定运行
经济性低成本、高效益、少能耗
1.2.1 系统组成
电加热器加热水产生一定压力的水蒸汽,并通过上部的输汽管供给用户或下一个工序,为了及时补充因蒸发而不断减少的锅炉水量,在锅炉下部用水泵连续地加入冷水。
由电加热炉控制系统可知,过程控制系统由以下几部分组成:
1.被控过程(或对象);
2.用于生产过程参数检测的检测与变送仪表;
3.控制器;
4.执行机构;
5.报警、保护和连锁等其它部件。
1.2.2 过程控制系统特点
1. 被控过程的多样性
石油化工过程、钢铁生产中的冶炼过程……
被控量的多样性:压力温度流量液位……
不同于运动控制系统。
2. 控制方案的多样性
系统硬件:调节仪表、控制器、执行机构(调节阀)、检测与变送仪表
控制算法:PID控制、复杂控制、先进控制、智能控制等
控制方案结构:单变量控制系统、多变量控制系统、单回路控制、多
回路控制
3. 被控过程属慢过程、多参数控制
连续工业过程大惯性和大滞后决定了被控过程为慢过程
被控量有压力、流量、液位、温度、成分等多个
4. 定值控制
被控参数的设定值为一个定值,减小或消除外界干扰,使被控量尽量保
持接近或等于设定值。
基本要求:稳定性、准确性和快速性
定值控制系统在于恒定,要求克服干扰,使系统的被控参数能稳、准、快地保持接近或等于设定值。
随动(伺服)控制系统的主要目标是跟踪,即稳、准、快地跟踪设定值。
1.衰减比和衰减率
衰减比等于两个相邻同向波峰值之比。
衡量振荡过程衰减程度的指标。
2.最大动态偏差和超调量
最大动态偏差是指在阶跃响应中,被控参数偏离其最终稳态值的最大偏差量,表现在过渡过程开始的第一个波峰(y1)。
最大动态偏差是衡量过程控制系统动态准确性的指标。
超调量为最大动态偏差占被控量稳态值的百分比。
3.余差
余差是指过渡过程结束后,被控量新的稳态值与设定值的差值。
余差是过程控制系统稳态准确性的衡量指标。
4.调节时间ts 和振荡频率β
调节时间ts 是从过渡过程开始到结束的时间。
理论上应该为无限长。
一般认为当被控量进入其稳态值的5%范围内所需时间就是调节时间.
调节时间是过程控制系统快速性的指标。
控制系统的单项品质指标小结
❑ 稳定性 衰减比n = 4:1~10:1最佳
❑ 准确性 余差C 小好
❑ 最大偏差 A 小好
❑ 快速性 过渡时间 Ts 短好
振荡周期 T 短好
31
y y =η)()(∞-=∞y r e
1.4 过程控制的发展与趋势
随着过程控制技术应用范围的扩大和应用层次的深入,以及控制理论与技术的进步和自动化仪表技术的发展,过程控制技术经历了一个由简单到复杂,从低级到高级并日趋完善的过程。
1.4.1 过程控制装置的进展
从系统结构来看,过程控制系统的发展大致经历了以下四个阶段。
1.基地式控制阶段(初级阶段)
20世纪50年代,生产过程自动化主要是凭生产实践经验,局限于一般的控制元件及机电式控制仪器,采用比较笨重的基地式仪表(如自力式温度控制器、就地式液位控制器等),实现生产设备就地分散的局部自动控制。
在设备与设备之间或同一设备中的不同控制系统之间,没有或很少有联系,其功能往往限于单回路控制。
过程控制的目的主要是几种热工参数(如温度、压力、流量及液位)的定值控制,以保证产品质量和产量的稳定。
时至今日,这类控制系统仍没有被淘汰,而且还有了新的发展,但所占的比重大为减少。
2.单元组合仪表自动化阶段
20世纪60年代出现了单元组合仪表组成的控制系统,单元组合仪表有电动和气动两大类。
所谓单元组合,就是把自动控制系统仪表按功能分成若干单元,依据实际控制系统结构的需要进行适当的组合。
因此单元组合仪表使用方便、灵活。
单元组合仪表之间用标准统一信号联系。
气动仪表(QDZ系列)信号为0.02~0.1MPa气压信号。
电动仪表信号为0~10mA直流电流信号(DDZ-II系列)和4~20 mA直流电流信号(DDZ-III系列)。
随着仪表工业的迅速发展,对过程控制对象特性的认识、对仪表及控制系统的设计计算方法等都有了较快的进展。
但从设计构思来看,单元组合仪表过程控制仍处于各控制系统互不关联或关联甚少的定值控制范畴,只是控制的品质有较大的提高。
单元组合仪表已延续50多年,目前国内外还广泛应用,特别是随着单片机技术的发展,出现了很多型号的数显仪表,数显仪表的标准信号既可以为4~20 mA直流电流,也可以为1~5V直流电压。
3.计算机控制的初级阶段
20世纪70年代出现了计算机控制系统,最初是采用单台计算机的直接数字控制系统(DDC)实现集中控制,代替常规的控制仪表。
但由于集中控制的固有
缺陷,未能普及与推广就被集散控制系统(DCS)所替代。
DCS在硬件上将控制回路分散化,数据显示、实时监督等功能集中化,有利于安全平稳生产。
4.综合自动化阶段
20世纪80年代以后出现二级优化控制,在DCS的基础上实现先进控制和优化控制。
在硬件上采用上位机和DCS(或电动单元组合仪表)相结合,构成二级计算机优化控制。
随着计算机及网络技术的发展,DCS出现了开放式系统,实现多层次计算机网络构成的管控一体化系统(CIPS)。
同时,以现场总线为标准,实现以微处理器为基础的现场仪表与控制系统之间进行全数字化、双向和多站通信的现场总线网络控制系统(FCS)。
FCS将对控制系统结构带来革命性变革,开辟控制系统的新纪元。
“计算机集成”指出了它的组成特征,“过程系统”指明了它的工作对象,正好与计算机集成制造系统(CIMS)相对应,有人也称之为过程工业的CIMS。
可以认为,综合自动化是当代工业自动化的主要潮流。
它以整体优化为目标,以计算机为主要技术工具,以生产过程的管理和控制的自动化为主要内容,将各个自动化综合集成为一个整体的系统。
1.5.2 过程控制策略的进展
几十年来,过程控制策略与算法出现了三种类型:简单控制、复杂控制和先进控制。
通常将单回路PID控制称为简单控制,它一直是过程控制的主要手段。
PID 控制以经典控制理论为基础,主要用频域方法对控制系统进行分析设计与综合。
目前,PID控制仍然得到广泛应用。
在许多DCS和PLC系统中,均设有PID控制算法软件,或PID控制模块。
从20世纪50年代开始,过程控制界逐渐发展了串级控制、前馈控制、Smith 预估控制、比值控制、均匀控制、选择性控制和多变量解耦控制等策略与算法,称之为复杂控制。
它们在很大程度上满足了复杂过程工业的一些特殊控制要求。
它们仍然以经典控制理论为基础,但是结构与应用上各有特色,而且目前仍在继续改进与发展。
从20世纪80年代开始,在现代控制理论和人工智能发展的理论基础上,针对工业过程本身的非线性、时变性、耦合性和不确定性等特性,提出了许多行之有效的解决方法,如推理控制、预测控制、自适应控制、模糊控制和神经网络控制等,常统称为先进过程控制。
近十年来,以专家系统、模糊逻辑、神经网络和遗传算法为主要方法的基于知识的智能处理方法已经成为过程控制的一种重要技术。
先进控制方法可以有效地解决那些采用常规控制效果差,甚至无法控制的复杂工业过程的控制问题。
实践证明,先进控制方法能取得更高的控制品质和更大的经济效益,具有广阔的发展前景。