工程材料力学性能-腐蚀
工程材料力学性能每章重要知识点

第一章1.应力-应变曲线(拉伸力-伸长曲线)。
拉伸力在Fe以下阶段,为弹性变形阶段,到达Fa后,试样开始发生塑性变形,最初试样局部区域产生不均匀屈服塑形变形,曲线上出现平台或锯齿,直至C点结束。
继而进入均匀塑形变形阶段。
达到最大拉伸Fb时,试样在此产生不均匀塑形变形,在局部区域产生缩颈。
最终,在拉伸力Fk处,试样断裂。
2.弹性变形现象及指标弹性变形:是可逆性变形,是金属晶格中原子自平衡位置产生可逆位移的反映。
弹性变形指标:①弹性模量,是产生100%弹性变形所需应力。
②弹性比功(弹性比能、应变比能),表示金属吸收弹性变形功的能力。
③滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
④循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
3.塑性变形现象及指标金属材料常见塑性变形方式主要为滑移和孪生。
滑移:金属材料在切应力作用下位错沿滑移面和滑移方向运动而进行切变得过程。
孪生:金属材料在切应力作用下沿特定晶面和特性晶向进行的塑性变形。
塑性变形特点:①各晶粒变形的不同时性和均匀性;②各晶粒变形的相互协调性。
塑性变形指标:⑴屈服强度,屈服强度及金属材料拉伸时,试样在外力不增加(保持恒定)仍能继续伸长时的应力。
屈服现象:金属材料开始产生宏观塑形变形的标志。
屈服现象相关因素:①材料变形前可动位错密度很小;②随塑性变形的发生,位错能快速增殖;③位错的运动速率与外加应力有强烈的依存关系。
屈服现象指标:规定非比例伸长应力;规定残余伸长应力;规定总伸长应力。
影响屈服强度因素:①内在因素:金属本性和晶格类型;晶粒的大小和亚结构;溶质元素;第二相。
②外在因素:温度、应变速率、应力状态。
⑵应变硬化:金属材料阻止继续塑形变形的能力,塑性变形是硬化的原因,硬化是结果。
⑶缩颈:韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,是应变硬化与截面减小共同作用的结果。
抗拉强度:韧性金属试样拉断过程中最大力所对应的应力。
1 金属材料的主要性能解析

27
ak不能直接用于强度方面计算,但可作为鉴
影响ak因素:材料的化学成分、显微组织、试 样的表面质量、热处理工艺以及试验温度等。
2018/10/5
动画 冲击试验
27
Titanic沉没原因
——含硫高的钢板, 韧性很差,特别是在低温 呈脆性。所以,冲击试样 是典型的脆性断口。近代 船用钢板的冲击试样则具 有相当好的韧性。
一、金属材料的主要性能
2018/10/5
1
金属材料具有许多的可贵的性能,一般分为两大类:
使用性能
力学性能 物理性能 化学性能
工程材料的性能
铸造性能 可锻性能 工艺性能 可焊性能 切削加工性能 热处理性工艺性
2
2018/10/5
金属材料的主要性能
1.使用性能 ――反映金属材料在使用过程中所表现出的特性。
包括: 力学性能: (强度、塑性、硬度、韧性、疲劳强度等) 物理性能: (密度、熔点、热膨胀性、导热性、导电性、 磁性等) 化学性能: (抗大气、海水及其它介质腐蚀、抗高温氧化等
2. 工艺性能 ――反映金属材料在加工制造过程中所表现出来的特性。
包括:铸造特性、压力加工特性、焊接特性、热处理特性、切削加工 特性等。 在选择和应用金属材料时,一般无特殊要求时,首先考虑金属材料的 使用性能,而在使用性能中,又主要以力学性能(机械性能)为主,因 此作为本章讨论的重点。
Titanic
一项新的科学研究回答了80年未解之谜
Titanic 号钢板(左图)和近代船用钢板(右图)的冲击试验结果
2018/10/5 28
金属材料的主要性能—疲劳强度
28
4、疲劳强度σr,N(交变载荷)
定义: 表示材料经无数次交变载荷作用而不致引起断裂的最大应力值。 承受载荷的大小和方同随时间作周期性变化,交变应力作用下,往往 在远小于强度极限,甚至小于屈服极限的应力下发生断裂。 钢材的循环次数一般取 N = 107;有色金属的循环次数一般取 N = 108 钢材的疲劳强度与抗拉强度之间的关系:σ-1 = (0.45~0.55)σb
第1章 工程 材料的种类和力学性能

传统的无机非金属材料 之一:陶瓷
陶瓷按其概念和用途不同 ,可分为两大类,即普通陶瓷 和特种陶瓷。
根据陶瓷坯体结构及其基 本物理性能的差异,陶瓷制品 可分为陶器和瓷器。
陶瓷制品
陶瓷发动机
• 普通陶瓷即传统陶瓷,是指以粘土为主要原料与其它天然矿物原料经过 粉碎混练、成型、煅烧等过程而制成的各种制品。包括日用陶瓷、卫生 陶瓷、建筑陶瓷、化工陶瓷、电瓷以及其它工业用陶瓷。
材料的强度、塑性指标是通过拉伸实验 测定的。
应力 σ=F/S0
σ (N /m2) ;
F —作用力,(N) S0—试样原始截面 积(m2)。
剪应力τ=F/SO
材料单位面积上的内力称为应力(Pa),以
σ表示。
应变ε(%) ⊿L—试样标距部分伸长量,(mm);
L0 —试样标距部分长度(mm)。ε=⊿L/L0
根据用途不同,特种玻璃分为防辐射玻璃、激光玻璃、 生物玻璃、多孔玻璃、非线性光学玻璃和光纤玻璃等。
传统的无机非金属材料 之三:水泥
水泥是指加入适量水 后可成塑性浆体,既能在 空气中硬化又能在水中硬 化,并能够将砂、石等材 料牢固地胶结在一起的细 粉状水硬性材料。
水泥的种类很多,按其用途和性能可分为: 通用水泥、专用水泥和特性水泥三大类;按其所 含的主要水硬性矿物,水泥又可分为硅酸盐水泥 、铝酸盐水泥、硫铝酸盐水泥、氟铝酸盐水泥以 及以工业废渣和地方材料为主要组分的水泥。目 前水泥品种已达一百多种。
l lO
ll lO
lO lO
l
100lO% lO
100%
剪应变 γ 剪模量 G
a h
tan
且有 G
• 弹性变形 形①的弹外性力变撤形除:后当,产变生形变随σ 即消失。
工程材料力学性能(束德林)-第三版-课后题答案

工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为 b 的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生 100%弹性变所需的应力。
(2)σr 规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。
塑性:指金属材料断裂前发生塑性变形的能力。
脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。
韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。
应力、应变;真应力,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。
用肉眼或放大镜观察时,断口呈纤维状,灰暗色。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。
其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
板状矩形拉伸试样断口呈人字形花样。
人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。
缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。
材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。
在某些合金中,增强效果随合金元素含量的增加而下降。
材料的晶粒变粗,增强效果提高。
第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
工程材料 第一章 材料的性能及应用意义

5. 硬度能较敏感地反映材料的成分与组织结构的变化,可用来检验原材料和 控制冷热加工质量。
2020/12/11
一、力学性能
§1.2 材料的使用性能
硬度测试方法:
1. 布氏硬度 GB231-1984 2. 洛氏硬度 GB230-1991 3. 维氏硬度 GB4342-1984
2)磨粒磨损:是指滑动摩擦时,在零件表面摩擦区内存在硬质磨粒, 使磨面发生局部塑性变形、磨料嵌入和被磨料切割等过程,以致磨面材 料逐步磨耗。
2020/12/11
一、力学性能
§1.2 材料的使用性能
粘着磨损示意图
2020/12/11
粘着磨损磨痕
一、力学性能
§1.2 材料的使用性能
磨粒磨损示意图
2020/12/11
§1.2 材料的使用性能
2020/12/11
一、力学性能
§1.2 材料的使用性能
2020/12/11
一、力学性能
§1.2 材料的使用性能
(六)韧性——材料在塑性变形和断裂的全过程中吸收能量的能 力,它是材料强度和塑性的综合表现。
韧性不足可用脆性来表达。 韧性高低决定是韧性断裂,还是脆性断裂。
2020/12/11
2020/12/11
§1.3 材料的工艺性能
金属材料零件的一般加工过程
2020/12/11
§1.3 材料的工艺性能
1. 铸造性能:包括流动性、收缩、疏松、成分偏析、铸造应力、冷热裂纹倾向。 2. 锻造性能:通常用材料的塑性和强度及形变强化能力来综合衡量。 3. 焊接性能:包括焊接接头产生缺陷的倾向性和焊接接头的使用可靠性。 4. 切削加工性能:一般用材料的切削的难易程度、切削后表面粗糙度和刀具寿 命等方面来衡量。 5. 热处理性能:包括淬透性、淬硬性、耐回火性、氧化与脱碳倾向及热处理变 形与开裂倾向。
工程材料力学性能

TEM微观形貌(疲劳辉纹), 显示疲劳断口光亮区裂纹缓 慢扩展过程
疲劳断裂实例
硬度
硬度——衡量材料软硬程度的性能指标,分压入法和刻划法两类 压入法硬度表征材料弹性、微量塑性变形抗力及形变强化能力等,常用的有布氏 硬度(HB)、洛氏硬度(HRA、HRB、HRC)和维氏硬度(HV)。 数值
HB P 0.204P F D ( D D 2 d 2 )
e de dl l ln ln(1 ) l0 l l0
l
S Ke n
其中,S为真应力,e为真应变,K为常数,n——形变强 化指数。 一些金属材料的形变强化指数 材料 n Al ~0.15 -Fe ~ 0.2 Cu ~ 0.30 18-8不锈钢 ~ 0.45
金属压力加工
硬度测试的优点:
制样简单,设备便宜;
基本上是非破坏性; 可大致预测其它一些力学性能。
冲击韧性
冲击韧性——表征材料抵抗冲击载荷的能力。 指标:冲击韧性(冲击值)KU( KV )
mg (h h) KU ( KV ) J/cm2 A • 冲击试验标准试样: • U型缺口(梅氏试样) • V型缺口(夏氏试样)
670℃加热(完全再结晶)
750℃加热(晶粒长大)
屈服强度——条件屈服强度
屈服强度s——材料开始产生塑性变形时的应力
条件屈服强度s:
产生0.2%残余变形
时的应力值
屈服强度
s
低碳钢的拉伸应力-应变曲线 以下屈服点的屈服应力为屈服强度
抗拉强度、断裂强度
抗拉强度(强度极限,UTS)
b——试样断裂前承受的最
c s cos cos
c称为晶体的临界分切应力,其数值取决于材料的本性、温
工程材料及其性能指标

1.2 材料的力学性能
• (2)试验条件及应用根据压头的种类和总载荷的大小,洛氏硬度常用 的表示方式有HRA , HRB , HRC三种,见表1 -2,其中以HRC应用最 广,如洛氏硬度表示为62 HRC表示用金刚石圆锥压头,总载荷为1 471 N测得的洛氏硬度值
• (2)优缺点洛氏硬度测定设备简单,操作迅速方便,可用来测定各种 金属材料的硬度。测定仅产生很小的压痕,并不损坏零件,因而适合 于成品检验,但测一点无代表性,不准确,需多点测量,然后取平均 值
下一页 返回
1.2 材料的力学性能
• 2.内力与内应力 • 材料受外力作用时,为保持自身形状尺寸不变,在材料内部作用着
与外力相对抗的力,称为内力。内力的大小与外力相等,方向则与外 力相反,和外力保持平衡。单位面积上的内力称为应力。 • 3.载荷下的变形 • (1)弹性变形材料在载荷作用下发生变形,而当载荷卸除后,变形也 完全消失。这种随载荷的卸除而消失的变形称为弹性变形。 • (2)塑性变形当作用在材料上的载荷超过某一限度,此时若卸除载荷, 大部分变形随之消失(弹性变形部分),但还留下了不能消失的部分变 形,称为塑性变形,也称永久变形。 • 4.常用的力学性能指标 • 金属材料的力学性能是指材料在各种载荷作用下表现出来的抵抗变 形和断裂的能力。常用的力学性能指标有:强度、塑性、硬度、韧性 及疲劳强度等,另外还有粘弹性指标,它们是衡量材料性能和决定材 料应用范围的重要指标。
• 式中 бb—抗拉强度,MPa ;
•
Fb—试样在断裂前所受的最大外力,N;
• S0—试样原始截面积,mm2
• бs/бb的值称为屈强比。屈强比越小,工程构件的可靠性越高,也就
是万一超载也不致于马上断裂。但屈强比小,材料强度有效利用率也