2020中考数学 计算基础专题练习(含答案)
2020年中考数学专题训练-疫情专题03(有答案解析)

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25, ≈1.73)
(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?
(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了 ,销量比第一周增加了 ,医用酒精的售价保持不变,销量比第一周增加了 ,结果口罩和医用酒精第二周的总销售额比第一周增加了 ,求 的值.
10.今年年初,我国爆发新冠肺炎疫情,某省邻近县市C、D获知A、B两市分别急需救援物资200吨和300吨的消息后,决定调运物资支援.已知C市有救援物资240吨,D市有救援物资260吨,现将这些救援物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往A市的救援物资为x吨.
参考答案
1.A
【解析】
【分析】
将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.
【详解】
将三个小区分别记为A、B、C,根据题意列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
2020中考数学一轮复习基础达标训练题:代数式2(附答案)

2020中考数学一轮复习基础达标训练题:代数式2(附答案)1.下列运算中,正确的是( )A .235325x x x +=B .336x x x ⋅=C .235()x x =D .33()ab a b = 2.已知:当x=2时,多项式x 4﹣bx 2+c 的值为2016,当x=﹣2时,多项式x 4﹣bx 2+c 的值为( )A .-2016B .-2015C .2016D .20153.计算(-a)3·(-a)2的结果是( )A .a 5B .-a 5C .a 6D .-a 64.下列运算中,正确的是 ( )A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy = 5.下列各式能用平方差公式计算的 ( )A .(-3a -b )(-3a +b )B .(-3a +b )(3a -b )C .(3a +b )(-3a -b )D .(3a +b )(a -b ) 6.3n .(-9).3n +2的计算结果是 ( )A .-32n -2B .-3n +4C .-32n +4D .-3n +67.某工厂第一年生产b 件产品,第二年比第一年增产了30%,则第二年生产产品的件数为( )A .0.3bB .bC .1.3bD .2.3b8.下列计算正确的是( )A .3a +2b =5abB .4m 2n -2mn 2 =2mnC .5y 2 -3y 2 =2D .-12x +7x =-5x9.计算()24a a -∙的值为( )A .6aB .-6aC .-8aD .8a 10.已知2223,21A a a B a a =-=--,当4a =-时,A B -等于( )A .8B .9C .-9D .-711.计算:2299.3100.7(100______)(100______)__________________⨯=-+=-=.12.若a 、b 互为倒数,c 、d 互为相反数,则223c d ab +-()=_______13.计算:()()2a b b a --=_____(结果用幂的形式表示).14.若710x y -与415m x y -是同类项,则m 的值为_______.15.___________·3ab 2c=-18a 3b 7c ;计算a (a -b )+b (a-b )=_________.16.已知x 2-y 2=-5,则代数式(x+y)3•(x -y)3的值为_______.17.计算:(-a)5÷(-a)=_________.18.如下一组数:13715--591733,,,,请用你发现的规律,猜想第2018个数为_______. 19.若x =2m ,则将y =1+4m +1,则用含x 的代数式表示y 为______________________. 20.计算x 7÷x 4的结果为________.21.同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x 与3的两点之间的距离可以表示为 .(2)如果|x ﹣3|=5,则x= .(3)同理|x+2|+|x ﹣1|表示数轴上有理数x 所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数x ,使得|x+2|+|x ﹣1|=3,这样的整数是 .(4)由以上探索猜想对于任何有理数x ,|x+3|+|x ﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.22.已知代数式533ax bx x c +++,当0x =时,该代数式的值为-1.(1)求c 的值。
2020年中考数学基础小卷速测(二) 代数式的化简和求值(含答案)

2020年中考数学基础小卷速测(二) 代数式的化简及求值(含答案)一、选择题1.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2·3ab 3=-3a 2b 5C .ba b -+ab a -=-1 D .21a a -·11a +=-12.计算:2225631x x x x x x -+-÷-+,其结果是( )A .(1)2x x x --B .(2)1x xx -- C .2(1)x x x -- D .1(2)x x x --3.当x =2时,多项式ax 5+bx 3+cx -10的值为7,则当x =-2时,这个多项式的值是() A .-3 B .-27 C .-7 D .74.当a =14,b =198时,式子6a 2-2ab -2(3a 2-12ab )的值是( )A .-17 B .17 C .-7 D .75.若x 2+4x -4=0,则3(x -2)2-6(x -1)(x +1)的值为( )A .-6B .6C .18D .306.若a +b +c =0,则111111()()()a b c b c c a a b +++++的值等于( )A .0B .1C .-1D .-37.已知多项式ax +3与bx 2-6x +9的乘积中不含x 2与x 的项,则a 、b 的值为( )A .a =2,b =0B .a =1,b =1C .a =0,b =0D .a =2,b =48.若代数式11x --x 的取值范围是( )A.1x ≠B.0x ≥C.0x ≠D.01x x ≥≠且9.下列运算正确的是( )= B.326b b b ⋅= C.495a a -=- D.()3236ab a b =10.函数y =x 的取值范围是( )A . 2x >B .2x ≥C .2x ≤D .2x ≠11. )A.B C . D12. )二、填空题13.若(2a+3b)2=(2a-3b)2+A,则A=______.14.计算:(m-2n+3)(m+2n-3)=________.15.化简:(23aa-+93a-)÷3aa+=______.16.已知x2+x-5=0,则代数式(x-1)2-x(x-3)+(x+2)(x-2)的值为______.17.若1(21)(21)n n-+=2121a bn n+-+,对任意自然数n都成立,则a=______,b=______;计算:m=113⨯+1 35⨯+157⨯+…+11921⨯=______.三、解答题18.已知x,y满足方程组52,25 1.x yx y-=-⎧⎨+=-⎩①②求代数式(x-y)2-(x+2y)(x-2y)的值.19.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y.20.先化简,再求值:(a+1-451aa--)÷(11a--22a a-),其中a=-1.21.先化简(22221x xx+--2221x xx x--+)÷1xx+,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于-1吗?为什么?参考答案1.C2.B3.B[解析]依题意,得25a+23b+2c-10=7.即25a+23b+2c=17.当x=-2时,原式=-25a-23b-2c-10=-(25a+23b+2c)-10=-17-10=-27.故选B.4.A[解析]原式=6a2-2ab-6a2+ab=-ab.当a=14,b=198时,原式=-14×198=-17.故选A.5.B[解析]原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12-6x2+6=-3x2-12x+18=-3(x2+4x)+18.∵x2+4x-4=0,∴x2+4x=4.原式=-3×4+18=6.故选B.6.D [解析]原式=a cb++a bc++b ca+=bb-+cc-+aa-=-37.D [解析](ax+3)(bx2-6x+9)=abx3-6ax2+9ax+3bx2-18x+27=abx3-(6a-3b)x2+(9a-18)x+27.依题意可得630,9180.a ba-=⎧⎨-=⎩解得2,4.ab=⎧⎨=⎩8.D9.D10.C11.B12.C13.24ab14.m2-4n2+12n-915.a[解析]原式=(23aa--93a-)÷3aa+=293aa--÷3aa+=(a+3)·3aa+=a.16.2[解析]原式=x2-2x+1-x2+3x+x2-4=x2+x-3.因为x2+x-5=0,所以x2+x=5.所以原式=5-3=2.17.12,-12;1021[解析]∵1(21)(21)n n-+=2121a bn n+-+=(21)(21)(21)(21)a nb nn n++--+=2()()(21)(21)a b n a bn n++--+,∴对任意自然数n,等式2(a+b)n+a-b=1都成立.∴0,1.a ba b+=⎧⎨-=⎩解得a=12,b=-12.∴m=12(1-13+13-15+…+119-121)=12(1-121)=1021.18.解:原式=x2-2xy+y2-x2+4y2=-2xy+5y2.①+②得:3x =-3,即x =-1.把x =-1代入①,求得y =15. 所以原式=-2×(-1)×15+5×(15)2 =25+15=35. 19.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y 时,原式=-1+1=0. 20.解:原式=21(45)1a a a ----÷2(1)a a a --=2(2)1a a --·(1)2a a a --=a 2-2a .当a =-1时,原式=(-1)2-2×(-1)=3.21.解:(1)原式=[2(1)(1)(1)x x x x +-+-2(1)(1)x x x --]•1x x + =(21x x --1x x -)•1x x + =1x x -•1x x + =11x x +-. 当x =3时,原式=3131+-=2; (2)如果11x x +-=-1,那么x +1=-x +1. 解得x =0.当x =0时,除式1x x +=0,原式无意义. 故原代数式的值不能等于-1.。
2020年中考数学专题训练-疫情专题01(有答案解析)

A. B. C. D.
11.据环球报报道:中央应对新冠肺炎疫情工作领导小组3月23日明确,当前以武汉为主战场的全国本土疫情传播基本阻断.过去两个多月,中国为防控疫情做出的巨大努力有目共睹,受到了世卫组织和国际权威公共卫生专家的称赞.其他一些国家也在寻求借鉴中国的经验和防控措施.截止报道前,海外累计确诊病例约295000人次.将295000用科学记数法表示应为()
C.从图2在2月6日新增病例出现下降,可以估计2月6日后全国新型冠状病毒肺炎累计确诊病例的单日增长率会低于10%.
D.从表1可看出确诊病例较多的省市大部分都是在湖北周围,很大原因是由于携带病毒的流动人口造成的,所以控制疫情的有效手段是在家隔离,同时也可以推断在新疆和甘肃等西北地区疫情相对缓和.
8.2020年我国爆发“新冠肺炎”疫情,在党中央的坚强领导下,全国上下,众志成城,抗击疫情,截止2020年2月20号,累计确诊70637例,把数70637用科学记数法表示为( )
金额/元
5
10
20
50
100
人数
6
17
14
8
5
则他们捐款金额的平均数和中位数分别是()
A. B. C. D.
7.全国人民每天都很关心新型冠状病毒感染肺炎的全国疫情和湖北疫情,下面是2020年2月7日小明在网上看到的2020年2月6日有关全国和武汉的疫情统计图表:
图1全国疫情趋势图
图2新增确诊病例趋势图
故选:D.
【点睛】
本题考查的知识点是用科学记数法表示较大的数,需要注意的是当原数的绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
2020中考数学专题练习:平行四边形(解析版)

2020中考数学专题练习:平行四边形(解析版)【例题1】如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE 的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.【例题2】如图,在?ABCD中,点O是边BC的中点,连接DO并延长,交AB 延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.【例题3】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.【例题4】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式,=,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF∽△DNE,得出=,再由三角函数定义即可得出答案;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),求出AF=4+MF=﹣t+,得出G(,t),求出直线AD的解析式为y=﹣x+6,把G(,t)代入即可求出t的值;②当点E越过中点之后,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),求出AF=4﹣MF=﹣t+,得出G(,t),代入直线AD的解析式y=﹣x+6求出t的值即可.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或巩固练习一、选择题:1.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.18【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=22.故选:C.【点评】本题考查平行四边形的性质、等腰三角形的判定;根据题意判断出AB=BE是解答本题的关键.2.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠EAC,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.3.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.4.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=,∠EAF=135°,则下列结论正确的是()A.DE=1 B.tan∠AFO=C.AF=D.四边形AFCE的面积为【分析】根据正方形的性质求出AO的长,用勾股定理求出EO的长,然后由∠MAN=135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF 的长,再一一计算即可判断.【解答】解:∵四边形ABCD是正方形,∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,∴OD=OB=OA=,∠ABF=∠ADE=135°,在Rt△AEO中,EO===,∴DE=,故A错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AED=45°,∴∠BAF=∠AED,∴△ABF∽△EDA,∴=,∴=,∴BF=,在Rt△AOF中,AF===,故C正确,tan∠AFO===,故B错误,∴S四边形AECF=?AC?EF=××=,故D错误,故选C.5.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.二、填空题:6.如图,在?ABCD中,对角线AC、BD相交于点O,点E是AB的中点,OE=5cm,则AD的长是10cm.【分析】根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD 的中位线,则AD=2OE,继而求出答案.【解答】解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABD的中位线,∴AD=2OE,∵OE=5cm,∴AD=10cm.故答案为:10.7.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E 重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.8.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为4或2.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB=BD=3,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2;故答案为:4或2.9. 如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为10﹣10cm.【分析】分三种情形讨论①若以边BC为底.②若以边PB为底.③若以边PC 为底.分别求出PD的最小值,即可判断.【解答】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC 相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为10﹣10;③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC 上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为10﹣10(cm);故答案为:10﹣1.10.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是①②③(填序号)【分析】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【解答】解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2,故③正确.故答案为:①②③.三、解答题:1.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6,.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求?ABCD的面积.【分析】(1)由已知条件易证△AOD≌△COB,由此可得OD=OB,进而可证明四边形ABCD是平行四边形;(2)由(1)和已知条件可证明四边形ABCD是菱形,由菱形的面积公式即可得解.【解答】解:(1)∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴?ABCD的面积=AC?BD=24.2.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS 证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.3.如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由光杆司令求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x ﹣x2=﹣(x﹣2)2+1,由二次函数的最大值求出AE的最大值为1,得出MN 的最大值=即可.【解答】(1)解:∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=;故答案为:;(2)①证明:∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②解:连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==4,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=2,即点O经过的路径长为2;(3)解:设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE=x﹣x2=﹣(x﹣2)2+1,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.4.【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N 分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形PQMN=PQ?PN═﹣(x﹣)2+,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S矩形PQMN=PQ?PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,∴当PQ=时,S矩形PQMN最大值为,故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG?BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC?EH=1944cm2,答:该矩形的面积为1944cm2.。
2020中考数学三轮复习专题训练:方程应用题(含解析)

2020中考数学三轮复习专题训练:方程应用题1.某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?解:(1)设B口罩的单价为x元/个,则A口罩单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,则1.2x=3.答:A口罩单价为3元/个,B口罩单价为2.5元/个.(2)设购进A口罩m个,则购进B口罩(2600﹣m)个,依题意,得:3m+2.5(2600﹣m)≤7000,解得:m≤1000.答:A种口罩最多能购进1000个.2.为美化校园,某校需补栽甲、乙两种花苗.经咨询,每株甲种花苗比每株乙种花苗贵5元.已知购买相同数量的甲、乙两种花苗,所用费用分别是100元、50元.求甲、乙两种花苗的单价.解:设乙种花苗的单价为x元,则甲种花苗的单价为(x+5)元.由题意可列方程,解得x=5.经检验,x=5是原分式方程的解,x+5=10.答:甲种花苗的单价为10元、乙种花苗的单价为5元.3.某手机店老板到电子批发市场选购A、B两种型号的手机,A型手机比B型手机每套进价高200元,同样用6000元采购A型、B型手机时,B型手机比A型手机多1台.(1)求A、B两种手机进价分别为多少元?(2)该A型手机每台售价为1800元,B型手机每台售价为1500元,手机店老板决定,购进B型手机的数量比购进A型手机的数量的2倍少3台,两种手机全部售完后,总获利超过12800元,问最少购进A型手机多少台?解:(1)设A型手机进价为x元,则B型手机进价为(x﹣200)元,由题意得:+1=解得:x1=1200,x2=﹣1000(不合题意,舍去),经检验:x=1200是原分式方程的解,x﹣200=1200﹣200=1000,答:A、B两种手机进价分别为1200元、1000元;(2)设购进A型手机a台,则购进B型手机(2a﹣3)台,由题意得:(1800﹣1200)a+(1500﹣1000)(2a﹣3)>12800,解得:a>10,答:至少购进A型手机的数量是11台.4.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?解:(1)按原计划完成总任务的时,已抢修道路为1800×=600(米),答:按原计划完成总任务的时,已修建道路600米;(2)设原计划每小时抢修道路x米,根据题意得:+=10,解得:x=140,经检验:x=140是原方程的解.答:原计划每小时抢修道路140米.5.随着云南旅游业的飞速发展,西双版纳原生态的村寨生活、节日活动、民俗仪式深深吸引了很多游客前来观赏.小明和小张假期从昆明去西双版纳游玩,昆明到西双版纳的乘车距离约为540km,小明开小轿车自驾游,小张乘坐大巴车,小明比小张晚出发3小时,最后两车同时到达西双版纳.已知小轿车的速度是大巴车速度的1.5倍.那么小轿车和大巴车的速度各是多少?解:设大巴车的速度为x千米/小时,则小轿车的速度为1.5x千米/小时,依题意,得:﹣=3,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1.5x=90.答:小轿车的速度为90千米/小时,大巴车的速度为60千米/小时.6.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.解:设买鹅的人数有x人,则这头鹅价格为(9x﹣11)文,根据题意得:9x﹣11=6x+16,解得:x=9,价格为:9×9﹣11=70(文),答:买鹅的人数有9人,鹅的价格为70文.7.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.8.滴滴快车是一种便捷的出行工具,计价规则如表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里加收0.8元.小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y 分钟.(1)则小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的少2分钟,问他俩谁先出发?先出发多少分钟?解:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x﹣y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:=﹣2,解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为=3(分钟),∴小明比小亮先出发,先出发的时间=15﹣6﹣3=6(分钟),答:明比小亮先出发,先出发6分钟.9.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,由题意得:10(x+1)×0.85=10x﹣17.解得:x=17;答:小明原计划购买文具袋17个;(2)设小明可购买钢笔y支,则购买签字笔(50﹣y)支,由题意得:[8y+6(50﹣y)]×80%=272,解得:y=20,则:50﹣x=30.答:小明购买了钢笔20支,签字笔30支.10.某工地有72m2的墙面需要粉刷.若安排4名一级技工粉刷若干天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完.已知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.(1)每名二级技工一天粉刷墙面(x﹣3)m2(用含x的式子表示);(2)求每名一级技工、二级技工一天分别能粉刷多少m2墙面?(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少需要 5 名二级技工(直接写出结果).解:(1)由题意得,每名二级技工一天粉刷墙面(x﹣3)m2;故答案为:(x﹣3)(2)依题意列方程:=;解得x=15,经检验x=15是原方程的解,即每名一级技工和二级技工一天分别能粉刷15m2、12m2墙面;(3)设需要m名一级技工,需要n名二级技工,根据题意得,,解得:n≥5,答:至少需要5名二级技工,故答案为:5.11.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.12.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.13.进人冬季,空调再次迎来销售旺季,某商场用75000元购进一批空调,该空调供不应求,商家又用135000元购进第二批这种空调,所购数量比第一批购进数量多15台,但单价是第一批的1.2倍.(1)该商场购进第一批空调的单价多少元?(2)若两批空调按相同的标价出售,春节将近,还剩下15台空调未出售,为减少库存回笼资金,商家决定最后的15台空调按九折出售,如果两批空调全部售完利润率不低于40%(不考虑其他因素),那么每件空调的标价至少多少元?解:(1)设商场购进第一批空调的单价是x元,根据题意得:1.2x(+15)=135000,解得:x=2500,经检验,x=2500是原方程的解,答:商场购进第一批空调的单价是2500元,(2)设每件空调的标价y元,第一批空调的数量为:=30(台),第二批空调的数量为:30+15=45(台),这两批空调的数量为:30+45=75(台),根据题意得:(75﹣15)y+15×90%y﹣75000﹣135000≥(75000+135000)×40%,解得:y≥4000,答:每件空调的标价至少4000元.14.为支援困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共1000件,且总费用不超过28000元,则最多购买B型学习用品多少件?解:(1)设A型学习用品的单价为x元,则B型学习用品的单价为(x+10)元,由题意得:=,解得:x=20,经检验x=20是原分式方程的根,且符合实际,则x+10=30.答:A型学习用品的单价为20元,B型学习用品的单价为30元.(2)设购买B型学习用品y件,则购买A型学习用品(1000﹣y)件,由题意得:20(1000﹣y)+30y≤28000,解得:y≤800.答:最多购买B型学习用品800件.15.为准备趣味跳绳比赛,王老师花100元买了若干条跳绳,已知商店里的跳绳规格与价格如下表:规格A型B型C型跳绳长度(米) 4 8 12价格(元/条) 4 6 9(1)若购买了三种跳绳,其中B型跳绳和C型跳绳的条数同样多,且所有跳绳的总长度为120米,求购买A型跳绳的条数;(2)若购买的A型跳绳有13条,则购买的所有跳绳的总长度为多少米?解:(1)设购买的A型跳绳x条,B型跳绳和C型跳绳的条数为y条,可得:,可得:,答:购买A型跳绳的条数为10条;(2)当购买的A型跳绳有13条,设B型跳绳和C型跳绳的条数为a条,可得:,解得:a≤3.2,∵a>0,且为整数,∴a=3最大,所以购买的所有跳绳的总长度为13×4+8×3+12×3=112.答:购买的所有跳绳的总长度为112米.16.一个两位自然数,其个位数字大于十位数字.现将其个位数字与十位数字调换位置,得到一个新数,且原数与新数的平均数为33.(1)求原数的最小值;(2)若原数的平方与新数的差为534,求原数与新数之积.解:(1)设原两位数的个位数字为x,十位数字为y,(x>y),则原两位数是(10y+x),新两位数为(10x+y),根据题意得,(10y+x)+(10x+y)=33×2,∴x+y=6,∵x、y均为正整数,x>y,∴x=5,y=1或x=4,y=2,∴原数的最小值15;(2)由(1)知,原数与新数可能为15与51,或24与42,∵242﹣42=534,∴24×42=1008.17.小叶爸爸开了一家茶叶专卖店,包装设计专业华业的小叶为他爸设计了一款用长方形厚纸片(厚度不计)做长方体茶叶包装盒(如图),阴影部分是栽剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小叶用长40cm,宽34cm的长方形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?((2)小叶爸爸的茶叶专卖店以每盒150元购进批茶叶,按进价增加20%作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小叶的包装后,马上售完了余下的茶叶,但成不增如了每盒5元,售价仍不变,已知在整个买卖过程中共盈利1500元,求这批茶叶共进了多少盒?解:(1)设“接口”宽度为xcm,盒底边长为ycm,由题意得:,解得.∴8×2.5=20cm,20×8×8=1280cm3答:该茶叶盒的容积是1280cm3.(2)设第一个月销售了m盒茶叶,第二个月销售了n盒茶叶,由题意得:150×20%×m+(150×20%﹣5)n=1500,化简得:6m+5n=300.∵m、n为正整数,由上式知m为5的倍数,且m<n<2m,∴或,∴m+n=56或55盒.答:这批茶叶共进了56或55盒.18.美术小组共有30名同学,准备到文具店购买铅笔和橡皮.如果全组每人各买2枝铅笔和1块橡皮,那么需按零售价购买,共支付60元;如果全组每人各买3枝铅笔和2块橡皮,那么可按批发价购买,共支付81元.已知1枝铅笔的批发价比零售价低0.1元,1块橡皮的批发价比零售价低0.2元.这家文具店的铅笔和橡皮的批发价各是多少?解:设铅笔批发价是x元,橡皮的批发价是y元,则铅笔零售价是(x+0.1)元,橡皮的零售价是(y+0.2)元,由题意可得:解得:答:铅笔批发价是0.5元,橡皮的批发价是0.6元.19.期中考试即将结束,为了表彰优秀,李老师用W元钱购买奖品,若以3支钢笔和4本笔记本为一份奖品,则可买60份奖品;若以4支钢笔和7本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x;(2)若用这W元钱全部购买笔记本,总共可以买几本?(3)若李老师用这钱恰好买75份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a,b的值.解:(1)依题意,得:60×(3x+4y)=40×(4x+7y),∴x=2y.(2)60×(3x+4y)÷y=60×(3×2y+4y)÷y=600.答:总共可以买600本.(3)依题意,得:75×(ax+by)=60×(3x+4y),∴b=8﹣2a.∵a,b均为正整数,∴,,.20.为了“迎国庆,向祖国母亲献礼”,某建筑公司承建了修筑一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费126000元;如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.(1)甲、乙两队单独完成此项工程,各需多少天?(2)为了尽快完成这项工程任务,甲、乙两队通过技术革新提高了速度,同时,甲队每天的施工费提高了a%,乙队每天的施工费提高了2a%,已知两队合作12天后,由甲队再单独做2天就完成了这项工程任务,且所需施工费比计划少了21200元.①分别求出甲、乙两队每天的施工费用;②求a的值.解:(1)设甲公司单独完成此项工程需x天,根据题意可得:,解得:x=30,检验,知x=30符合题意,∴1.5x=45,答:甲公司单独完成此项工程需30天,乙公司单独完成此项工程需45天;(2)①设甲公司技术革新前每天的施工费用是y元,那么乙公司技术革新前每天的施工费用是(y﹣1000)元,则由题意可得:(y+y﹣1000)×18=126000,解得:y=4000,∴y﹣1000=3000,答:技术革新前,甲公司每天的施工费用是4000元,乙公司每天的施工费用是3000元;②4000×14×(1+a%)+3000×12×(1+2a%)=126000﹣21200,解得:a=10.答:a的值是10.。
2020中考数学一轮复习基础达标训练题1:实数(附答案)
2020中考数学一轮复习基础达标训练题1:实数(附答案)1.下面计算正确的是( )A 4=±B .–3÷3×3=–3C .–3–3=0D .1331-÷=2.若定义运算a ⊗b =|2a –b |,则2⊗[(–5)⊗(–7)]的值是( )A .1B .7C .13D .253.下列说法中:①一个数的算术平方根一定是正数;②100的算术平方根是10,记为=10;③(-6)2的算术平方根是6;④a 2的算术平方根是a.正确的有( )A .1个B .2个C .3个D .4个4.在3,0,﹣2 )A .3B .0C .﹣2 D5.25的平方根是( )A .5B .-5C .±5D .6.无理数﹣3在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.在实数3,14159 2.010010001(1与1之间依次多一个0),π,227中,无理数有( )A .1个B .2个C .3个D .4个8.化简A .5-B .1C .D .19.春节晚会上,电工师傅在礼堂四周挂了一圈只有绿、黄、蓝、红四种颜色的小彩灯,其排列规律为:绿黄黄红蓝红红绿黄黄红蓝红红绿黄黄红蓝红红……,那么,第2010个小彩灯的颜色是( )A .绿色B .黄色C .红色D .蓝色10.若实数m 、n 满足 20m -=,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8D .611.32-的绝对值是______, ______的倒数是13 ______.12.若2a -(c +4)2=0,则a +b +c 的平方根是________.13 3.843,===_______14.若实数a 、b 满足20a +=,则a b=_____. 15.如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行程序框图,如果输入a ,b 的值分别为3,9,那么输出a 的值为________.16.已知一个正数x 的两个平方根是1a +和3a -,则a =_______,x =______.17.若a ﹣3有平方根,则实数a 的取值范围是_____.18.若的平方根为,则=_______.19.36的平方根是______,81的算术平方根是______.20____.21.化简:(15- ; (2--22.求下列各式的值:(1;(2);(3)(4);(5(6233-,00.3,227, 1.732-,π2-,3+,0.1010010001整数{ };分数{ };正数{ };负数{ };有理数{ };无理数{ }24.()1计算:021(2018)9()3-⨯-.()2化简:()()22a a a +-- ()1a +.25.计算:(﹣2)2﹣(2)0+2•tan45°26.已知,我们把任意形如:t abcba =的五位自然数(其中c a b =+,19a ≤≤,08b ≤≤)称之为喜马拉雅数,例如:在自然数32523中,325+=,所以32523就是一个喜马拉雅数.并规定:能被自然数n 整除的最大的喜马拉雅数记为()F n ,能被自然数n 整除的最小的喜马拉雅数记为()I n .(1)求证:任意一个喜马拉雅数都能被3整除;(2)求()3+(8)F I 的值.27.已知a 的整数部分,b 是它的小数部分,求(﹣a )3+(b+2)2的值.参考答案1.B【解析】试题解析:4,=故错误.B.133333 3.3-÷⨯=-⨯⨯=-正确.C.336,--=-故错误.D.111133.339﹣÷=⨯=故错误.故选B.2.A【解析】【分析】根据题目中的运算规则a⊗b=|2a–b|依次计算即可.【详解】根据题中的新定义得:原式=2⊗3=1,故选A.【点睛】本题是一道新定义问题的计算题,考查了对新知识的理解应用能力,比较简单.3.A【解析】试题分析:①0的算术平方根是0,故此项错误;②100的算术平方根是10=10,故此项错误;③(-6)2=36,36的算术平方根是6,即(-6)2的算术平方根是6,故此项正确;④当a<0时,a2的算术平方根是-a,故错误.所以正确的只有1个.故选A.4.C【解析】【分析】根据正数都大于0,负数都小于0,正数大于一切负数直接解答即可.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以203-<<<,-,故选C.所以最小的数是2【点睛】此题主要考查了实数的大小比较的基本方法:正数都大于0,负数都小于0,正数大于一切负数.5.C【解析】分析:根据平方根的定义即可解答.=±.详解:25的平方根为:5故选:C.点睛:本题考查了平方根的定义.注意和算术平方根区分开.6.B【解析】【分析】首先得出【详解】∵∴6<7,∴无理数在3和4之间.故选B.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.7.A【解析】=4,无理数有:π,共1个.故选A.点睛:本题考查了无理数的知识,解答本题的关键是熟练掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.8.C【解析】===3,==故选C.9.A【解析】【分析】观察发现,每七个为一个循环,而2010=7×287+1,而第一个是绿色.【详解】∵2010=7×287+1,∴第2010个彩灯的颜色是绿色.故选A.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此类题主要是发现几个一循环的规律,然后根据规律进行分析.10.B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.11.32, 3, 2 【解析】【分析】根据绝对值的性质、倒数的定义及算术平方根的定义即可得出结论.【详解】解:(1)3322-=;(2)13的倒数是3;4=,4的算术平方根是2; 故答案为:(1).32;(2)3;(3)2. 【点睛】 本题考查了绝对值的性质、倒数的定义及算术平方根的定义.易错点:对于带根号实数求平方根(算术平方根)要注意,先化简根号,再求平方根(算术平方根).12.±1【解析】【分析】根据非负数的性质列式求出a 、b 、c 的值,然后代入进行计算求出a+b+c 的值,再根据平方根的定义求解即可.【详解】∵│a -()4c +2=0∴a-2=0,b-3=0,c+4=0∴a=2,b=3,c=-4∴a+b+c=1∴a+b+c 的平方根=±1.故答案为±1. 【点睛】本题考查了算术平方根与非负数,解题的关键是能熟练的掌握非负数的性质与平方根的定义.13.0.1215【解析】【分析】根据被开方数小数点向左平移两位,算术平方根的小数点向左平移一位可得答案.【详解】1.215,,故答案为:0.1215.【点睛】此题主要考查了算术平方根,掌握小数点的平移规律是解题关键.14.﹣1 2【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.15.3【解析】【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【详解】由a=3,b=9,不满足a>b,则b变为9−3=6,不满足a>b,则b变为6−3=3,由a=b=3,则输出的a=3.故答案为3.【点睛】本题考查了程序框图,解题的关键是根据程序框图进行运算.16.1 4【解析】解:根据题意,得:a+1+(a﹣3)=0,解得:a=1.则x=(1+1)2=4.故答案为:1,4.点睛:本题考查了平方根的性质:正数有两个平方根,且它们互为相反数;负数没有平方根;0的平方根是0.17.a≥3.【解析】【分析】根据平方根的定义列出不等式计算即可.【详解】a-≥根据题意,得30.a≥解得: 3.a≥故答案为 3.【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.18.2【解析】【分析】根据平方根的定义列方程求解即可.【详解】由题意得,2a-1=3,解得a=2.故答案为:2.【点睛】本题考查了平方根,熟记概念是解题的关键.19.±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.20.9.【解析】,∵(±9)2=81,∴81的算术平方根是9.故答案为:9.21.(1)1(2)【解析】试题分析:(1)根据二次根式的乘法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可.试题解析:(1)原式5=6−5=1;(2)原式−=−22.(1)15;(2)-0.02;(3)72±;(4)-0.1;(5)0.7;(6)9. 【解析】试题分析:根据算术平方根的定义可知,因为15的平方等于225,所以225的算术平方根等于15;把1124化成假分数为494,因为72的平方等于494,所以1124的平方根等于±72;因为0.02的平方等于0.0004,所以0.0004的负的平方根为-0.02;根据二次根式的性质可得0.10.1=-=-0.9=9==. 请在此填写本题解析!解:(1 =15;(2) =-0.02;(3) 72==±;(4) =-|0.1|=-0.1;(5) =0.9-0.2=0.7;(6)9==.点睛:本题考查了平方根和算术平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根.正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,正数a 有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根. 23.见解析.【解析】【分析】根据实数的分类进行解答:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正有理数有理数负无理数正无理数无理数负无理数,或实数0⎧⎪⎨⎪⎩正实数.负实数 【详解】解:整数集合{-3,0,,…}; 分数集合220.3,, 1.732,7⎧⎫-⎨⎬⎩⎭; 正数集合227,30.101 001 000 1…(每两个1之间依次增加一个0),…};负数集合π3,,2⎧⎫---⎨⎬⎩⎭;有理数集合223,0,0.3,,7⎧⎫--⎨⎬⎩⎭;无理数集合()π,3102⎫-+⎬⎭每两个之间依次增加一个,【点睛】本题考查的是实数的分类,解题关键是熟记定义.24.(1)(2)4a --【解析】【分析】 ()1根据零指数幂、二次根式的化简等计算法则求解;()2利用多项式乘多项式以及单项式乘多项式的计算法则求解.【详解】()1解:原式1199=+⨯= ()2解:原式224a a a =--- 4a =--.【点睛】本题考查了平方差公式,实数的运算,零指数幂等知识点,解题的关键是熟练掌握运算法则即可.25.5.【解析】【分析】按顺序分别进行平方运算、0指数幂运算、代入特殊角的三角函数值,然后再按运算顺序进行计算即可.【详解】(﹣2)2﹣(20+2•tan45°=4﹣1+2×1=3+2=5.【点睛】本题考查了实数的运算,涉及了0指数幂、特殊角的三角函数值等,熟练掌握相关的运算法则是解题的关键.26.(1)答案见解析;(2)112221.【解析】分析:(1)根据喜马拉雅数的定义求出各个数位上的数字之和;(2)根据能被自然数8整除的最小的喜马拉雅数记为()8I 的整除的特征,与各数位上的数字的特点求得I (8).详解:(1)各数位数字之和为:a +b +c +b +a =2a +2b +c =2a +2b +(a +b )=3(a +b ).∵a ,b 是整数,∴a +b 是整数.∴任意一个喜马拉雅数都能被3整除(2)根据题意得:F (3)=90909.I (8)=()10101111088ab a b aba b ++==1263a +139b -328a b +, ∵喜马拉雅数能被8整除,∴3a +2b 能被8整除.∵19a ≤≤,08b ≤≤,19a b ≤≤+,∴33227a b ≤≤+.∴3a +2b =8或16或24.则I (8)=21312.∴F (3)+I (8)=90909+21312=112221.点睛:新定义题是历年的热点题,它的实质是一种规定,规定某种运算方式,规定某个概念的特征性质,然后要求按照规定去计算.求值,解决此类问题,关键是要正确理解新定义的运算的意义,本题的头关键是抓住喜马拉雅数的特征. 27.-1.【解析】【分析】的范围,确定a ,b 的值,再代入代数式即可解答.【详解】解:∵23,∴a=2,﹣2,∴(﹣a )3+(b+2)2=(﹣2)3+﹣2+2)2=﹣8+7=﹣1.【点睛】的范围.。
2020年中考数学专项训练: 数与式的运算(含答案)
提分专练 数与式的运算|类型1| 实数的运算1.计算:|1-√2|+2-2-122+(√2-1)0.2.计算:12-1-√2cos45°+3×(2007-π)0.3.计算:(-1)2019+√83-13-2+√2sin45°.4.[2019·扬州高邮一模] 计算:|1-√3|+3tan30°-(π-3)0+-13-1.-1.5.[2019·南充]计算:(1-π)0+|√2-√3|-√12+√2|类型2|整式的化简求值6.[2019·常州]如果a-b-2=0,那么代数式1+2a-2b的值是.时,代数式x2+2xy+y2的值是.7.[2019·金华]当x=1,y=-138.[2019·常德]若x2+x=1,则3x4+3x3+3x+1的值为.9.化简:(1)(a-b)2+a(2b-a);(2)(a+b)(a-b)-a(a-b).10.[2019·淮安]计算:ab(3a-2b)+2ab2.11.已知a-b=√2,求(a-2)2+b(b-2a)+4(a-1)的值.12.[2019·吉林]先化简,再求值:(a-1)2+a(a+2),其中a=√2.13.若x+y=3,且(x+3)(y+3)=20.(1)求xy的值;(2)求x2+3xy+y2的值.|类型3|分式的化简求值14.[2019·大连]计算:2a-1÷2a-4a2-1+12-a.15.[2019·黄石]先化简,再求值:(3x+2+x-2)÷x2-2x+1x+2,其中|x|=2.16.[2019·荆门]先化简,再求值:a+ba-b 2·2a-2b3a+3b-4a2a2-b2÷3ab,其中a=√3,b=√2.17.[2019·遂宁]先化简,再求值:a2-2ab+b2a2-b2÷a2-aba-2a+b,其中a,b满足(a-2)2+√b+1=0.18.[2019·娄底]先化简,再求值:a2-2ab+b2a-b ÷1b-1a.其中a=√2-1,b=√2+1.【参考答案】1.解:原式=√2-1+14−14+1=√2. 2.解:原式=2-√2×√22+3×1=2-1+3=4. 3.解:(-1)2019+√83-13-2+√2sin45° =-1+2-9+√2×√22 =-7. 4.解:|1-√3|+3tan30°-(π-3)0+-13-1=√3-1+3×√33-1-3=√3-1+√3-1-3=2√3-5. 5.解:原式=1+√3−√2-2√3+√2=1-√3.6.57.498.4 [解析]3x 4+3x 3+3x +1=3x 2(x 2+x )+3x +1=3x 2+3x +1=3(x 2+x )+1=4.9.解:(1)原式=a 2-2ab +b 2+2ab -a 2=b 2.(2)原式=a 2-b 2-a 2+ab=-b 2+ab.10.解:ab (3a -2b )+2ab 2=3a 2b -2ab 2+2ab 2=3a 2b.11.解:原式=a 2-4a +4+b 2-2ab +4a -4=a 2-2ab +b 2=(a -b )2,当a -b=√2时,原式=(√2)2=2.12.解:原式=a 2-2a +1+a 2+2a=2a 2+1,当a=√2时,原式=2×(√2)2+1=2×2+1=5.13.解:(1)∵(x +3)(y +3)=20,∴xy +3x +3y +9=20,即xy +3(x +y )=11. 将x +y=3代入上式,得xy +9=11,∴xy=2.(2)当xy=2,x +y=3时,原式=(x +y )2+xy=32+2=9+2=11.14.解:原式=2a -1×(a -1)(a+1)2(a -2)−1a -2=a+1a -2−1a -2=a a -2.15.解:原式=x 2-1x+2÷(x -1)2x+2=(x+1)(x -1)x+2·x+2(x -1)2=x+1x -1. ∵|x|=2,∴x=±2, 由分式有意义的条件可知:x=2,∴原式=3.16.解:原式=2(a+b )3(a -b )−4ab 3(a+b )(a -b )=2(a+b )2-4ab 3(a+b )(a -b )=2(a 2+b 2)3(a+b )(a -b ). 当a=√3,b=√2时,原式=3(√3+√2)(√3-√2)=103. 17.解:原式=(a -b )2(a+b )(a -b )÷a (a -b )a −2a+b =a -ba+b ×1a -b −2a+b =-1a+b . ∵(a -2)2+√b +1=0,∴a=2,b=-1, ∴原式=-1.18.解:a 2-2ab+b 2a -b ÷1b −1a =(a -b )2a -b ÷a -bab=(a -b )·ab a -b=ab.当a=√2-1,b=√2+1时,原式=(√2-1)×(√2+1)=1.。
天津市2020版中考数学专题练习相似三角形50题 含答案
相似三角形50题、选择题:一1.如图,DE∥BC,在下列比例式中,不能成立的是()= D.= B.== C.A.2.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()1:.1:.1:3 C.14 D2 BA.1:( )4.5cm,那么它们的相似比为3.两个相似多边形一组对应边分别为3cm,,则BE:EC=()BDF4.如图,是平行四边形ABCD对角线上的点,BF:FD=1:3( )相似的是15.如图,小正方形的边长均为,则图中三角形(阴影部分)与△ABCA. D C B...6.下列各组数中,成比例的是()A.-7,-5,14,5B.-6,-8,3,4C.3,5,9,12D.2,3,6,127.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4mB.6mC.8mD.12m8.下列四组图形中,一定相似的是( )A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形9.如图所示,在?ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()对对 C.5 D.6对 A.3对 B.4)的长为(AB于点E,则DE 垂直平分,中,∠10.如图,在△ABCACB=90°,AC=8AB=10,DEAC交3..A.6 B5 C.4 D的长等于(,则,已知:是位似图形,位似比为与△如图,△11.ABCDEF23AB=4DE )A.6B.5C.9D.12.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B →C和A→D20(y与xy(单位:cm),则)→C的路径向点C运动,设运动时间为x(单位:s,四边形PBDQ的面积为( ))之间函数关系可以用图象表示为x≤8≤C. B.A.D.13.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( ). CA.. B D.14.如图,△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,BC分别与AD、AE相交于点F、G.图中共有n对三角形相似(相似比不等于1),则n的值是()A.2B.3C.4D.5ACBD,xABCD15.如图,正方形的两边BC,AB分别在平面直角坐标系的轴,y轴的////与正方形正方形正半轴上//////ABCD与正方形DCB,的中点是以ABCDACO为中心的位似图形已知AC=3A则正方形(1,2),的坐标为A若点,( )的相似比是 D. C. B. A.16.如图,三个正六边形全等,其中成位似图形关系的有()A.4对B.1对C.2对D.3对的重心,那么的值为() AMN都是等边三角形,点M是△ABC17.如图,△ABC和△C.A.D. B.18.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC,则的值为()BCDF′交于点N 于点M,D. A. C. B.19.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P 的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S+S )的大小变化情况是(21.A.一直不变B.一直减小C.一直增大D.先减小后增大20.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D 的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠DAC=∠ABC;②AD=CB;③2=AE?AB;⑤CB∥GD,其中正确的结论是()点P是△ACQ的外心;④ACA.①③⑤B.②④⑤C.①②⑤D.①③④、填空题:二21.若△ABC与△ABC的相似比为2:3,△ABC与△ABC的相似比为2:3,那么△ABC与△ABC的相似比221212111212为22.如图,(1)若AE:AB=________,则△ABC∽△AEF;(2)若∠E=_______,则△ABC∽△AEF.□的值为________.于点Q. 则交相交于点,BDO,P是BC边中点,APBD23.如图,在中,对角线ABCDAC,则C中,已知A∽△B=6,若△ABCABBABC=5AB=3ABC24.在△中,已知,。
2020中考数学试题含答案 (3)
2020中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC 的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行1111213141516第2222221115543210987行…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE =S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF 中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形.(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴, 解得. ∴抛物线表达式:y=﹣x 2+x +4;(2)△ABC 是直角三角形.令y=0,则﹣x 2+x +4=0,解得x 1=8,x 2=﹣2,∴点B 的坐标为(﹣2,0),由已知可得,在Rt △ABO 中AB 2=BO 2+AO 2=22+42=20,在Rt △AOC 中AC 2=AO 2+CO 2=42+82=80,又∵BC=OB +OC=2+8=10,∴在△ABC 中AB 2+AC 2=20+80=102=BC 2∴△ABC 是直角三角形.(3)∵A (0,4),C (8,0),∴AC==4,①以A 为圆心,以AC 长为半径作圆,交x 轴于N ,此时N 的坐标为(﹣8,0), ②以C 为圆心,以AC 长为半径作圆,交x 轴于N ,此时N 的坐标为(8﹣4,0)或(8+4,0) ③作AC 的垂直平分线,交x 轴于N ,此时N 的坐标为(3,0),综上,若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,点N 的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,∴MD ∥OA ,∴△BMD ∽△BAO , ∴=,∵MN ∥AC ∴=, ∴=,∵OA=4,BC=10,BN=n +2∴MD=(n +2),∵S △AMN =S △ABN ﹣S △BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考数学 计算基础专题练习(含答案)
一、单选题(共有7道小题)
1.下列运算正确的是( )
A .21-=
a a B .22+=a
b ab C .()347=a a D .235()()--=-a a a g
2.关于x 的分式方程11
m x =-+的解是负数,则m 的取值范围是( ) A .1m >- B .10m m >-≠且
C .1m ≥-
D .10m m ≥-≠且
3.关于x 的方程的解是( ) A . B . C . D .
4.下列计算正确的是( )
A .2242a a a +=
B .4961x x x =-+
C .()326328x y x y =--
D .632a a a ÷= 5.
若2a b ab +==,则22a b +的值为( )
A. 6
B. 4
C.
6.解分式方程
22311x x x ++=--时,去分母后变形正确的为( )
A.()()2231x x ++=-
B.()2231x x +=--
C.()223x -+=
D.()()2231x x -+=- 7.若1m n -=-,则()222m n m n --+的值是( )
A .3
B .2
C .1
D .-1
二、多选题(共有1道小题) 8.()()5353p p ---= ;
三、填空题(共有8道小题)
9.分解因式:22
31212a ab b -+
=__________. 10.计算:327232a a a a ⋅-÷= .
12.小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比上周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多211
x =-4x =3x =2x =1x =
买了2袋牛奶,设他上周三买了x 袋牛奶,则根据题意列方程为 。
13.分解因式:249x -= .
14.因式分解:()()24224______x x x -+=-
15.若关于x 的方程
15102x m x x -=--无解,则m = . 16.46a a ⋅= ;
四、计算题(共有3道小题)
17.先化简,再求值:34211x x x x x --⎛
⎫-÷ ⎪--⎝⎭,其中x =12
.
18.因式分解:32
3612a m a m am --+
19.先化简,再求值:2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭
,其中1a =,1b =。
五、解答题(共有6道小题)
20.化简2222221
211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭;并解答:
(1)当1x =+
(2)原代数式的值能等于-1吗?为什么?
21.先化简,再求值:
21111x x x ⎛⎫÷+ ⎪--⎝⎭
,其中1x =.
22.先化简,再求值:221b
a b b a a -÷⎪⎭⎫
⎝⎛--,其中13+=a ,13-=b
23.解不等式组3645110
2x x x x -≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式22332139x x x x x x x +-⎛⎫⋅- ⎪-++-⎝⎭
,从上述整数解中选择一个合适的数,求此代数式的值.
24.阅读下列题目的解题过程:
已知a 、b 、c 为△ABC 的三边,且满足222244-=
-
a c
b
c a b ,试判断△ABC 的形状. 解:∵()222244-=
-
a c
b
c a b A ∴()2222222()()()-=+-
c a b a b a b B ∴()222=
+c a b C ∴△ABC 是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ;
(3)本题正确的结论为: .
25.如图:大正方形的边长为a ,小正方形的边长为b ,利用此图证明平方差公式.
参考答案
一、单选题(共有7道小题)
1.D .
2.B
3.B
4.C.
5.B
6.D
7.A
二、多选题(共有1道小题)
8.2
925p -
三、填空题(共有8道小题) 9.()232a b -
10.5a
11.9a 12.10120.5=2
x x -+ 13.()()2323x x +-
14.4,2
15.8
16.10a
四、计算题(共有3道小题)
17.解:34211
x x x x x --⎛
⎫-÷ ⎪--⎝⎭ =(1)(34)112
x x x x x x ------g =2342
x x x x --+- =2
(1)2
x x -- =x -2,
当x =12时,原式=12-2=-32
. 18.()
2324am a a -+-
19.
)1122
2ab == 五、解答题(共有6道小题) 20.解:(1)2222221211
x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭ 22(1)(1)1(1)(1)(1)x x x x x x x x x
⎡⎤+-+=-⋅⎢⎥-+-⎣⎦ 11x x x x
+=⋅- 11
x x +=-
当1x =
原式111x x +====- (2)若原式110x x +=
=-,可得1x =- 但当1x =-时,原式无意义。
综上,原式的值不可能为-1
21.()()
()()
111111
=111
1
x
x x x x x
x x x x x -+÷+---⋅+-=+
当1x =
时, 原式
2== 22.解:原式=22a a b a b a b a b b --⎛⎫-⋅ ⎪--⎝⎭
=()()a b a b b a b b
+-⋅- =a+b 当13+=a ,13-=b 时,
原式
=
)
)
11+=23.解:解不等式3x -6≤x ,得:x ≤3, 解不等式451102
x x ++<,得:x >0, 则不等式组的解集为0<x ≤3,
所以不等式组的整数解为1、2、3,
原式=()(
)()()()2233333331x x x x x x x x x ⎡⎤+---⎢⎥+-+--⎣⎦g =
()()()()()2133331x x x x x x --++--g =11
x -, ∵x ≠±3、1,
∴x =2,
则原式=1.
24.解:(1)由题目中的解答步骤可得,
错误步骤的代号为:C ,
故答案为:C ;
(2)错误的原因为:没有考虑a =b 的情况,
故答案为:没有考虑a =b 的情况;
(3)本题正确的结论为:△ABC 是等腰三角形或直角三角形, 故答案为:△ABC 是等腰三角形或直角三角形.
25.解:根据题意大正方形的面积-小正方形的面积=22a b -, 四个等腰梯形的面积=()111422
2a b a b ⎛⎫+-⨯ ⎪⎝⎭()()a b a b =+-, 故()()22a b a b a b -=+-.。