新人教版八年级下数学期末试卷
最新人教版数学八年级下学期《期末检测卷》有答案解析

C.菱形的对角线互相垂直D.矩形的对角线互相垂直
【答案】D
【解析】
【分析】
根据几种四边形的性质进行判断即可.
【详解】解:矩形对角线一定相等,但不一定相互垂直,选D说法错误.
其它三个选项说法均正确.
故选:D.
【点睛】本题考查了平行四边形以及三种特殊平行四边形的性质,掌握这几种四边形的性质是解题的键.
27.如图1,在正方形A B C D中,P是对角线B D上的一点,点E在A D的延长线上,且PA=PE,PE交C D于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形A B C D改为菱形A B C D,其他条件不变,当∠A B C=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】13或
【解析】
【分析】
分情况讨论当 的木棒为直角边时以及当 的木棒为斜边时,利用勾股定理解答即可.
【详解】解:当 的木棒为直角边时,第三根木棒的长度为 ;
当 的木棒为斜边时,第三根木棒的长度为 ;
A. B. C. D.
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为A×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解】2.3μm=2.3×0.000001m=2.3×10-6m,
故选:C.
【点睛】本题考查用科学记数法表示较小的数,一般形式为A×10-n,其中1≤|A|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22.在一次函数 中,随 的 增大而增大,则 ________.
最新人教版2022-2022年八年级下期末数学试卷(含答案)

下学期期末考试(qī mò kǎo shì)八年级数学试卷一、选择题(本大题共6小题,每小题3分,共计(ɡònɡ jì)18分,每小题只有一个(yīɡè)正确选项)1.能使有意义(yìyì)的x的取值范围(fànwéi)是()A.x>0 B.x≥0 C.x>1 D.x≥1【专题】存在型.【分析】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.x【解答】解:∵1∴x-1≥0,解得x≥1.故选:D.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.2.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为()A.12 B.13 C.14 D.15【分析】由于众数是一组实际中出现次数最多的数据,由此可以确定这组数据的众数.【解答】解:依题意得13在这组数据中出现四次,次数最多,∴他们年龄的众数为13.故选:B.【点评】此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.3.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,9【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答(jiědá)】解:A、因为(yīn wèi)12+22≠32,故不是(bù shi)勾股数;故此选项错误;B、因为(yīn wèi)32+42=52,故是勾股数.故此(gùcǐ)选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可4.下列运算正确的是()【专题】计算题.【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.如图,▱ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.35°B.30°C.25°D.20°【专题】几何图形.【分析(fēnxī)】要求(yāoqiú)∠DAE,就要(jiù yào)先求出∠ADE,要求(yāoqiú)出∠ADE,就要(jiù yào)先求出∠DBC.利用DB=DC,C=70°即可求出.【解答】解:∵DB=DC,∠C=70°∴∠DBC=∠C=70°,又∵AD∥BC,∴∠ADE=∠DBC=70°∵AE⊥BD∴∠AEB=90°,∴∠DAE=90°-∠ADE=20°故选:D.【点评】此题考查平行四边形的性质,解决本题的关键是利用三角形内角和定理,等边对等角等知识得到和所求角有关的角的度数.6.下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn<0)图象的是()【分析】根据正比例函数的图象确定n的符号,然后由“两数相乘,同号得正,异号得负”判断出n的符号,再根据一次函数的性质进行判断.【解答】解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn <0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn <0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项错误;故选:B.【点评(diǎn pínɡ)】本题综合考查了正比例函数、一次函数图象与系数(xìshù)的关系.一次函数y=kx+b(k≠0)的图象有四种(sì zhǒnɡ)情况:①当k>0,b>0,函数(hánshù)y=kx+b的图象经过第一(dìyī)、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.二、填空题(本大题有6小题,每小题3分,共18分)7.计算42的结果是.【专题】常规题型.【分析】根据合并同类二次根式进行计算即可.【解答】解:原式=(4-122故答案为2【点评】本题考查了二次根式的加减,掌握合并同类二次根式是解题的关键8.在平行四边形ABCD中,AB=3,BC=4,则平行四边形ABCD的周长等于.【分析】根据平行四边形的对边相等,可得AB=CD,AD=BC,所以可求得▱ABCD的周长为14.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=4,∴▱ABCD的周长为14.故答案为14.【点评(diǎn pínɡ)】此题考查了平行四边形的性质:平行四边形的对边相等.此题比较简单,注意解题(jiě tí)时要细心.9.已知一个菱形(línɡ xínɡ)的两条对角线的长分别为10和24,则这个(zhè ge)菱形的周长为.【分析(fēnxī)】根据菱形的对角线互相垂直平分,可知AO和BO的长,再根据勾股定理即可求得AB的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC=10,BD=24,菱形对角线互相垂直平分,∴AO=5,BO=12cm,∴BC=CD=AD=AB=13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB的值是解题的关键.10.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.故答案(dáàn)是:5.【点评(diǎn pínɡ)】本题考查了矩形(jǔxíng)的性质,正确理解△AOB 是等边三角形是关键(guānjiàn).11.某一次函数的图象(tú xiànɡ)经过点(﹣1,4),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.【专题】一次函数及其应用.【分析】由该函数过点(-1,4)可设该函数的解析式为y=k(x+1)+4,结合一次函数的性质,取k=-1即可得出结论.【解答】解:∵一次函数的图象经过点(-1,4),∴设该函数的解析式为y=k(x+1)+4.又∵函数y随x的增大而减小,∴k<0,取k=-1,则该函数的解析式为y=-x+3.故答案为:y=-x+3(答案不唯一).【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.12.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC 上(不与点A,C重合),且∠ABP=30°,则CP的长为.【专题】压轴题;分类讨论.【分析】根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.【解答(jiědá)】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾(máodùn);如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°-30°=30°,∴PC=PB,∵BC=6,∴AB=3,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,【点评(diǎn pínɡ)】本题考查了解(liǎojiě)直角三角形,熟悉特殊角的三角函数值是解题的关键.三、解答(jiědá)题(本大题有5小题,每题6分,共30分)13.计算(jì suàn):【专题(zhuāntí)】计算题.【分析】根据二次根式的运算法则即可求出答案.【点评(diǎn pínɡ)】本题考查二次根式的运算,解题的关键(guānjiàn)是熟练运用二次根式的运算法则,本题属于基础题型.14.先化简,再求值:(m﹣)m+3)﹣m(m﹣6),其中(qízhōng)m=.【专题(zhuāntí)】常规(chángguī)题型.【分析】直接利用乘法公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:原式=m2﹣3﹣(m2﹣6m)=m2﹣3﹣m2+6m=6m﹣3,当7时,原式=67﹣3.【点评】此题主要考查了二次根式的化简求值,正确合并同类项是解题关键.15.如图所示,在平行四边ABCD中,点M、N分别在BC、AD上,且BM=DN.求证:四边形AMCN是平行四边形.【分析】根据平行四边形的性质可以证明AN∥CM且AN=CM,则依据一组对边平行且相等的四边形是平行四边形即可判断.【解答】证明:∵▱ABCD中,AD∥BC,AD=BC,又∵BM=DN,∴AN∥CM且AN=CM,∴四边形AMCN是平行四边形.【点评(diǎn pínɡ)】此题考查(kǎochá)了平行四边形的性质与判定.注意选择适宜的判定方法.16.如图所示,一次函数图象(tú xiànɡ)经过点A、点C,且与正比例函数(hánshù)y=﹣x的图象(tú xiànɡ)交于点B,(1)求B点坐标;(2)求该一次函数的表达式.【专题】一次函数及其应用.【分析】(1)当x=-1时,y=-x=1,即可得出B为(-1,1);(2)利用待定系数法即可得到该一次函数的表达式.【解答】解:(1)当x=﹣1时,y=﹣x=1,则B为(﹣1,1);(2)设一次函数的解析式为y=kx+b,把A(0,2),B(﹣1,1)代入得∴一次函数的解析式为y=x+2.【点评】本题考查一次函数,解题的关键是灵活应用待定系数法确定函数解析式.求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.17.(1)四边形ABCD为矩形,△BCE中,BE=CE,请用无刻度的直尺作出△BCE的高EH;(2)四边形ABCD为矩形,E,F为AD上的两点,且∠ABE=∠DCF,请用无刻度的直尺找到BC的中点P.【专题(zhuāntí)】作图题.【分析(fēnxī)】(1)作矩形的对角线,它们(tā men)相交于点O,连接(liánjiē)EO并延长(yáncháng)交BC于H,则EH⊥BC;(2)分别延长BE和CF,它们相交于点M,再作矩形的对角线,它们相交于点O,连接MO并延长交BC于P,则BP=CP.【解答】解:(1)如图1,EH为所作;(2)如图2,点P为所作.【点评】本题考查了作图-法则作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证(qiúzhèng):AE=DF;(2)若AD平分(píngfēn)∠BAC,试判断(pànduàn)四边形AEDF的形状,并说明(shuōmíng)理由.【专题(zhuāntí)】等腰三角形与直角三角形;矩形菱形正方形.【分析】(1)由DE∥AC交AB于E,DF∥AB交AC于F,可证得四边形AEDF是平行四边形,即可证得结论;(2)由AD平分∠BAC,DE∥AC,易证得△ADE是等腰三角形,又由四边形AEDF是平行四边形,即可证得四边形AEDF是菱形.【解答】(1)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF;(2)若AD平分∠BAC,则四边形AEDF是菱形;理由:∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠ADE=∠FAD,∴∠EAD=∠ADE,∴AE=DE,∵四边形AEDF是平行四边形,∴四边形AEDF是菱形.【点评】此题考查了等腰三角形的判定与性质,菱形的判定与性质.注意熟练掌握菱形的判定方法是解此题的关键.19.(8分)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象(tú xiànɡ),写出关于x的不等式2x﹣4>kx+b的解集.【分析(fēnxī)】(1)利用(lìyòng)待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于(guānyú)k、b得方程组,再解方程组即可;(2)联立两个函数(hánshù)解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.20.(8分)某校高中一年级组建篮球队,对甲、乙两名备选同学进行定位投篮测试,每次投10个球共投10次,甲、乙两名同学测试情况如图所示.(1)根据(gēnjù)如图所提供的信息填写下表:平均数众数方差甲 1.2乙 2.2(2)如果你是高一学生会文体委员(wěiyuán),会选择哪名同学进入篮球队?请说明理由.【专题(zhuāntí)】图表(túbiǎo)型.【分析(fēnxī)】(1)根据平均数和众数的定义求解;(2)根据折线图分析:平均数一样,而乙的众数大,甲的方差小,成绩稳定;故选甲或乙均有道理,只要说理正确即可.【解答】解:(1)据折线图的数据,甲的数据中,6出现的最多,故众数是6;平均数为(9+6+6+8+7+6+6+8+8+6)=7;乙的数据中,8出现的最多,故众数是8;平均数为(4+5+7+6+8+7+8+8+8+9)=7;平均数众数甲7 6乙7 8(2)(答案不唯一,只要说理正确).选甲:平均数与乙一样,甲的方差小于乙的方差,甲的成绩较乙的成绩稳定.选乙:平均数与甲一样,乙投中篮的众数比甲投中篮的众数大,且从折线图看出,乙比甲潜能更大.【点评(diǎn pínɡ)】本题考查平均数、众数的意义(yìyì)与求法及折线图的意义与运用.五、解答(jiědá)题(本大题共2小题,每小题9分,共18分)21.(9分)如图,AD∥BC,AC⊥AB,AB=3,AC=CD=2.(1)求BC的长;(2)求BD的长.【专题(zhuāntí)】常规(chángguī)题型.【分析】(1)在Rt△ABC中利用勾股定理即可求出BC的长;(2)过点B作BE⊥DC交DC的延长线于点E.根据等边对等角的性质以及平行线的性质得出∠2=∠3,利用角平分线的性质得出AB=BE=3,在Rt△BCE中,根据勾股定理可得EC=2,则ED=4,在Rt△BDE中,利用勾股定理可得BD=5.【解答】解:(1)在Rt△ABC中,∵AC⊥AB,AB=3,AC=2,(2)过点B作BE⊥DC交DC的延长线于点E.∵AC=CD,∴∠1=∠ADC,又∵AD∥BC,∴∠3=∠ADC,∠1=∠2,∴∠2=∠3,又∵AC⊥AB,BE⊥DC,∴AB=BE=3,在Rt△BCE中,由勾股定理(ɡōu ɡǔ dìnɡ lǐ)可得EC=2;∴ED=2+2=4,在Rt△BDE中,由勾股定理(ɡōu ɡǔ dìnɡ lǐ)可得BD=5.【点评(diǎn pínɡ)】本题(běntí)考查了勾股定理,等腰三角形、平行线、角平分线的性质,掌握各定理是解题的关键.22.(9分)某商店(shāngdiàn)分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200 (1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B 种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【分析】(1)设A种商品每件的进价为x元,B种商品每件的进价为y 元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.【解答(jiědá)】解:(1)设A种商品(shāngpǐn)每件的进价为x元,B 种商品(shāngpǐn)每件的进价为y元,答:A种商品(shāngpǐn)每件的进价为20元,B种商品(shāngpǐn)每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据题意得:w=(30-20)(1000-m)+(100-80)m=10m+10000.∵A种商品的数量不少于B种商品数量的4倍,∴1000-m≥4m,解得:m≤200.∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大,∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.【点评】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.六、解答题(本大题共12分)23.(12分)如图,在梯形ABCD 中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒lcm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何(wèihé)值时,以C、D、Q、P为顶点的梯形面积(miàn jī)等于60cm2?【分析(fēnxī)】(1)由题意(tí yì)已知,AD∥BC,要使四边形PQDC 是平行四边形,则只需要(xūyào)让QD=PC即可,因为Q、P点的速度已知,AD、BC的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)要使以C、D、Q、P为顶点的梯形面积等于60cm2,可以分为两种情况:点P、Q分别沿AD、BC运动或点P返回时,再利用梯形面积公式,即(QD+PC)×AB÷2=60,因为Q、P点的速度已知,AD、AB、BC 的长度已知,用t可分别表示QD、BC的长,即可求得时间t.【解答】解:(1)∵四边形PQDC是平行四边形,∴DQ=CP,当P从B运动到C时,如图1:∵DQ=AD-AQ=16-t,CP=21-2t∴16-t=21-2t解得:t=5当P从C运动到B时,∵DQ=AD-AQ=16-t,CP=2t-21∴16-t=2t-21,(2)若点P、Q分别沿AD、BC运动时,如图2:DQ+CP2×AB=60,即解得:t=15.故当t=9或15秒时,以C,D,Q,P为顶点(dǐngdiǎn)的梯形面积等60cm2.【点评(diǎn pínɡ)】本题主要考查了直角梯形的性质(xìngzhì)、平行四边形的性质、梯形的面积等知识,特别应该注意要全面考虑各种情况,不要遗漏.内容总结(1)平均数为(9+6+6+8+7+6+6+8+8+6)=7。
最新人教版2022-2022年八年级下期末考试数学试卷(含答案)

八年级(下)期末(qī mò)数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合(fúhé)题目要求的)1.下列(xiàliè)图形中,既是中心对称图形,又是轴对称图形的是()A.菱形(línɡ xínɡ)B.平行四边形C.等边三角形D.梯形2.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cm B.5cm C.8cm D.20cm3.如果n边形的内角和等于外角(wài jiǎo)和的3倍,那么n的值是()A.5 B.6 C.7 D.84.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形6.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC7.点P在x轴上,且到y轴的距离(jùlí)为5,则点P的坐标是()A.(5,0) B.(0,5) C.(5,0)或(﹣5,0) D.(0,5)或(0,﹣5)8.直线(zhíxiàn)y=kx+9k+10一定(yīdìng)经过点()A.(0,10)B.(1,19)C.(9,10)D.(﹣9,10)9.如图,线段(xiànduàn)AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4 B.4.5 C.4.8 D.510.在直角坐标系中,一只电子青蛙从原点出发,每次可以向上(xiàngshàng)或向下或向左或向右跳动一个单位,若跳三次,则到达的终点有几种可能()A.12 B.16 C.20 D.6411.如图,一次函数y=kx+b的图象与坐标轴的交点坐标分别为A(0,2),B(﹣3,0),下列说法:①y随x的增大而减小;②b=2;③关于x的方程kx+b=0的解为x=2;④关于x的不等式kx+b<0的解集x<﹣3.其中说法正确的有()A.1个B.2个C.3个D.4个12.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有()千米到达甲地.A.70 B.80 C.90 D.100二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.函数(hánshù)y=的自变量x的取值范围(fànwéi)是.14.默写角平分线的性质(xìngzhì)定理的逆定理:.15.点P(m﹣1,2m﹣4)在第三象限(xiàngxiàn),则m的取值范围是.16.已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.17.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE 折叠后,点B落在AD边的F点上,则DF的长为.18.点P(x,y)经过某种变换后得到点P′(﹣y+1,x+2),我们把点P′(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2021的坐标为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤19.(6分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充(bǔchōng)完整;(3)已知该校有1000人,请根据样本估计全校最喜欢足球(zúqiú)的人数是多少?20.(6分)已知函数(hánshù)y=kx+2k+1(k不为(bù wéi)零),(1)若函数(hánshù)图象经过点A(1,4),求k的值;(2)若这个一次函数图象不经过第一象限,求k的取值范围.21.(8分)如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.22.(8分)如图,在矩形ABCD中,AD>AB,过对角线的中点O作BD的垂线EF,交AD于点E,交BC于点F.(1)求证:四边形BEDF是菱形;(2)若AB=3,AD=4,求AE的长.23.(8分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为12?若存在,请直接出点P的坐标;若不存在,请说明(shuōmíng)理由.24.(10分)某商店销售A型和B型两种型号(xínghào)的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少(duōshǎo)台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售(xiāoshòu)总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.25.(8分)在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点(zhōnɡ diǎn),连接EF,试证明EF⊥BD.26.(12分)如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标(zuòbiāo)及直线L的解析式;(2)在(1)的条件(tiáojiàn)下,如图②所示,设Q为AB延长线上一点(yī diǎn),作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN 的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角(zhíjiǎo)顶点在第一、二象限内作等腰直角△OBF和等腰直角(zhíjiǎo)△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.八年级(下)期末(qī mò)数学试卷参考答案一、选择题(本大题共12小题(xiǎo tí),每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.A;2.C;3.D;4.B;5.D;6.D;7.C;8.D;9.C;10.B;11.B;12.A;二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.x≥;14.角的内部到角的两边距离(jùlí)相等的点在角平分线上;15.m<1;16.8;17.6;18.(1,4);三、解答题(本大题共8小题,共66分.解答应(dā yìng)写出文字说明、证明过程或演算步骤19、20、21、22、23、24、25、26、内容总结(1)14.角的内部到角的两边距离相等的点在角平分线上(2)18.(1,4)。
2022—2023年人教版八年级数学(下册)期末试卷(附参考答案)

2022—2023年人教版八年级数学(下册)期末试卷(附参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-32.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .1257.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.57.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______. 3.使x 2-有意义的x 的取值范围是________.4.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).三、解答题(本大题共6小题,共72分) 1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE=DF(1)求证:AE=CF ;(2)若AB=6,∠COD=60°,求矩形ABCD 的面积.6.“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表: 村庄 清理养鱼网箱人数/人 清理捕鱼网箱人数/人 总支出/元(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、C6、C7、C8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、03、x 2≥4、40°5、40°6、②.三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、-3.3、(1)详见解析(2)k 4=或k 5=4、略.5、6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
新人教版八年级数学下册期末考试题(完整版)

新人教版八年级数学下册期末考试题(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x=,则x=__________2.分解因式:22a4a2-+=__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=_________度。
2022—2023年人教版八年级数学下册期末试卷(及参考答案)

2022—2023年人教版八年级数学下册期末试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .65.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④7.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是________.5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用150 175 ______ …______(元)方式二的总费用90 135 ______ …______(元)(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、C6、D7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)12、-2 -33、60°或120°4、(﹣5,4).5、36、4.三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、-11x+,-143、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.4、略.5、(1)略(2)90°(3)AP=CE6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。
2023年人教版八年级数学下册期末考试题及答案【完美版】
2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
新人教版八年级数学(下册)期末复习题及答案
新人教版八年级数学(下册)期末复习题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或715 )A.点P B.点Q C.点M D.点N8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21a+8a=__________.3x2-x的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
新人教版八年级数学下册期末试卷(精选)
新人教版八年级数学下册期末试卷(精选)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1的算术平方根为()A.B C.2±D.22.如果y,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .43 9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( ) A . B .C .D .10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.若m+1m =3,则m 2+21m=________. 4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE .求证:(1)△AEF ≌△CEB ;(2)AF=2CD .6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B5、B6、B7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、1002、13、74、x >3.5、1(21,2)n n -- 6、8三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)a ≥2;(2)-5<x <14、略5、(1)略;(2)略.6、(1)2元;(2)至少购进玫瑰200枝.。
2024—2025学年最新人教新版八年级下学期数学期末考试试卷(精品试卷含有参考答案)
2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、函数y=﹣x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2、一个直角三角形的模具,量得其中两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C.cm D.5cm或cm 3、为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A.平均数B.中位数C.众数D.方差4、以下列各组数为边长,能构成直角三角形的是()A.1、2、3B.3、4、5C.4、5、6D.、、5、P1(x1,y1),P2(x2,y2)是一次函数y=2x﹣3图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y26、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 7、已知四边形ABCD是平行四边形,下列条件中,不能判定▱ABCD为矩形的是()A.∠A=90°B.∠B=∠C C.AC=BD D.AC⊥BD8、勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a,b(a>b)表示直角三角形的两直角边,则下列结论不正确的是()A.a2+b2=25B.a+b=5C.a﹣b=1D.ab=129、如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.D.10、已知非负数x、y、z满足==,设ω=3x+4y+5z,则ω的最大值和最小值的和为()A.54B.56C.35D.46二、填空题(每小题3分,满分18分)11、二次根式中,字母x的取值范围是.12、某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树株.13、直线y=kx+b经过点(3,﹣2),当﹣1≤x≤5时,y的最大值为6,则k的值为.14、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,OH=2,则菱形ABCD的面积为.15、一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4<2x的解集是.16、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合).且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个说法:①△OEF是等腰直角三角形;②△OEF面积的最小值是1;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.其中正确的是.第14题图第15题图第16题图2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19、已知y+1与x﹣2成正比例,且当x=1时,y=﹣3.(1)求y关于x的函数关系式;(2)当m≤x≤m+3时,y的最大值为7,求m的值.20、在某次体育节中,实验中学学生会开展“爱心义卖”活动,准备笔记本和便利贴两种文创产品共100本.若售出3本笔记本和2本便利贴收入65元,售出4本笔记本和3个便利贴收入90元.(1)求笔记本和便利贴的售价各是多少元;(2)已知笔记本数量不超过便利贴的3倍,则准备笔记本和便利贴各多少本的时候总收入最多,并求出总收入的最大值?21、为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如图不完整的图表.(1)补全条形统计图,扇形统计图中的a=;(2)本次抽样调查中,中位数是,扇形统计图中课外阅读6本的扇形的圆心角大小为度;(3)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.22、已知:矩形ABCD,AC、BD交于点O,过点O作EF⊥BD分别交AB、CD于E、F.(1)求证:四边形BEDF是菱形..(2)若BC=3,CD=5,求S菱形BEDF23、直线y=﹣2x+4与x轴,y轴分别交于点A、B,过点A作AC⊥AB于点A,且AC=AB,点C在第一象限内.(1)求点A、B、C的坐标;(2)在第一象限内有一点P(3,t),使S△P AB =S△ABC,求t的值.24、如图,直线与x轴,y轴分别交于点A,B,直线y=kx﹣1与线段AB交于点C,与y轴交于点P,与x轴交于点D.(1)直接写出点A,B,P的坐标;(2)连接BD,若BD=AD,求S△PBC的值;(3)若∠PCB=45°,求点C的坐标.25、如图,直线y=kx﹣4k(k≠0)与坐标轴分别交于点A,B,过点A、B作直线AB,以OA为边在y轴的右侧作四边形AOBC,S=8.△AOB(1)求点A,B的坐标;(2)如图,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE;①如图1,问点E是否在定直线上,若是,求该直线的解析式;若不是,请说明理由;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请直接写出点H的坐标.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、x≥2且x≠3 12、513、﹣2或4 14、16 15、x>1.516、①③④三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、018、证明略19、(1)y=2x﹣5 (2)m的值为320、(1)笔记本的售价是15元,便利贴的售价是10元(2)总收入的最大值为1375元21、(1)图略20 (2)6,129.6(3)52822、(1)证明(2)10.223、(1)C(6,2)(2)t的值为824、(1)P(0,﹣1)(2)(3)C(,)25、(1)A(0,4),B(4,0)(2)①点E在定直线y=x﹣4上②点H坐标为(12,8)或(6,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(下)数学期末模拟试卷(二)
姓名:_________ 考号:_________ 成绩:__________ 一、选择题(共
30分)
题号 1 2
3
4 5 6 7 8 9 10
答案
1. 计算2﹣5的结果是()
A.3B.2C.﹣3D.﹣2
2. 在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,则BC的长为()
A.8cm B.7cm C.6cm D.5cm
3. 如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、C的坐标分别为(1,0)、(6,0)、(8,5),则顶
点D的坐标是()
A.(5,5)B.(5,3)C.(2,5 )D.(3,5)
4. 一次函数y=2x﹣3的图象经过()
A..第一、二、四象B.第一、三、四象限C.第一、二、三象D.第二、三、四象限
5. 某班在一次科普知识抢答比赛中,5名选手的得分分别为:9,8,x,7,7,已知数据9,8,x,7,7 的平均数是
8,则这组数据的中位数是()
A.9 B.8 C.7 D.6
6.如图,有3个正方形,已知第Ⅰ和第Ⅱ个正方形的边长分别为5cm和10cm,则第Ⅲ个正方形的周长为()
A.20cm B.25cm C.20cm D.25cm
7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,
则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()
A.B.C.D.
8.某中学八年级一班5名同学某一周踢足球的时间为别为5小时,4小时,3小时,3小时,则数据5,4,4,3,3
的方差为()
A.0.66 B.0.56 C.0.55 D.0.54
9.如图,一次函数y=﹣x+2的图象分别与x轴、y轴相交于点A和点B,以线段AB为直角边在第一象限内作等腰
直角△ABC,则斜边BC所在直线的解析式为()
A.
第3题图
y=x+2
B.
第6题图
y=x+2
C.
第9题图
y=x+2
D.
第10题图
y=x+2
10.如图,在△ABC中,AC=BC,∠C=90°,D为AB边的中点,点E在AC上,连接DE,过D作DF⊥DE交BC
于F.若AE=6cm,BF=2cm,则ED的长为()
A.3cm B.2cm C.3cm D.2cm
二、填空题(共18分)
11函数的自变量x的取值范围是.
12. 在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm,则斜边AB上的高h=cm.
13.已知一次函数y=kx+b(k≠0)的图象经过点(﹣2,3)和点B(4,﹣1),则这个一次函数的解析式为.
14.某男子排球队共12名队员,他们的体重情况如下表:
体重(单位:kg) 70 67 64 60 58
人数 1 2 2 3 4
则该省男子排球队这12名球员的平均体重是kg.
15.已知直线l1:y=k1x +b1和直线l2:y=k2x+b2(k1>k2>0)相交于点A(﹣2,5),
则不等式k1x +b1<k2x+b2的解集为.
16.如图,在矩形ABCD中,E、F分别是AB、CD上的点,AE=CF,连接EF、BF,
EF交对角线AC于点G,若BE=BF,∠DFE=2∠BAC,BC=cm,则△ABC的面积为cm2.
三、解答题(共52分)
17.计算(6分):
(1)﹣2(π﹣4)0+4(﹣1)2015﹣+54(﹣3)﹣2
18.(6分)
.
19.(8分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:
(1)图2中折线ABC表示
槽中的深度与注水时间之间的关系,
线段DE表示槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”);点B的纵坐标表示的实际意义是.
(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.
20.(8分)某县体委为了了解本县初一新生喜欢球类运动的情况,随机抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,(说明:每位学生只选而且必须选一种自己最喜欢的一种球类),并将调查结果绘制成如下两幅不完整的统计图请,请根据这两幅图形解答下列问题:
(1)本次调查中,一共抽查了初一学生;
(2)请将两幅图形补充完整;
(3)已知该县共有初一学生12800人,问喜欢足球运动的学生大约有多少人?21.(8分)如图,直线l1:y=k1+b1(k≠0)分别与x轴、y轴相交于点
A(﹣5,0)和点B(0,2),直线l2:y=2x+b2与直线l1相交于点P、与y轴
相交于点C,已知点P的纵坐标为3.
(1)求直线l2的解析式;
(2)求△BCP的面积.
22.(8分)如图,菱形ABCD的对角线AC与BD相交于点O,过点O的直
线EF分别与边AD、相交于点E和F,∠ABC与∠BAD的度数比为1:2,
菱形ABCD的周长为32cm.
(1)求菱形ABCD的两条对角线的长度;
(2)求四边形ABFE的面积.
23.(8分)如图(Ⅰ),分别以△ABC的边AC和BC为边,向△ABC外作
正方形ACE1F1和正方形BCE2F2,过点C作直线PQ交AB于H,使
∠AHP=∠ACE1,过E1作E1M⊥PQ于M,过E2作E2N⊥PQ于N,连接AE1.
(1)若∠ACH=60°,CH=2cm,求AE1的长;
(2)求证:ME 1=NE2;
(3)若将图(Ⅰ)中的两个正方形改为两个等边三角形,过点C作直线P1Q1
和P2Q2分别交AB于H1和H2,使∠AH1P1=∠ACE1,∠BH2P2=∠BCE2,同
样过E1作E1M⊥P1Q1于M,过E2作E2N⊥P2Q2于N,如图(Ⅱ),请你猜想
(2)的结论是否成立?若成立,请你给出证明;若不成立,请你说明理由.
.。