2013届高三数学一轮复习教案(直线与圆)

合集下载

数学高考复习名师精品教案:第59课时:第七章 直线与圆的方程-直线与圆的位置关系

数学高考复习名师精品教案:第59课时:第七章 直线与圆的方程-直线与圆的位置关系

数学高考复习名师精品教案第59课时:第七章直线与圆的方程——直线与圆的位置关系课题:直线与圆的位置关系一.复习目标:1.掌握圆的标准方程及一般式方程,理解圆的参数方程及参数 的意义,能根据圆的方程熟练地求出圆的圆心和半径;能熟练地对圆的方程的各种形式进行相互转化。

2.掌握直线与圆的位置关系,会求圆的切线方程,公共弦方程及等有关直线与圆的问题。

3.渗透数形结合的数学思想方法,充分利用圆的几何性质优化解题过程。

二.主要知识:1.圆的标准方程:;圆的一般方程:;圆的参数方程:。

2.直线与圆的位置关系判断的两种方法:代数方法:;几何方法:;3.弦长的计算方法:代数方法:;几何方法:;三.基础训练:1.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是( )()A 2a <- ()B 203a -<< ()C 20a -<< ()D 223a -<< 2.直线y x m =-+与圆221x y +=在第一象限内有两个不同交点,则m 的取值范围是( )()A 0m <<()B 1m < ()C 1m ≤ ()D m 3.圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是( )()A 22(7)(1)1x y +++= ()B 22(7)(2)1x y +++=()C 22(6)(2)1x y +++= ()D 22(6)(2)1x y ++-=4.设M 是圆22(5)(3)9x y -+-=上的点,则M 点到直线3420x y +-=的最短距离是 。

5.若曲线1y =(22)x -≤≤与直线(2)4y k x =-+有两个交点时,则实数k 的取值范围是____ __。

四.例题分析:例1.求满足下列各条件圆的方程:(1)以)9,4(A ,)3,6(B 为直径的圆;(2)与,x y 轴均相切且过点(1,8)的圆;(3)求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程。

直线与圆、圆与圆的位置关系 高三数学一轮复习

直线与圆、圆与圆的位置关系 高三数学一轮复习

位置关系 相交
相切
几何法 d___<_____r d___=_____r
Байду номын сангаас
代数法 Δ____>____0 Δ___=_____0
相离
d___>_____r
Δ____<____0
2.圆与圆的位置关系 已知两圆C1:(x-x1)2+(y-y1)2=r12, C2:(x-x2)2+(y-y2)2=r22,
解析:x2+y2-2x-2y+1=0,则(x-1)2+(y-1)2=1,圆心为(1,1),半径r=1, 弦长为2,则直线过圆心,即1-2+a=0,解得a=1.
题后师说
角度二 切线问题 例3(1)[2024·河北张家口模拟]过点P(1,1)作圆E:x2+y2-4x+2y=0 的切线,则切线方程为( ) A.x+y-2=0 B.2x-y-1=0 C.x-2y+1=0 D.x-2y+1=0或2x-y-1=0
(2)若直线l:x- 3y+a=0与圆C:(x-2)2+y2=1有公共点,则实数 a的最小值是___-__4___.
解析:由于直线l:x- 3y+a=0与圆C:(x-2)2+y2=1有公共点, 因此圆心C(2,0)到直线l:x- 3y+a=0的距离d= 2+a ≤1,
12+ − 3 2
于是|2+a|≤2,解得a∈[-4,0],因此实数a的最小值是-4.
答案:C
(2)[2024·广东深圳模拟]若过点M(2,1)的直线l与圆O:x2+y2=8交
于A,B两点,则弦AB最短时直线l的方程为( )
A.2x-y-3=0
B.x+y-3=0
C.x+2y-4=0
D.2x+y-5=0
答案:D
解析: 当AB最短时,直线l⊥OM, 所以kl·kOM=-1. 又kOM=12,所以kl=-2, 所以l的方程为y-1=-2(x-2),即2x+y-5=0.故选D.

圆的方程 ---2013届高考理科数学第一轮基础复习

圆的方程 ---2013届高考理科数学第一轮基础复习

设圆 C 的方程为 x2+y2+Dx+Ey+F=0, 因圆 C 过上述三 点,将它们的坐标分别代入圆 C 的方程,得
-1- 1-b2+D-1- 1-b+F=0, -1+ 1-b2+D-1+ 1-b+F=0, b2+Eb+F=0 D=2, 解上述方程组,因 b≠0,得E=-b+1, F=b.
与圆有关的最值问题
(2012· 深圳调研)已知 M 为圆 C:x2+y2-4x-14y+45 =0 上任意一点,且点 Q(-2,3). (1)求|MQ|的最大值和最小值; n-3 (2)若 M(m,n),求 的最大值和最小值. m+2
【思路点拨】 (1)利用|CQ|-R≤|MQ|≤|CQ|+R 求范围. n-3 (2)利用斜率的几何意义求 的范围. m+2
【答案】 (x-2)2+y2=10
求圆的方程 圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点 P(3,-2),求圆的方程.
【尝试解答】 =r2(r>0),
法一
设圆的标准方程为(x-a)2+(y-b)2
b=-4a, 3-a2+-2-b2=r2, 则有 |a+b-1|=r, 2
若不同的四点A(5,0),B(-1,0),C(-3,3),D(a,3)共圆, 求a的值.
【解】 设圆的方程为 x2+y2+Dx+Ey+F=0,则
5D+F+25=0, 有-D+F+1=0, -3D+3E+F+18=0.
D=-4, 25 解得E=- 3 , F=-5.
25 故圆的方程为 x2+y2-4x- y-5=0, 3 又点 D(a,3)在圆上,∴a2-4a-21=0, 解得 a=7 或 a=-3, 当 a=-3 时,点 C 与点 D 重合,故舍去. ∴a=7.
【解析】 由题意知 a2+4a2-4(2a2+a-1)>0, ∴3a2+4a-4<0, 2 解得-2<a< . 3

高三数学第一轮复习课时作业(47)直线与圆、圆与圆的位置关系

高三数学第一轮复习课时作业(47)直线与圆、圆与圆的位置关系

课时作业(四十七) 第47讲 直线与圆、圆与圆的位置关系时间:45分钟 分值:100分基础热身1.直线x +3y -2=0被圆(x -1)2+y 2=1截得的线段的长为( )A .1 B. 2 C. 3 D .22.从原点向圆x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为( ) A .π B .2π C .4π D .6π3.2011·哈尔滨九中二模 已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2)C.⎝ ⎛⎭⎪⎫-24,24 D.⎝⎛⎭⎫-18,18 4.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的取值集合为( )A .{3}B .{7}C .{3,7}D .{2,7} 能力提升5.2011·山东实验中学二模 圆2x 2+2y 2=1与直线x sin θ+y -1=0⎝⎛⎭⎫θ≠π2+k π,k ∈Z 的位置关系是( )A .相离B .相切C .相交D .不能确定6.2011·重庆卷 在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 27.2011·吉林一中冲刺 曲线y =1+4-x 2(|x |≤2)与直线y =k (x -2)+4有两个交点时,实数k 的取值范围是( )A.⎝⎛⎦⎤512,34B.⎝⎛⎭⎫512,+∞ C.⎝⎛⎭⎫13,34 D.⎝⎛⎭⎫0,512 8.2010·江西卷 直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0 B.⎝⎛⎦⎤-∞,-34∪0,+∞)C.⎣⎢⎡⎦⎥⎤-33,33 D.⎣⎡⎦⎤-23,0 9.2011·郑州三模 若函数f (x )=1be ax 的图像在x =0处的切线l 与圆C :x 2+y 2=1相离,则P (a ,b )与圆C 的位置关系是( )A .点在圆外B .点在圆内C .点在圆上D .不能确定10.2011·吉林一中冲刺 在平面直角坐标系xOy 中,已知x 2+y 2=4圆上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.11.2010·山东卷 已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________.12.已知直线x +y +m =0与圆x 2+y 2=2交于不同的两点A 、B ,O 是坐标原点,|+|≥||,那么实数m 的取值范围是________.13.2011·江苏卷 设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪m 2≤(x -2)2+y 2≤m 2,x ,y ∈R,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R },若A ∩B ≠∅,则实数m 的取值范围是________.14.(10分)求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程.15.(13分)已知圆C :x 2+y 2-2x +4y -4=0,是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且以AB 为直径的圆过原点?若存在,求出直线m 的方程;若不存在,说明理由.难点突破16.(12分)已知与圆C :x 2+y 2-2x -2y +1=0相切的直线l 交x 轴,y 轴于A ,B 两点,|OA |=a ,|OB |=b (a >2,b >2).(1)求证:(a -2)(b -2)=2; (2)求线段AB 中点的轨迹方程; (3)求△AOB 面积的最小值.课时作业(四十七)【基础热身】1.C 解析 圆心到直线的距离d =|1+0-2|12+(3)2=12, ∴弦长l =2r 2-d 2= 3.2.B 解析 圆即x 2+(y -6)2=32,数形结合知所求的圆弧长为圆周长的三分之一,即13×(2π)×3=2π.3.C 解析 圆心坐标是(1,0),圆的半径是1,直线方程是y =k (x +2),即kx -y +2k =0,根据点线距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.4.C 解析 集合A ,B 表示两个圆,A ∩B 中有且仅有一个元素即两圆相切,有内切和外切两种情况,由题意,外切时,r =3;内切时,r =7,即r 的值是3或7.【能力提升】5.A 解析 圆心到直线的距离d =11+sin 2θ,根据θ的取值范围,0≤sin 2θ<1,故d >12=r ⎝⎛⎭⎫注意条件θ≠π2+k π,k ∈Z 时,sin θ≠±1..6.B 解析 将圆方程配方得(x -1)2+(y -3)2=10. 设圆心为G ,易知G (1,3).最长弦AC 为过E 的直径,则|AC |=210.最短弦BD 为与GE 垂直的弦,如图1-2所示. 易知|BG |=10,|EG |=(0-1)2+(1-3)2=5, |BD |=2|BE |=2BG 2-EG 2=2 5.所以四边形ABCD 的面积为S =12|AC ||BD |=10 2.故选B.7.A 解析 曲线y =1+4-x 2为一个半圆,直线y =k (x -2)+4为过定点的直线系,数形结合、再通过简单计算即可.曲线和直线系如图,当直线与半圆相切时,由|-2k -1+4|1+k2=2,解得k =512,又k AP =34,所以k 的取值范围是⎝⎛⎦⎤512,34.8.C 解析 直线过定点(0,3)d =1,再由点到线的距离公式可得|2k -3+3|1+k 2k ∈⎣⎢⎡⎦⎥⎤-33,33时,弦长|MN |≥2 3.9.B 解析 f ′(x )=a b e ax,所以在x =0处的切线斜率为k =a b⎝⎛⎭⎫0,1b ,切线方程为y -1b =abx ,即ax -by +1=0,它与圆x 2+y 2=1相离,所以圆心到该直线的距离大于1,即1a 2+b2>1,即a 2+b 2<1,所以点在圆内.10.(-13,13) 解析 直线12x -5y +c =0是平行直线系,当圆x 2+y 2=4上有且只有四个点到该直线的距离等于1时,得保证圆心到直线的距离小于1,即|c |13<1,故-13<c <13.11.x +y -3=0 解析 由题意,设所求的直线方程为x +y +m =0,设圆心坐标为(a,0),则由题意知: ⎝ ⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或-1,又因为圆心在x 轴的正半轴上,所以a =3,故圆心坐标为(3,0).因为圆心(3,0)在所求的直线上,所以有3+0+m =0,即m =-3,故所求的直线方程为x +y -3=0.12.(-2,-2∪2,2) 解析 方法1:将直线方程代入圆的方程得2x 2+2mx +m 2-2=0,Δ=4m 2-8(m2-2)>0得m 2<4,即-2<m <2.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,x 1x 2=m 2-22,|+|≥||即|+|≥|-|,平方得·≥0,即x 1x 2+y 1y 2≥0,即x 1x 2+(m +x 1)(m +x 2)≥0,即2x 1x 2+m (x 1+x 2)+m 2≥0,即2×m 2-22+m (-m )+m 2≥0,即m 2≥2,即m ≥2或m ≤- 2.综合知-2<m ≤-2或2≤m <2.方法2:根据向量加减法的几何意义|+|≥||等价于向量,的夹角为锐角或者直角,由于点A ,B 是直线x+y +m =0与圆x 2+y 2=2的交点,故只要圆心到直线的距离大于或者等于1即可,也即m 满足1≤|m |2<2,即-2<m ≤-2或者2≤m <2.13.12≤m ≤2+ 2 解析 若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而由|2-2m -1|2≤|m |,解之得2-22≤m ≤2+22,矛盾;若m =0,则代入后可知矛盾;若m >0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,且大圆半径不小于12,即直径不小于1,集合B表示一个带形区域,且两直线间距离为22, 从而当直线x +y =2m 与x +y =2m +1中至少有一条与圆(x -2)2+y 2=m 2有交点,即可符合题意,从而有 |2-2m |2≤|m |或|2-2m -1|2≤|m |,解之得2-22≤m ≤2+2,所以综上所述,实数m 的取值范围是12≤m ≤2+ 2.14.解答 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),由题知所求圆与圆x 2+y 2-2x =0外切, 则(a -1)2+b 2=r +1.①又所求圆过点M 的切线为直线x +3y =0, 故b +3a -3= 3.② |a +3b |2=r .③ 解由①②③组成的方程组得a =4,b =0,r =2或a =0,b =-43,r =6. 故所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 15.解答 设存在直线方程为y =x +b 满足条件,代入圆的方程得2x 2+2(b +1)x +b 2+4b -4=0,直线与该圆相交则Δ=4(b +1)2-8(b 2+4b -4)>0,解得-3-32<b <-3+3 2.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-(b +1),x 1x 2=b 2+4b -42,以AB 为直径的圆过原点时,AO ⊥BO ,即x 1x 2+y 1y 2=0,即2x 1x 2+b (x 1+x 2)+b 2=0,把上面式子代入得b2+4b -4-b (b +1)+b 2=0,即b 2+3b -4=0,解得b =-4或b =1,都在-3-32<b <-3+32内,故所求的直线是y =x -4或y =x +1.【难点突破】16.解答 (1)证明:圆的标准方程是(x -1)2+(y -1)2=1,设直线方程为x a +y b=1,即bx +ay -ab =0,圆心到该直线的距离d =|a +b -ab |a 2+b21,即a 2+b 2+a 2b 2+2ab -2a 2b -2ab 2=a 2+b 2,即a 2b 2+2ab -2a 2b -2ab 2=0,即ab +2-2a -2b =0,即(a -2)(b -2)=2.(2)设AB 中点M (x ,y ),则a =2x ,b =2y ,代入(a -2)(b -2)=2,得(x -1)(y -1)=12(x >1,y >1).(3)由(a -2)(b -2)=2得ab +2=2(a +b )≥4ab ,解得ab ≥2+2(舍去ab ≤2-2),当且仅当a =b 时,ab 取最小值6+42,所以△AOB 面积的最小值是3+2 2.。

高中数学第十节讲解教案

高中数学第十节讲解教案

高中数学第十节讲解教案
主题:直线与圆的位置关系
一、教学目标:
1. 理解直线和圆的位置关系的基本概念。

2. 掌握直线与圆的位置关系的判定方法。

3. 能够应用直线与圆的位置关系解决相关问题。

二、教学重点:
1. 直线与圆的位置关系的基本概念。

2. 直线与圆的位置关系的判定方法。

三、教学难点:
1. 圆的切线与切点的概念。

2. 如何判断一条直线与圆的位置关系。

四、教学过程:
1. 复习:回顾上节课所学的直线和圆的相关知识。

2. 引入:通过一个实际问题引入直线与圆的位置关系的概念,激发学生的学习兴趣。

3. 学习:讲解直线与圆的位置关系的基本概念,并介绍判定直线与圆位置关系的方法。

4. 实践:让学生通过练习题巩固所学知识,提出问题并引导学生解决。

5. 总结:对本节课所学知识进行总结,强调重点和难点,帮助学生理清思路。

六、作业布置:
1. 完成课堂练习题。

2. 自主学习相关知识,做好预习。

七、教学反思:
通过本节课的教学,学生对直线与圆的位置关系有了更深入的理解,掌握了相关判定方法,并能够运用所学知识解决相关问题。

在教学过程中,要充分引导学生思考,灵活运用知识,培养学生的解决问题能力和创新意识。

【走向高考】(2013春季发行)高三数学第一轮总复习 8-2圆的方程 新人教A版

【走向高考】(2013春季发行)高三数学第一轮总复习 8-2圆的方程 新人教A版

8-2圆的方程基础巩固强化1.(2011²广州检测)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1[答案] A[解析] 设圆心坐标为(0,b ),则由题意知 0-12+b -22=1,解得b =2,故圆的方程为x 2+(y -2)2=1.2.(文)(2011²广东文,8)设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则圆C 的圆心轨迹为( )A .抛物线B .双曲线C .椭圆D .圆[答案] A[解析] 动圆圆心C 到定点(0,3)的距离与到定直线y =-1的距离相等,符合抛物线的定义,故选A.(理)(2011²广州模拟)动点A 在圆x 2+y 2=1上移动时,它与定点B (3,0)连线的中点的轨迹方程是( )A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1 D .(x +32)2+y 2=12[答案] C[解析] 设中点M (x ,y ),则点A (2x -3,2y ), ∵A 在圆x 2+y 2=1上,∴(2x -3)2+(2y )2=1, 即(2x -3)2+4y 2=1,故选C.3.方程(x 2+y 2-4)x +y +1=0表示的曲线形状是( )[答案] C[解析] 注意到方程(x 2+y 2-4)x +y +1=0等价于①⎩⎪⎨⎪⎧x 2+y 2-4=0,x +y +1≥0,或②x +y +1=0.①表示的是不在直线x +y +1=0的左下方且在圆x 2+y 2=4上的部分;②表示的是直线x +y +1=0.因此,结合各选项知,选C.4.(2011²华安、连城、永安、漳平、龙海、泉港六校联考)圆x 2+y 2-2x -2y +1=0上的点到直线3x +4y +5=0的距离最大值是a ,最小值是b ,则a +b =( )A.125B.245C.65 D .5[答案] B[解析] 圆心C (1,1)到直线3x +4y +5=0距离d =125,∴a +b =⎝ ⎛⎭⎪⎫125+r +⎝ ⎛⎭⎪⎫125-r =245(r 为圆的半径).5.(2012²福州八县联考)已知函数f (x )=1-x -12,x ∈[1,2],对于满足1<x 1<x 2<2的任意x 1、x 2,给出下列结论:①f (x 2)-f (x 1)>x 2-x 1; ②x 2f (x 1)>x 1f (x 2);③(x 2-x 1)[f (x 2)-f (x 1)]<0; ④(x 2-x 1)[f (x 2)-f (x 1)]>0. 其中正确结论的个数为( )A .1B .2C .3D .4 [答案] B[解析] 曲线y =1-x -12,x ∈[1,2]表示圆(x -1)2+y 2=1,位于直线x =1右侧x 轴上方的四分之一个圆,∵1<x 1<x 2<2,∴f (x 1)>f (x 2).因此,(f (x 2)-f (x 1))(x 2-x 1)<0,④错,③对;显然有k OA >k OB ,∴f x 1x 1>f x 2x 2,∴x 2f (x 1)>x 1f (x 2),故②正确;又k AB =f x 2-f x 1x 2-x 1<0,可能有k AB <-1,也可能k AB >-1,∴①错.6.(文)(2011²日照模拟)圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -1)2+(y -3)2=(185)2B .(x -3)2+(y -1)2=(165)2C .(x -2)2+(y -32)2=9D .(x -3)2+(y -3)2=9 [答案] C[解析] 设圆心坐标为(a ,3a)(a >0),则圆心到直线3x +4y +3=0的距离d =|3a +12a +3|5=35(a +4a +1)≥35(4+1)=3,等号当且仅当a =2时成立.此时圆心坐标为(2,32),半径为3,故所求圆的方程为(x -2)2+(y -32)2=9.(理)(2011²西安模拟)若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为( )A .1B .5C .4 2D .3+2 2[答案] D[解析] 由条件知圆心C (2,1)在直线ax +2by -2=0上,∴a +b =1, ∴1a +2b =(1a +2b)(a +b )=3+b a+2ab≥3+22,等号在b a=2ab,即b =2-2,a =2-1时成立.7.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,则点P 的轨迹方程为________.[答案] (x +3)2+(y -4)2=4(x ≠-95且x ≠-215)[解析]如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为(x 2,y 2),线段MN 的中点坐标为(x 0-32,y 0+42).由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42. 从而⎩⎪⎨⎪⎧x 0=x +3y 0=y -4.因为N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点(-95,125)和(-215,285)(点P在直线OM 上时的情况).8.(2011²南京模拟)已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.[答案] x +y -1=0[解析] 过点M 的最短的弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1), ∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-1(x -1),即x +y -1=0.9.(文)已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.[答案] (x +2)2+y 2=2[解析] 设圆的方程为(x -a )2+y 2=2(a <0),由条件得2=|a |2,∴|a |=2,又a <0,∴a =-2.(理)(2012²石家庄一模)已知动圆的圆心C 在抛物线x 2=2py (p >0)上,该圆经过点A (0,p ),且与x 轴交于两点M 、N ,则sin ∠MCN 的最大值为________.[答案] 1[解析] 当圆心C 的纵坐标为p 时,C (2p ,p )为圆心的圆方程为(x -2p )2+(y -p )2=2p 2,令y =0得,x =2p ±p ,∴MC ⊥NC ,∴sin ∠MCN =1.10.(文)已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5),求: (1)过点A 的圆的切线方程;(2)O 点是坐标原点,连结OA ,OC ,求△AOC 的面积S . [解析] (1)⊙C :(x -2)2+(y -3)2=1.当切线的斜率不存在时,过点A 的直线方程为x =3,C (2,3)到直线的距离为1,满足条件.当k 存在时,设直线方程为y -5=k (x -3),即kx -y +5-3k =0,由直线与圆相切得, |-k +2|k 2+1=1,∴k =34.∴直线方程为x =3或y =34x +114.(2)|AO |=9+25=34, 直线OA :5x -3y =0, 点C 到直线OA 的距离d =134,S =12²d ²|AO |=12.(理)(2011²兰州一诊)已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA 、PB 是圆M 的两条切线,A 、B 为切点,求四边形PAMB 面积的最小值.[解析] (1)设圆M 的方程为: (x -a )2+(y -b )2=r 2(r >0). 根据题意,得⎩⎪⎨⎪⎧1-a 2+-1-b 2=r 2,-1-a 2+1-b 2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形PAMB 的面积S =S △PAM +S △PBM=12|AM |²|PA |+12|BM |²|PB |, 又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |, 而|PA |=|PM |2-|AM |2=|PM |2-4, 即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P , 使得|PM |的值最小,所以|PM |min =|3³1+4³1+8|32+42=3,所以四边形PAMB 面积的最小值为:S =2|PM |2-4=232-4=2 5.能力拓展提升11.(2011²西安模拟)已知圆的方程为x 2+y 2-6x -8y =0,设该圆中过点M (3,5)的最长弦、最短弦分别为AC 、BD ,则以点A 、B 、C 、D 为顶点的四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 6[答案] B[解析] 圆的方程:(x -3)2+(y -4)2=25, ∴半径r =5,圆心到最短弦BD 的距离d =1, ∴最短弦长|BD |=46, 又最长弦长|AC |=2r =10,∴四边形的面积S =12³|AC |³|BD |=20 6.12.(文)(2011²成都龙泉第一中学模拟)以抛物线y 2=20x 的焦点为圆心,且与双曲线x 216-y 29=1的两渐近线都相切的圆的方程为( ) A .x 2+y 2-20x +64=0 B .x 2+y 2-20x +36=0 C .x 2+y 2-10x +16=0 D .x 2+y 2-10x +9=0[答案] C[解析] 抛物线的焦点坐标是(5,0),双曲线的渐近线方程是3x ±4y =0,点(5,0)到直线3x ±4y =0的距离d =3即为所求圆的半径.故所求圆的方程为(x -5)2+y 2=9,即x 2+y 2-10x +16=0,故选C.(理)设A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程是( )A .(x -1)2+y 2=4 B .(x -1)2+y 2=2 C .y 2=2x D .y 2=-2x[答案] B[解析] 设P (x ,y ),圆心C (1,0),由题意知PA ⊥AC ,∴|PC |2=|PA |2+|AC |2=2,∴(x -1)2+y 2=2,故选B.13.(2011²长春市调研)若圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交所得的弦长为22,则圆的方程是________________.[答案] (x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244[解析] 设圆的方程为(x -a )2+(y -b )2=r 2,点A (2,3)关于直线x +2y =0的对称点仍在圆上,说明圆心在直线x +2y =0上,即有a +2b =0,根据题意可得⎩⎪⎨⎪⎧a +2b =0,2-a 2+3-b 2=r 2,r 2-a -b +122=2.解得⎩⎪⎨⎪⎧a =6,b =-3,r 2=52.或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.14.(文)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为__________.[答案] (x +1)2+y 2=2[解析] 在直线方程x -y +1=0中,令y =0得,x =-1,∴圆心坐标为(-1,0), 由点到直线的距离公式得圆的半径R =|-1+0+3|2=2, ∴圆的标准方程为(x +1)+y 2=2.(理)圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于A 、B ,|AB |=3,则该圆的标准方程是________.[答案] (x -1)2+⎝ ⎛⎭⎪⎫y -122=1[解析]设圆心C (a ,b ),由条件知a =1,取弦AB 中点D ,则CD =AC 2-AD 2=12-⎝⎛⎭⎪⎫322=12, 即b =12,∴圆方程为(x -1)2+⎝ ⎛⎭⎪⎫y -122=1.15.(文)(2011²青岛模拟)已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程. [解析] (1)证明:∵圆C 过原点O ,∴OC 2=t 2+4t2.设圆C 的方程是(x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |²|OB |=12³⎪⎪⎪⎪⎪⎪4t ³|2t |=4,即△OAB 的面积为定值. (2)∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴直线OC 的方程是y =12x .∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.(理)(2011²北京模拟)已知点A (-3,0),B (3,0).动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线C 的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.[解析] (1)设P (x ,y ),∵|PA |=2|PB |, ∴(x +3)2+y 2=4[(x -3)2+y 2] 整理得(x -5)2+y 2=16. (2)由条件知QM 与圆C 相切,则问题转化为在直线l 1上求一点Q ,过点Q 作⊙C 的切线,求切线长的最小值. 由于⊙C 的半径为定值4,欲使切线长最小,只需QC 最小,而点C (5,0)为定点,因此,当CQ ⊥l 1时取得最小值,∵C 到l 1的距离d =42,∴|QM |min =d 2-42=4.16.(文)已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.[分析] (1)设出点P 的坐标,由|PA |=2|PB |写出方程,化简即可;(2)直线l 2与曲线C 只有一个公共点M ,故l 2与C 相切,当|QC |取最小值时,|QM |取到最小值,故|CQ |为点C 到l 1的距离时满足要求.[解析] (1)设点P 的坐标为(x ,y ), 则x +32+y 2=2x -32+y 2,化得可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图. 由题意知直线l 2是此圆的切线,连接CQ , 则|QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.(理)(2012²河南六市联考)已知直线l 与抛物线x 2=4y 相切于点P (2,1),且与x 轴交于点A ,O 为坐标原点,定点B 的坐标为(2,0),动点Q 满足AB →²BQ →+2|AQ →|=0.(1)求动点Q 的轨迹C 的方程;(2)是否存在圆心在原点的圆,只要该圆的切线与切点Q 的轨迹C 有两个不同交点M ,N ,就一定有OM →²ON →=0?若存在,求出该圆的方程;若不存在,请说明理由.[解析] (1)由x 2=4y 得y =14x 2,∴y ′=12x ,∴直线l 的斜率为y ′|x =2=1,故l 的方程为:y -1=1(x -2),即y =x -1, ∴点A 坐标为(1,0),设Q (x ,y ),则AB →=(1,0),BQ →=(x -2,y ),AQ →=(x -1,y ), 由AB →²BQ →+2|AQ →|=0得,x -2+0+2x -12+y 2=0,化简整理得x 22+y 2=1,故动点Q 的轨迹C 的方程为:x 22+y 2=1.(2)假设存在这样的圆,其方程为x 2+y 2=r 2(r >0).(ⅰ)当直线MN 的斜率存在时,设其方程为y =kx +m 代入x 22+y 2=1,可得(1+2k 2)x 2+4kmx +2m 2-2=0,判别式Δ=16k 2m 2-4(1+2k 2)(2m 2-2)>0, ∴m 2<1+2k 2,①设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4km1+2k 2,②x 1x 2=2m 2-21+2k 2,③由OM →²ON →=0,可得x 1x 2+y 1y 2=0,即x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0,④ 将②③代入④得2m 2-11+k 21+2k 2-4k 2m 21+2k 2+m 2=0,m 2=23(1+k 2),⑤显然满足①式由直线MN :y =kx +m 与圆x 2+y 2=r 2相切知:r =|m |1+k2,∴r =m 21+k 2=23,即存在圆x 2+y 2=23满足题意. (ⅱ)当直线MN 的斜率不存在时,可得x 1=x 2=63或x 1=x 2=-63,y 1=-y 2=63,满足OM →²ON →=0,综上所述:存在圆x 2+y 2=23满足题意.1.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为60°,直线ax +by -a +1=0平分圆C :(x -2)2+(y -3)2=1,则点P (a ,b )与圆C 的位置关系是( )A .P 在⊙C 内B .P 在⊙C 上 C .P 在⊙C 外D .无法确定[答案] C[解析] 由条件得,⎩⎪⎨⎪⎧b a =tan60°,2a +3b -a +1=0,解之得⎩⎪⎨⎪⎧a =-14,b =-34,∵(-14-2)2+(-34-3)2>1,∴点P 在⊙C 外.2.(2011²临沂模拟)圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是( )A .(-∞,14]B .(0,14]C .(-14,0)D .(-∞,14)[答案] A[解析] 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,∴ab ≤(a +b2)2=14.3.已知圆(x+1)2+(y-1)2=1上一点P到直线3x-4y-3=0距离为d,则d的最小值为( )A.1 B.4 5C.25D.2[答案] A[解析] ∵圆心C(-1,1)到直线3x-4y-3=0距离为2,∴d min=2-1=1.4.(2011²东北育才中学期末)圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a-b的取值范围是( )A.(-∞,4) B.(-∞,0)C.(-4,+∞) D.(4,+∞)[答案] A[解析] 圆(x-1)2+(y+3)2=10-5a,由条件知,圆心C(1,-3)在直线y=x+2b上,∴b=-2,又10-5a>0,∴a<2,∴a-b<4.5.(2011²浙江宁波八校联考)点(a,b)为第一象限内的点,且在圆(x+1)2+(y+1)2=8上,ab的最大值为________.[答案] 1[解析] 由条件知a>0,b>0,(a+1)2+(b+1)2=8,∴a2+b2+2a+2b=6,∴2ab+4ab ≤6,∵ab>0,∴0<ab≤1,等号在a=b=1时成立.[点评] 作出图形可见,点(a,b)为⊙C在第一象限的一段弧,由对称性可知,当点(a,b)为直线y=x与⊙C的交点(1,1)时,ab取最大值1.。

2013届高考一轮数学复习理科课件(人教版)第6课时 直线与椭圆


第九章
第6课时
高考调研
高三数学(新课标版· 理)
4 则 x1·2=0,x1+x2= ,y1y2=(x1-1)(x2-1)=x1x2- x 3 4 1 (x1+x2)+1=1-3=-3, 1 1 → → OA· =x1x2+y1y2=0-3=-3. OB
第九章
第6课时
高考调研
高三数学(新课标版· 理)
第九章
理)
因为直线与椭圆恒有公共点,故 Δ=(10k)2-4×(5k2 +m)×5(1-m)=20(5k2m-m+m2)≥0 因为 m>0,所以不等式等价于 5k2 -1+m≥0,即 1-m 1-m k ≥ 5 ,由题意,可知不等式恒成立,则 5 ≤0,解
2
得 m≥1. 综上 m 的取值范围为 m≥1 且 m≠5.
第九章
第6课时
高考调研
【解析】 m≠5. 将直线与椭圆的方程联立方程组,得 解法一
高三数学(新课标版· 理)
由椭圆的方程,可知 m>0,且
y-kx-1=0,① 2 2 x y 由①,得 y=kx+1, 5 +m=1,②
2 x2 kx+1 代入②,得 5 + m =1,
整理,得(5k2+m)x2+10kx+5(1-m)=0,
得(a2+3b2)y2+8 3b2y+16b2-a2b2=0, 由 Δ=0,可得 a2=7,∴2a=2 7.
第九章 第6课时
高考调研
高三数学(新课标版· 理)
2.若直线 mx+ny=4 与⊙O:x2+y2=4 没有交点, x2 y2 则过点 P(m,n)的直线与椭圆 9 + 4 =1 的交点个数是 ( ) A.至多为 1 C.1
答案 1 -3
第九章
第6课时

高三数学应知应会讲义十:直线与圆复习教案

直线与圆序号 内容要求 A BC 1 直线的倾斜角与斜率√2 直线方程√3 两条直线的平行关系与垂直关系√ 4 两条相交直线的交点、交角√ 5 点到直线的距离√ 6 简单的线性规划问题 √ 7 曲线与方程的概念√8圆的标准方程、一般方程、参数方程√二、应知应会知识1.(1)一直线过点(0,-3),(-3,0),则此直线的倾斜角为( ) A .π4 B .3π4 C .-π4 D .-3π4解:B .(2)直线x cos θ+y -1=0(θ∈R )的倾斜角的取值范围是( )A .[0,π)B .[π4,3π4]C .[-π4,π4]D .[0,π4]∪[3π4,π)解:D(3)已知直线l 的倾斜角的变化范围是(π3,3π4],则该直线的斜率k 的变化范围是_______.解:(3,+∞)∪(-∞,-1].考查直线的倾斜角、斜率、斜率公式,理解倾斜角与斜率之间关系.注意正切函数的图象与性质的适当应用. 2.(1)原点在直线l 上的射影是P (-2,1),则直线l 的方程是( ) A .x +2y =0 B .x +2y -4=0 C .2x -y +5=0 D .2x +y +3=0 解:C .(2)过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A .-32 B .-23 C .25D .2解:A .(3)过点(5,2),且在x 轴上截距是在y 轴上截距的2倍的直线方程是( ) A .2x +y -12=0 B .x +2y -9=0或2x -5y =0 C .x -2y -1=0 D .2x +y -12=0或2x -5y =0 解:B考查直线方程的几种形式、适用范围,注意截距的概念、运算的准确. 3.(1)已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于( ) A .2 B .1 C .0 D .1- 解:D.(2)已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0.若l 1∥l 2,则a =___________.解:2.(3)若三点A (2,2),B (a ,0),C (0,4)共线,则a 的值等于_____. 解:4(4)与直线3x -4y +5=0共线的单位向量是( )A .(3,4)B .(4,-3)C .(35 ,45 )D .(45 ,35 )解:D .(5)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 解:C .(6)直线x +a 2y +1=0与直线(a 2+1)x -by +3=0互相垂直,ab ∈R ,则||ab |的最小值是( )A .1B .2C .4D .5 解:B .考查两条直线平行与垂直的条件,注意选择合理的转化方法. 4.(1)直线y =2与直线x +y —2=0的夹角是( ) A .π4 B .π3 C .π2 D .3π4解:A .(2)若直线l :y =kx -3与直线2x +3y -6=0交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[π6,π3) B .(π6,π2) C .(π3,π2) D .[π6,π2) 解:B .考查两条直线的交点与夹角的计算,注意运算准确.5.(1)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A . 2 B .2- 2 C .2-1 D .2+1 解:C .(2)已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为( )A . 5B .10C .2 5D .210 解:A .(3)直线y =2x 关于x 轴对称的直线方程为( ) A .y =-12x B .y =12x C .y =-2x D .y =2x解:C .(4)若点P (3,4)、Q (a ,b )关于直线x -y -1=0对称,则( )A .a =1,b =-2B .a =2,b =-1C .a =4,b =3D .a =5,b =2 解:D .考查点到直线的距离公式,注意综合应用平行、垂直、夹角、交点、距离等工具转化对称问题.6.(1)不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +5≥0,0≤x ≤3,表示的平面区域的面积是( )A .48B .36C .24D .12 解:C(2)图中阴影部分用二元一次不等式组表示为__________________.解:⎩⎪⎨⎪⎧x ≤0,y ≥-1,2x -y +2≥0.(3)设 z =2y -x ,式中变量x ,y 满足条件⎩⎪⎨⎪⎧2x -y ≥-1,3x +2y ≤23,y ≥1.则z 的最大值为_________.解:11.(4)已知平面区域D 由以A (1,3),B (5,2),C (3,1)为顶点的三角形内部以及边界组成.若在区域D 上有无穷多个点(x ,y )可使目标函数z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 解:C .(5)某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11.则z =10x +10y 的最大值是( )A .80B . 85C . 90D .95 解:C .考查线性规划问题,注意平面区域与不等式组的对应,体会数形结合的重要思想. 7.(1)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是___________.解:(x -1)2+(y -2)2=25.(2)圆心在直线y =x 上且与x 轴相切于点(1,0)的圆的方程为 .解:(x -1)2+(y -1)2=1.(3)过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B . (x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4 解:C .考查圆的方程,注意直接找圆心、半径与待定系数法之间的关系.8.(1)圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( )A .2B .22C .1D . 2解:D .(2)“a =-1”是方程“a 2x 2+(a +2)y 2+2ax +a =0”表示圆的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分又非必要条件 解:C .考查圆的一般方程与标准方程的互化,了解圆的一般方程与二元二次方程之间的关系.9.(1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 的坐标为( )A .(-12,32)B .(-32,-12)C .(-12,-32)D .(-32,12) 解:A . (2)曲线⎩⎨⎧x =cos θ,y =sin θ.(θ为参数)上的点到两坐标轴的距离之和的最大值是( ) A .12B .22C .1D . 2解:D .考查圆的参数方程,注意参数方程在研究最值中的应用.10.(1)若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A . x -y -3=0 B .2x +y -3=0 C . x +y -1=0 D . 2x -y -5=0 解:A .(2)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A .1,-1B .2,-2C .1D .-1 解:D .(3)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠π2+k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定的 解:C .(4)已知圆(x +1)2+y 2=1和圆外一点P (0,2).过点P 作圆的切线,则两条切线夹角的正切值是__________. 解:43.(5)圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为_________. 解:2.(6)若过定点M (-1,0)且斜率为k 的直线与圆x 2+4x +y 2-5=0在第一象限内的部分有交点,则k 的取值范围是( )A .0<k < 5B .-5<k <0C .0<k <13D .0<k <5 解:A ..考查直线与圆的位置关系,注意平面几何的一些方法在求弦长、切线、交点、最值等问题的合理应用,简化运算的过程. xyO 2-1-1。

参数方程


高考调研
高三数学(新课标版· 理)
所 确 定 的 点 P(x , y) 都 在 曲 线 C 上 , 那 么 方 程
x=ft y=gt
,叫做曲线 C 的参数方程,变量 t 是参数.
选考部分
选修系列4
高考调研
2.圆锥曲线的参数方程
高三数学(新课标版· 理)
(1)圆心为(a,b),半径为 r 的圆的参数方程为
高考调研
3.直线的参数方程
高三数学(新课标版· 理)
过点 M(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x +tcosα 0 y=y0+tsinα ____________(t
为参数),其中 t 表示直线上以定点 M0 为
→ 起点, 任意一点 M(x, y)为终点的有向线段M0M的____. 数量 当 → → t>0 时,M0M的方向向上;当 t<0 时,M0M的方向向下; 当 t=0 时,M 与 M0 重合.
1.了解参数方程,了解参数的意义. 2.能选择适当的参数写出直线、圆和圆锥曲线的参 数方程. 3.了解圆的平摆线、渐开线的形成过程,并能推导 出它们的参数方程.
选考部分
选修系列4
高考调研
高三数学(新课标版· 理)
请注意!
对本部分的考查,主要是参数方程与普通方程的互 化,常见曲线的参数方程及参数方程的简单应用,题目难 度的设置以中档题型为主,预测 2013 年高考中,在难度, 知识点方面变化不大.
x2 y2 (3)双曲线 2- 2=1(a>0,b>0)的参数方程为 a b a x= cosθ y=btanθ ______________(t 为参数). (4)抛物线 参数).

直线与圆的位置关系(复习课)


\ 圆心 C 到直接 kx - y - 4k + 4 = 0 的距离 d =
| 2k - 4k + 4 | k 2 + (- 1)2
=2,
根据圆心到 直线的距离 d =R
解得 k =
3 3 ,\ 切线方程为 y = x + 1 . 4 4
化简方程求 解k 注意斜率不 存在的情况
(2)当斜率不存在时,则切线方程为 x = 4
d= | 2k - k + 3 | k 2 + (- 1) 2 = 2 ,解得 k =
3 3 2 3 x+ ,\ 切线方程为 y = 3 3 3
方法二: 解:如图 3 所示 设直接的斜率为 k ,则直线方程 y = k ( x - 1) + 3
y 4
点P(1, 3) 在圆上,则 点P(1, 3) 为切点
| - 28 |
7 = , 42 + 7 2 2
求圆心到直线的距离 d
d > R = 3 ,\ 直线与圆相离.
比较弦心距 d 与半径 R 的大小 问题 5.代数法解题步骤是什么? 确定直线与圆的方程
代数特征
直线方程 4 x + 7 y - 28 = 0 ,圆 O 的方程 x 2 + y 2 = 9
联立 í
1
三、教学设计: 一、知识回顾 导入语:大家知道数学来源于生活,又服务于生活。下面有一道生活问题, 你能用学过哪方面的知识求解? 一个小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心,半径为 的圆形区域.已知小岛中心位于轮船正西 处,港口位于小岛中心正北 处.
如果轮船沿直线返港,那么它是否会有触礁的危险? 问题 1.你能否将此生活问题转化为我们熟悉的数学问题?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章直线与圆的方程 §7.1 直线的方程1.设直线l 与x 轴的交点是P ,且倾斜角为α,若将此直线绕点P 按逆时针方向旋转45°,得到直线的倾斜角为α+45°,则( ) A .0°≤α<180°B .0°≤α<135°C . 0°<α≤135°D . 0°<α<135°答案 D2.(2008²全国Ⅰ文)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°答案 B3.过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或4答案 A4.过点P (-1,2)且方向向量为a =(-1,2)的直线方程为( )A .2x +y =0B .x -2y +5=0C .x -2y =0D .x +2y -5=0答案 A5.(2009²株州模拟)一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为 . 答案 x +2y -2=0或2x +y+2=0例1 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.证明 方法一 ∵A (1,-1),B (3,3),C (4,5), ∴k AB =1313-+=2,k BC =3435--=2,∴k AB =k BC ,∴A 、B 、C 三点共线.方法二 ∵A (1,-1),B (3,3),C (4,5), ∴|AB |=25,|BC |=5,|AC |=35, ∴|AB |+|BC |=|AC |,即A 、B 、C 三点共线. 方法三 ∵A (1,-1),B (3,3),C (4,5), ∴AB =(2,4),BC =(1,2),∴AB =2BC . 又∵AB 与BC 有公共点B ,∴A 、B 、C 三点共线. 例2已知实数x ,y 满足y =x 2-2x +2 (-1≤x ≤1). 试求:23++x y 的最大值与最小值.解 由23++x y 的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k ,如图可知:k PA ≤k ≤k PB ,由已知可得:A (1,1),B (-1,5), ∴34≤k ≤8,基础自测故23++x y 的最大值为8,最小值为34.例3 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 解 (1)方法一 设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =32x ,即2x -3y =0.若a ≠0,则设l 的方程为1=+by a x ,∵l 过点(3,2),∴123=+aa,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 方法二 由题意知,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3), 令y =0,得x =3-k2,令x =0,得y =2-3k ,由已知3-k2=2-3k ,解得k =-1或k =32,∴直线l 的方程为: y -2=-(x -3)或y -2=32(x -3),即x +y -5=0或2x -3y =0.(2)由已知:设直线y =3x 的倾斜角为α, 则所求直线的倾斜角为2α. ∵tan α=3,∴tan2α=αα2tan 1tan 2-=-43.又直线经过点A (-1,-3), 因此所求直线方程为y +3=-43(x +1),即3x +4y +15=0.例4 (12分)过点P (2,1)的直线l 交x 轴、y 轴正半轴于A 、B 两点,求使:(1)△AOB 面积最小时l 的方程; (2)|PA |²|PB |最小时l 的方程. 解 方法一 设直线的方程为1=+by a x (a >2,b >1),由已知可得112=+ba. 2分(1)∵2ba 12∙≤ba12+=1,∴ab ≥8.∴S △AOB =21ab ≥4.4分当且仅当a2=b1=21,即a =4,b =2时,S △AOB 取最小值4,此时直线l 的方程为24y x +=1,即x +2y -4=0. 6分 (2)由a2+b1=1,得ab -a -2b =0,变形得(a -2)(b -1)=2, |PA |²|PB |=22)01()2(-+-a ²22)1()02(b -+-=]4)1[(]1)2[(22+-⋅+-b a≥)1(4)2(2-⋅-b a . 10分当且仅当a -2=1,b -1=2,即a =3,b =3时,|PA |²|PB |取最小值4. 此时直线l 的方程为x +y -3=0.12分方法二 设直线l 的方程为y -1=k (x -2) (k <0), 则l 与x 轴、y 轴正半轴分别交于 A ⎪⎭⎫ ⎝⎛-0,12k 、B (0,1-2k ).(1)S △AOB =21⎪⎭⎫ ⎝⎛-k 12(1-2k )=21³⎥⎦⎤⎢⎣⎡-+-+)1()4(4k k≥21(4+4)=4.当且仅当-4k =-k1,即k =-21时取最小值,此时直线l 的方程为y -1=-21(x -2),即x +2y -4=0. 6分(2)|PA |²|PB |=22441)1(k k++=84422++k k≥4,当且仅当24k=4k 2,即k =-1时取得最小值,此时直线l 的方程为y -1=-(x -2),即x +y -3=0.12分1.设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a +b +c =0. 证明 ∵A 、B 、C 三点共线,∴k AB =k AC , ∴ca c a ba b a --=--3333,化简得a 2+ab +b 2=a 2+ac +c 2,∴b 2-c 2+ab -ac =0,(b -c )(a +b +c )=0, ∵a 、b 、c 互不相等,∴b -c ≠0,∴a +b +c =0.2.(2009²宜昌调研)若实数x ,y 满足等式(x -2)2+y 2=3,那么xy 的最大值为 ( )A .21 B .33 C .23 D .3答案 D3.(1)求经过点A (-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程; (2)过点A (8,6)引三条直线l 1,l 2,l 3,它们的倾斜角之比为1∶2∶4,若直线l 2的方程是y =43x ,求直线l 1,l 3的方程.解 (1)①当直线l 在x 、y 轴上的截距都为零时, 设所求的直线方程为y =kx , 将(-5,2)代入y =kx 中, 得k =-52,此时,直线方程为y =-52x ,即2x +5y =0.²②当横截距、纵截距都不是零时, 设所求直线方程为ay ax +2=1,将(-5,2)代入所设方程, 解得a =-21,此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0. (2)设直线l 2的倾斜角为α,则tan α=43.于是tan2α=ααsin cos 1-=3153541=-,tan2α=724)43(1432tan1tan 222=-⨯=-αα,所以所求直线l 1的方程为y -6=31(x -8),即x -3y +10=0,l 3的方程为y -6=724(x -8),即24x -7y -150=0.4.直线l 经过点P (3,2)且与x ,y 轴的正半轴分别交于A 、B 两点,△OAB 的面积为12,求直线l 的方程. 解 方法一 设直线l 的方程为1=+by a x (a >0,b >0),∴A (a ,0),B (0,b ),∴⎪⎩⎪⎨⎧=+=.123,24ba ab 解得⎩⎨⎧==.4,6b a∴所求的直线方程为46y x +=1,即2x +3y -12=0.方法二 设直线l 的方程为y -2=k (x -3), 令y =0,得直线l 在x 轴上的截距a =3-k2,令x =0,得直线l 在y 轴上的截距b =2-3k . ∴⎪⎭⎫ ⎝⎛-k 23(2-3k )=24.解得k =-32.∴所求直线方程为y -2=-32(x -3).即2x +3y-12=0.一、选择题1.直线x cos θ+y -1=0 (θ∈R )的倾斜角的范围是( ) A .[)π,0B .⎪⎭⎫⎢⎣⎡ππ43,4C .⎥⎦⎤⎢⎣⎡-4,4ππD .⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,答案 D2.已知直线l 过点(a ,1),(a +1,tan α +1),则 ( )A .α一定是直线l 的倾斜角B .α一定不是直线l 的倾斜角C .α不一定是直线l 的倾斜角D .180°-α一定是直线l 的倾斜角 答案 C3.已知直线l 经过A (2,1),B (1,m 2)(m ∈R )两点,那么直线l 的倾斜角的取值范围是( )A .[)π,0B .⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡πππ,24,C .⎥⎦⎤⎢⎣⎡40π,D .⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡ππππ,22,4答案 B4.过点(1,3)作直线l ,若经过点(a ,0)和(0,b ),且a ∈N *,b ∈N *,则可作出的l 的条数为( ) A .1B .2C .3D .4答案 B5.经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( ) A .x +2y -6=0 B .2x +y -6=0 C .x -2y +7=0D .x -2y -7=0答案 B6.若点A (2,-3)是直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的公共点,则相异两点(a 1,b 1)和(a 2,b 2)所确定的直线方程是( ) A .2x -3y +1=0B .3x -2y +1=0C .2x -3y -1=0D .3x -2y -1=0答案 A 二、填空题7.(2008²浙江理,11)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a = . 答案 1+28.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是 . 答案31三、解答题9.已知线段PQ 两端点的坐标分别为(-1,1)、(2,2),若直线l :x +my +m =0与线段PQ 有交点,求m 的取值范围. 解 方法一 直线x +my +m =0恒过A (0,-1)点.k AP =1011+--=-2,k AQ =2021---=23,则-m 1≥23或-m1≤-2,∴-32≤m ≤21且m ≠0.又∵m =0时直线x +my +m =0与线段PQ 有交点, ∴所求m 的取值范围是-32≤m ≤21.方法二 过P 、Q 两点的直线方程为 y -1=1212+-(x +1),即y =31x +34,代入x+my +m =0,整理,得x =-37+m m . 由已知-1≤-37+m m ≤2,解得-32≤m ≤21.10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4);(2)斜率为61.解 (1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-k4-3,3k +4,由已知,得(3k +4)(k4+3)=±6,解得k 1=-32或k 2=-38.直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =61x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ²b |=6,∴b =±1. ∴直线l 的方程为x -6y +6=0或x -6y -6=0. 11.已知两点A (-1,2),B (m ,3). (1)求直线AB 的方程; (2)已知实数m ∈⎥⎥⎦⎤⎢⎢⎣⎡---13,133,求直线AB 的倾斜角α的取值范围. 解 (1)当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=11+m (x +1).(2)①当m =-1时,α=2π;②当m ≠-1时,m +1∈(]3,00,33⎪⎪⎭⎫⎢⎢⎣⎡-, ∴k =11+m ∈(-∞,-3]∪⎪⎪⎭⎫⎢⎢⎣⎡+∞,33,∴α∈⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡32,22,6ππππ .综合①②知,直线AB 的倾斜角α∈⎥⎦⎤⎢⎣⎡32,6ππ.12.过点P (3,0)作一直线,使它夹在两直线l 1:2x -y -2=0与l 2:x +y +3=0之间的线段AB 恰被点P 平分,求此直线的方程. 解 方法一 设点A (x ,y )在l 1上,由题意知⎪⎪⎩⎪⎪⎨⎧=+=+0232B By y x x ,∴点B (6-x ,-y ),解方程组⎩⎨⎧=+-+-=--03)()6(022y x y x ,得⎪⎪⎩⎪⎪⎨⎧==316311y x ,∴k =833110316=--. ∴所求的直线方程为y =8(x -3), 即8x -y -24=0.方法二 设所求的直线方程为y =k (x -3),则⎩⎨⎧=---=022)3(y x x k y ,解得⎪⎪⎩⎪⎪⎨⎧-=--=24223k ky k k x A A ,由⎩⎨⎧=++-=03)3(y x x k y ,解得⎪⎪⎩⎪⎪⎨⎧+-=+-=16133k ky k k x B B .∵P (3,0)是线段AB 的中点, ∴y A +y B =0,即24-k k +16+-k k =0,∴k 2-8k =0,解得k =0或k =8. 又∵当k =0时,x A =1,x B =-3, 此时32312≠-=+BA x x ,∴k =0舍去,∴所求的直线方程为y =8(x -3), 即8x -y -24=0.§7.2两直线的位置关系1.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么实数a 等于( ) A .-3B .-6C .-23D .32答案 B2.已知直线2x +y -2=0和mx -y +1=0的夹角为4π,那么m 的值为 ( )A .-31或-3B .31C .-31或3 D .31或-3答案 C3.已知过点A (-2,m )和B (m ,4)的直线与直线2x +y =1平行,则m 的值为( ) A .0B .-8C .2D .10答案 B4.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =x 对称,直线l 3⊥l 2,则l 3的斜率为 ( )A .21 B .-21 C .-2 D .2答案 C基础自测5.(2009²岳阳模拟)若直线l 经过点(a -2,-1)和(-a -2,1)且与经过点(-2,1),斜率为-32的直线垂直,则实数a 的值为 .答案 -32例1 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0, (1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值.解 (1)方法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3, l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为 l 1:y =-x a 2-3,l 2:y =xa-11-(a +1),l 1∥l 2⇔⎪⎩⎪⎨⎧+-≠--=-)1(3112a aa,解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行. 方法二 由A 1B 2-A 2B 1=0,得a (a -1)-1³2=0, 由A 1C 2-A 2C 1≠0,得a (a 2-1)-1³6≠0,∴l 1∥l 2⇔⎪⎩⎪⎨⎧≠⨯--=⨯--061)1(021)1(2aa a a⇔⎪⎩⎪⎨⎧≠-=--6)1(0222a a a a ⇒a =-1,故当a =-1时,l 1∥l 2,否则l 1与l 2不平行.(2)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立. 当a ≠1时,l 1:y =-2a x -3,l 2:y =xa-11-(a +1),由⎪⎭⎫⎝⎛-2a ²a-11=-1⇒a =32.方法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0⇒a =32.例2 求过两直线l 1:x +y +1=0,l 2:5x -y -1=0的交点,且与直线3x +2y +1=0的夹角为4π的直线方程.解 设所求直线方程为x +y +1+λ(5x -y -1)=0, 即(1+5λ)x +(1-λ)y +1-λ=0. 因为所求直线与直线3x +2y +1=0的夹角为4π,所以tan 4π=.123·115123115=⎪⎭⎫⎝⎛--++⎪⎭⎫ ⎝⎛---+λλλλ解得λ=-132.∴所求直线方程为x +5y +5=0.又直线l 2:5x -y -1=0与直线3x +2y +1=0的夹角θ满足tan θ=.12351235=⎪⎭⎫⎝⎛-⨯+⎪⎭⎫ ⎝⎛--∴θ=4π,故直线l 2也是符合条件的一解.综上所述,所求直线方程为 x +5y +5=0或5x -y -1=0.例3 (12分)已知直线l 过点P (3,1)且被两平行线l 1:x +y +1=0,l 2:x +y +6=0截得的线段长为5,求直线l 的方程. 解 方法一 若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别是 A (3,-4),B (3,-9),截得的线段长|AB |=|-4+9|=5,符合题意. 4分若直线l 的斜率存在时, 则设直线l 的方程为y =k (x -3)+1, 分别与直线l 1,l 2的方程联立, 由⎩⎨⎧=+++-=011)3(y x x k y ,解得A ⎪⎭⎫⎝⎛+-+-141,123k k k k .8分由⎩⎨⎧=+++-=061)3(y x x k y ,解得B ⎪⎭⎫⎝⎛+-+-191173k k ,k k , 由两点间的距离公式,得2173123⎪⎭⎫ ⎝⎛+--+-k k k k +2191141⎪⎭⎫⎝⎛+--+-k k k k =25, 解得k =0,即所求直线方程为y =1.10分 综上可知,直线l 的方程为x =3或y =1.12分方法二 设直线l 与l 1,l 2分别相交于A (x 1,y 1),B (x 2,y 2), 则x 1+y 1+1=0,x 2+y 2+6=0, 两式相减,得(x 1-x 2)+(y 1-y 2)=5 ① 6分又(x 1-x 2)2+(y 1-y 2)2=25② 联立①②可得⎩⎨⎧=-=-052121y y x x 或⎩⎨⎧=-=-502121y y x x ,10分由上可知,直线l 的倾斜角分别为0°和90°, 故所求的直线方程为x =3或y =1.12分例4 求直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程. 解 方法一 由⎩⎨⎧+=+=132x y x y知直线l 1与l 的交点坐标为(-2,-1), ∴设直线l 2的方程为y +1=k (x +2), 即kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1、l 2的距离相等, 由点到直线的距离公式得221122kk k +-+-=22)1(2322-++-,解得k =21(k =2舍去),∴直线l 2的方程为x -2y =0.方法二 设所求直线上一点P (x ,y ),则在直线l 1上必存在一点P 1(x 0,y 0)与点P 关于直线l 对称. 由题设:直线PP 1与直线l 垂直,且线段PP 1的中点 P 2⎪⎪⎭⎫⎝⎛++2,200y y x x 在直线l 上. ∴⎪⎪⎩⎪⎪⎨⎧++=+-=∙--122110000x x y y xx yy ,变形得⎩⎨⎧+=-=1100x y y x ,代入直线l 1:y =2x +3,得x +1=2³(y -1)+3, 整理得x -2y =0.所以所求直线方程为x -2y=0.1.已知两条直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8.当m 分别为何值时,l 1与l 2: (1)相交?(2)平行?(3)垂直? 解 当m=-5时,显然,l 1与l 2相交; 当m ≠-5时,易得两直线l 1和l 2的斜率分别为 k 1=-43m +,k 2=-m+52,它们在y 轴上的截距分别为b 1=435m -,b 2=m+58.(1)由k 1≠k 2,得-43m +≠-m+52,m ≠-7且m ≠-1.∴当m ≠-7且m ≠-1时,l 1与l 2相交.(2)由⎩⎨⎧≠=,,2121b b k k ,得⎪⎪⎩⎪⎪⎨⎧+≠-+-=+-m m mm584355243,m =-7.∴当m =-7时,l 1与l 2平行. (3)由k 1k 2=-1, 得-43m +²⎪⎭⎫ ⎝⎛+-m 52=-1,m =-313.∴当m =-313时,l 1与l 2垂直.2.某人在一山坡P 处观看对面山顶上的一座铁塔,如图所示,塔高BC =80(米),塔所在的山高OB =220(米),OA =200(米),图中所示的山坡可视为直线l ,且点P 在直线l 上,l 与水平地面的夹角为α,tan α=21.试问,此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高)?解 如图所示,建立平面直角坐标系,则A (200,0),B (0,220),C (0,300). 直线l 的方程为y =(x -200)tan α,则y =2200-x .设点P 的坐标为(x ,y ),则P (x , 2200-x )(x >200).由经过两点的直线的斜率公式k PC =xx x x 28003002200-=--,k PB =xx xx 26402202200-=--.由直线PC 到直线PB 的角的公式得tan ∠BPC =xx x x xk k k k PCPB PC PB 2640·280012160·1--+=+-=2886401606464016028864-⨯+=⨯+-2xx x x x(x >200).要使tan ∠BPC 达到最大,只需x +x640160⨯-288达到最小,由均值不等式x +x640160⨯-288≥2640160⨯-288,当且仅当x =x640160⨯时上式取得等号.故当x =320时,tan ∠BPC 最大. 这时,点P 的纵坐标y 为y =2200320-=60.由此实际问题知0<∠BPC <2π,所以tan ∠BPC 最大时,∠BPC 最大.故当此人距水平地面60米高时,观看铁塔的视角∠BPC 最大.3.已知三条直线l 1:2x -y +a =0(a >0),直线l 2:4x -2y -1=0和直线l 3:x +y -1=0,且l 1与l 2的距离是5107.(1)求a 的值;(2)能否找到一点P ,使得P 点同时满足下列三个条件: ①P 是第一象限的点;②P 点到l 1的距离是P 点到l 2的距离的21;③P 点到l 1的距离与P 点到l 3的距离之比是2∶5.若能,求P 点坐标;若不能,说明理由. 解 (1)l 2即为2x -y -21=0,∴l 1与l 2的距离d =1057)1(2)21(22=-+--a ,∴521+a =1057,∴21+a =27,∵a >0,∴a =3.(2)假设存在这样的P 点.设点P (x 0,y 0),若P 点满足条件②,则P 点在与l 1、l 2平行的直线l ′:2x -y +C =0上,且53-C =52121+C ,即C =213或C =611,∴2x 0-y 0+213=0或2x 0-y 0+611=0;若P 点满足条件③,由点到直线的距离公式53200+-y x =52³2100-+y x ,即|2x 0-y 0+3|=|x 0+y 0-1|, ∴x 0-2y 0+4=0或3x 0+2=0;由于P 点在第一象限,∴3x 0+2=0不满足题意.联立方程⎪⎩⎪⎨⎧=+-=+-042021320000y x y x , 解得⎪⎩⎪⎨⎧=-=,21,300y x (舍去).由⎪⎩⎪⎨⎧=+-=+-,042,061120000y x y x 解得⎪⎪⎩⎪⎪⎨⎧==18379100y x ∴假设成立,点P ⎪⎭⎫⎝⎛1837,91即为同时满足三个条件的点. 4.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程. 解 方法一 由⎩⎨⎧=+-=+-.0723,052y x y x得⎩⎨⎧=-=.2,1y x∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点),(00y x P ',由P P '⊥l 可知,k PP ′=-32=500+x y .而PP ′的中点Q 的坐标为⎪⎭⎫⎝⎛-2,2500y x ,Q 点在l 上,∴3²250-x -2²20y +7=0.由⎪⎪⎩⎪⎪⎨⎧=+---=+.07)5(23,3250000y x x y 得⎪⎪⎩⎪⎪⎨⎧-=-=.1332,131700y x根据直线的两点式方程可得l 的方程为 29x -2y +33=0.方法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ), 则3200-=--xx y y,又PP ′的中点Q ⎪⎭⎫⎝⎛++2,200y y x x 在l 上,∴3³20x x +-2³2y y ++7=0,由⎪⎪⎩⎪⎪⎨⎧=++-+⨯-=--07)(23320000y y x x xx y y可得P 点的坐标为 x 0=1342125-+-y x ,y 0=1328512++y x ,代入方程x -2y +5=0中, 化简得29x -2y +33=0,即为所求反射光线所在的直线方程.一、 选择题1.(2008²全国Ⅱ文)原点到直线x +2y -5=0的距离为( )A .1B .3C .2D .5答案 D2.A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为( )A .2x -y -1=0B .x +y -5=0C .2x +y -7=0D .2y -x -4=0答案 B3.已知直线l 1的方向向量a =(1,3),直线l 2的方向向量b =(-1,k ),若直线l 2经过点(0,5),且l 1⊥l 2,则直线l 2的方程为( )A .x +3y -5=0B .x +3y -15=0C .x -3y +5=0D .x -3y +15=0答案 B4.已知三条直线l 1:y =3x -1,l 2:y =1,l 3:x +y +1=0,l 1与l 2的夹角为α,l 2与l 3的夹角为β,则α+β的值为( ) A .75°B .105°C .165°D .195°答案 B5.曲线f (x ,y )=0关于直线x -y -2=0对称的曲线方程是 ( )A .f (y +2,x )=0B .f (x -2,y )=0C .f (y +2,x -2)=0D .f (y -2,x +2)=0答案 C6.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线方程分别为x =0,y =x ,则直线BC 的方程是( )A .y =2x +5B .y =2x +3C .y =3x +5D .y =-21x +25答案 A 二、填空题7.设直线l 经过点A (-1,1),则当点B (2,-1)与直线l 的距离最远时,直线l 的方程为 .答案 3x -2y +5=08.直线2x +3y -6=0关于点M (1,-1)对称的直线方程是 .答案 2x +3y+8=0三、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得: (1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合. 解(1)由已知1³3≠m (m -2), 即m 2-2m -3≠0, 解得m ≠-1且m ≠3.故当m ≠-1且m ≠3时,l 1与l 2相交. (2)当1²(m -2)+m ²3=0, 即m =21时,l 1⊥l 2.(3)当21-m =3m ≠m26,即m =-1时,l 1∥l 2. (4)当21-m =3m =m26,即m =3时,l 1与l 2重合.10.已知A (0,3)、B (-1,0)、C (3,0),求D 点的坐标,使四边形ABCD 为直角梯形(A 、B 、C 、D 按逆时针方向排列). 解 设所求点D 的坐标为(x ,y ),如图所示,由于k AB =3,k BC =0, ∴k AB ²k BC =0≠-1,即AB 与BC 不垂直,故AB 、BC 都不可作为直角梯形的直角边. (1)若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD , ∵k BC =0,∴CD 的斜率不存在,从而有x =3. 又k AD =k BC ,∴xy 3-=0,即y =3.此时AB 与CD 不平行.故所求点D 的坐标为(3,3). (2)若AD 是直角梯形的直角边, 则AD ⊥AB ,AD ⊥CD , k AD =xy 3-,k CD =3-x y .由于AD ⊥AB ,∴x y 3-²3=-1.又AB ∥CD ,∴3-x y=3.解上述两式可得⎪⎪⎩⎪⎪⎨⎧==,59,518y x此时AD 与BC 不平行. 故所求点D 的坐标为⎪⎭⎫⎝⎛59,518,综上可知,使ABCD 为直角梯形的点D 的坐标可以为(3,3)或⎪⎭⎫⎝⎛59,518.11.一条光线经过P (2,3)点,射在直线l :x +y +1=0上,反射后穿过Q (1,1). (1)求光线的入射方程; (2)求这条光线从P 到Q 的长度.k l =-1,∴k QQ ′=1.解 (1)设点),(y x Q '''为Q 关于直线l 的对称点且Q Q '交l 于M 点,∵∴Q Q '所在直线方程为y -1=1²(x -1) 即x -y=0.由⎩⎨⎧=-=++,0,01y x y x解得l 与QQ ′的交点M 的坐标为⎪⎭⎫ ⎝⎛--21,21.又∵M 为QQ ′的中点,由此得⎪⎪⎩⎪⎪⎨⎧-=+-=+21212121''yx .解之得⎪⎩⎪⎨⎧-=-=.2,2''y x ∴Q '(-2,-2).设入射线与l 交点N ,且P ,N ,Q '共线. 则P (2,3),Q '(-2,-2),得入射线方程为222232++=++x y ,即5x -4y +2=0.(2)∵l 是QQ ′的垂直平分线,因而|NQ |=||'NQ . ∴|PN |+|NQ |=|PN |+|NQ ′|=||'PQ =22)22()23(+++=41, 即这条光线从P 到Q 的长度是41.12.已知直线l 经过两条直线l 1:x +2y =0与l 2:3x -4y -10=0的交点,且与直线l 3:5x -2y +3=0的夹角为4π,求直线l 的方程.解 由,0104302⎩⎨⎧=--=+y x y x解得l 1和l 2的交点坐标为(2,-1). 设所求直线l 的方程为y +1=k (x -2). 又253=l k ,由l 与l 3的夹角为4π得tan4π=,·133llk k k k +-,即1=371255225125-=⇒±=+-⇒+-k k k k k 或k =73.故所求的直线l 的方程为 y +1=-37(x -2)或y +1=73(x -2),即7x +3y -11=0或3x -7y -13=0.§7.3 简单的线性规划基础自测1.已知点A (1,-1),B (5,-3),C (4,-5),则表示△ABC 的边界及其内部的约束条件是 .答案 ⎪⎩⎪⎨⎧≥-+≤--≤++01340132012y x y x y x2.(2008²天津理,2)设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-,y x ,y x ,y x 1210则目标函数z =5x +y 的最大值为( )A .2B .3C .4D .5答案 D3.若点(1,3)和(-4,-2)在直线2x +y +m =0的两侧,则m 的取值范围是 ( )A .m <-5或m >10B .m =-5或m =10C .-5<m <10D .-5≤m ≤10答案 C4.(2008²北京理,5)若实数x ,y 满足⎪⎩⎪⎨⎧≤≥+≥+-,0,0,01x y x y x 则z =3x +2y 的最小值是( )A .0B .1C .3D .9答案 B5.(2008²福建理,8)若实数x 、y 满足,001⎩⎨⎧>≤+-x y x 则xy 的取值范围是 ( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)答案 C例1 画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域,并回答下列问题:(1)指出x ,y 的取值范围; (2)平面区域内有多少个整点?解 (1)不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合.x +y ≥0表示直线x +y =0上及右上方的点的集合, x ≤3表示直线x =3上及左方的点的集合.所以,不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x .表示的平面区域如图所示. 结合图中可行域得x ⎥⎦⎤⎢⎣⎡-∈325,,y ∈[-3,8].(2)由图形及不等式组知⎩⎨⎧∈≤≤-+≤≤-Z,325x x x y x 且当x =3时,-3≤y ≤8,有12个整点; 当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点; ∴平面区域内的整点共有 2+4+6+8+10+12=42(个).例2 (2008²湖南理,3)已知变量x 、y 满足条件,09201⎪⎩⎪⎨⎧≤-+≤-≥y x y x x 则x +y 的最大值是 ( )A .2B .5C .6D .8答案 C例3 (12分)某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?解 设每天生产甲、乙两种产品分别为x 吨、y 吨,利润总额为z 万元,1分则线性约束条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+1515,3001032005430049y x y x y x y x 4分目标函数为z =7x +12y , 6分 作出可行域如图,8分作出一组平行直线7x +12y =t ,当直线经过直线4x +5y =200和直线3x +10y =300的交点A (20,24)时,利润最大.10分即生产甲、乙两种产品分别为20吨、24吨时,利润总额最大,z max =7³20+12³24=428(万元). 答 每天生产甲产品20吨、乙产品24吨,才能使利润总额达到最大.12分1.(2008²浙江理,17)若a ≥0,b ≥0,且当⎪⎩⎪⎨⎧≤+≥≥1,00y x y x 时,恒有ax +by ≤1,则以a ,b 为坐标的点P (a ,b )所形成的平面区域的面积等于 . 答案 12.(2008²全国Ⅰ理,13)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+30,030x y x y x 则z =2x -y 的最大值为 .答案 93.某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时.又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润? 解 依题意设每星期生产x 把椅子,y 张书桌, 那么利润p =15x +20y .其中x ,y 满足限制条件⎪⎪⎩⎪⎪⎨⎧∈≥∈≥≤+≤+**N ,0N ,030012000884y y x x y x y x . 即点(x ,y )的允许区域为图中阴影部分,它们的边界分别为4x +8y =8 000 (即AB ),2x +y =1 300(即BC ),x =0(即OA )和y =0(即OC ).对于某一个确定的p =0p 满足0p =15x +20y ,且点(x ,y )属于解x ,y 就是一个能获得0p 元利润的生产方案.对于不同的p ,p =15x +20y 表示一组斜率为-43的平行线,且p 越大,相应的直线位置越高;p 越小,相应的直线位置越低.按题意,要求p 的最大值,需把直线p =15x +20y 尽量地往上平移,又考虑到x ,y 的允许范围, 当直线通过B 点时,处在这组平行线的最高位置,此时p 取最大值. 由⎩⎨⎧=+=+30012000884y x y x ,得B (200,900),当x =200,y =900时,p 取最大值, 即p max =15³200+20³900=21 000,即生产200把椅子、900张书桌可获得最大利润21 000元.一、选择题1.(2008²全国Ⅱ理,5)设变量x ,y 满足约束条件:,222⎪⎩⎪⎨⎧-≥≤+≥x y x xy 则z =x -3y 的最小值为( )A .-2B .-4C .-6D .-8答案 D2.若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-,,0,22,0a y x y y x y x 表示的平面区域是一个三角形,则a 的取值范围是( )A .a ≥34B .0<a ≤1C .1≤a ≤34 D .0<a ≤1或a ≥34答案 D3.已知平面区域D 由以A (1,3)、B (5,2)、C (3,1)为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点(x ,y )可使目标函数z =x +my 取得最小值,则m 等于( )A .-2B .-1C .1D .4答案 C4.(2008²山东理,12)设二元一次不等式组,0142080192⎪⎩⎪⎨⎧≤-+≥+-≥-+y x y x y x 所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是 ( )A .[1,3]B .[2,10]C .[2,9]D .[10,9]答案 C5.(2009²武汉模拟)如果实数x ,y 满足⎪⎩⎪⎨⎧≥≤-+≤+-1,02553034x y x y x 目标函数z =kx +y 的最大值为12,最小值为3,那么实数k 的值为( ) A .2B .-2C .51D .不存在答案 A6.(2007²江苏,10)在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( ) A .2B .1C .21D .41答案 B 二、填空题7.(2008²安徽理,15)若A 为不等式组,200⎪⎩⎪⎨⎧≤-≥≤x y y x ,表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为 . 答案478.设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是 ;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是 . 答案 (1)[2,+∞) (2)29三、解答题9.已知实数x 、y 满足,033042022⎪⎩⎪⎨⎧≤--≥+-≥-+y x y x y x ,试求z =11++x y 的最大值和最小值.解 由于z =11++x y =)1()1(----x y ,所以z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率,因此11++x y 的最值就是点(x ,y )与点M (-1,-1)连线的斜率的最值,结合图可知:直线MB 的斜率最大,直线MC 的斜率最小,即z max =k MB =3,此时x =0,y =2; z min =k MC =21,此时x =1,y =0.10.已知变量x ,y 满足的约束条件为⎪⎩⎪⎨⎧≤-≥-+≤-+01.033032y y x y x 若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.解 依据约束条件,画出可行域. ∵直线x +2y -3=0的斜率k 1=-21,目标函数z =ax +y (a >0)对应直线的斜率k 2=-a ,若符合题意,则须k 1>k 2,即-21>-a ,得a >21.11.两种大小不同的钢板可按下表截成A ,B ,C 三种规格成品:某建筑工地需A ,B ,C 三种规格的成品分别为15,18,27块,问怎样截这两种钢板,可得所需三种规格成品,且所用钢板张数最小. 解 设需要第一种钢板x 张,第二种钢板y 张,钢板总数为z 张,z =x +y ,约束条件为:.Z,0Z ,027*******⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥∈≥≥+≥+≥+y y x x y x y x y x作出可行域如图所示:令z =0,作出基准直线l :y =-x ,平行移动直线l 发现在可行域内,经过直线x +3y =27和直线2x +y =15的交点A ⎪⎭⎫⎝⎛539518,可使z 取最小,由于539518,都不是整数,而最优解(x ,y )中,x ,y 必须都是整数,可行域内点A ⎪⎭⎫⎝⎛539518,不是最优解; 通过在可行域内画网格发现,经过可行域内的整点且与A ⎪⎭⎫⎝⎛539518,点距离最近的直线是x +y =12,经过的整点是B (3,9)和C (4,8),它们都是最优解.答 要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种: 第一种截法是截第一种钢板3张,第二种钢板9张; 第二种截法是截第一种钢板4张,第二种钢板8张; 两种方法都最少要截两种钢板共12张. 12.在R 上可导的函数f (x )=31x 3+21ax 2+2bx +c ,当x ∈(0,1)时取得极大值,当x ∈(1,2)时取得极小值,求点(a ,b )对应的区域的面积以及12--a b 的取值范围.解 函数f (x )的导数为f ′(x )=x 2+ax +2b ,当x ∈(0,1)时,f (x )取得极大值,当x ∈(1,2)时,f (x )取得极小值,则方程x 2+ax +2b =0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,由二次函数f ′(x )=x 2+ax +2b 的图象与方程x 2+ax +2b =0根的分布之间的关系可以得到⎪⎩⎪⎨⎧>++<++>⇒⎪⎩⎪⎨⎧>'<'>'02,01200)2(0)1(0)0(b a b a b f f f 在aOb 平面内作出满足约束条件的点(a ,b )对应的区域为△ABD (不包括边界), 如图阴影部分,其中点A (-3,1),B (-1,0),D (-2,0), △ABD 的面积为 S △ABD =21|BD |³h =21(h 为点A 到a 轴的距离).点C (1,2)与点(a ,b )连线的斜率为12--a b ,显然12--a b ∈(k CA ,k CB ),即12--a b .1,41⎪⎭⎫ ⎝⎛∈ §7.4 曲线与方程基础自测1.已知坐标满足方程F (x ,y )=0的点都在曲线C 上,那么( )A .曲线C 上的点的坐标都适合方程F (x ,y )=0B .凡坐标不适合F (x ,y )=0的点都不在C 上C .不在C 上的点的坐标有些适合F (x ,y )=0,有些不适合F (x ,y )=0D .不在C 上的点的坐标必不适合F (x ,y )=0 答案 D2.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( )A .椭圆B .AB 所在的直线C .线段ABD .无轨迹答案 C3.动点P 到两坐标轴的距离之和等于2,则点P 的轨迹所围成的图形面积是( )A .2B .4C .8D .不存在答案 C4.(2008²北京理,4)若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线答案 D5.已知直线l 的方程是f (x ,y )=0,点M (x 0,y 0)不在l 上,则方程f (x ,y )-f (x 0,y 0)=0表示的曲线是( )A .直线lB .与l 垂直的一条直线C .与l 平行的一条直线D .与l 平行的两条直线答案 C例1 如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程. 解 设点M 的坐标为(x ,y ), ∵M 是线段AB 的中点,∴A 点的坐标为(2x ,0),B 点的坐标为(0,2y ). ∴PA =(2x -2,-4),PB =(-2,2y -4).由已知PA ²PB =0,∴-2(2x -2)-4(2y -4)=0, 即x +2y -5=0.∴线段AB 中点M 的轨迹方程为x +2y -5=0. 例2(5分)在△ABC 中,A 为动点,B 、C 为定点,B ⎪⎭⎫⎝⎛-0,2a ,C ⎪⎭⎫⎝⎛0,2a且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程是( ) A .2222151616a y ax -=1 (y ≠0)B .222231616ax ay -=1 (x ≠0)C .2222151616ay ax -=1(y ≠0)的左支D .222231616ay ax -=1(y ≠0)的右支答案 D例3 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点, 且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解 设AB 的中点为R ,坐标为(x 1,y 1),Q 点坐标为(x ,y ),则在Rt △ABP 中, |AR |=|PR |,又因为R 是弦AB 的中点,依垂径定理有 Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(2121y x +).又|AR |=|PR |=2121)4(y x +-,所以有(x 1-4)2+21y =36-(2121y x +).即2121y x +-4x 1-10=0.因为R 为PQ 的中点, 所以x 1=24+x ,y 1=20+y .代入方程2121y x +-4x 1-10=0,得422422-⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+y x ²24+x -10=0. 整理得x 2+y 2=56. 这就是Q 点的轨迹方程.1.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN ||MP |+ MN ²NP =0,求动点P (x ,y )的轨迹方程. 解 由题意:MN =(4,0),MP =(x +2,y ), NP =(x -2,y ),∵|MN ||MP |+MN ²NP =0,∴2204+²22)2(y x +++(x -2)²4+y ²0=0,两边平方,化简得y 2=-8x .2.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程. 解 如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和点B ,根据两圆外切的充要条件,得 |MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |. 因为|MA |=|MB |,所以|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2.这表明动点M 到两定点C 2,C 1的距离之差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的左支(点M 到C 2的距离大,到C 1的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),其轨迹方程为x 2-82y=1 (x ≤-1).3.(2009²宜昌模拟)设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P在y 轴上运动时,求点N 的轨迹方程. 解 设M (x 0,0),P (0,y 0),N (x ,y ), 由MN =2MP 得(x -x 0,y )=2(-x 0,y 0),∴,22000⎩⎨⎧=-=-y y x x x 即.2100⎪⎩⎪⎨⎧=-=y y xx∵PM ⊥PF ,PM =(x 0,-y 0), PF =(1,-y 0), ∴(x 0,-y 0)²(1,-y 0)=0,∴x 0+20y =0.∴-x +42y=0,即y 2=4x .故所求的点N 的轨迹方程是y 2=4x .一、选择题1.方程x 2+y 2=1 (xy <0)的曲线形状是( )答案 C2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π答案 B3.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC =2CB ,则点C 的轨迹是( ) A .线段B .圆C .椭圆D .双曲线答案 C4.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC =λ1OA +λ2OB (O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A .直线B .椭圆C .圆D .双曲线答案 A5.(2008²成都质检)F 1、F 2是椭圆的两个焦点,M 是椭圆上任一点,从任一焦点向△F 1MF 2顶点M 的外角平分线引垂线,垂足为P ,则P 点的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线答案 A6.(2008²潍坊模拟)一圆形纸片的圆心为O ,点Q 是圆内异于O 的一个定点,点A 是圆周上一动点,把 纸片折叠使点A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于点P ,当点A 运动时,点P 的轨 迹为( ) A .椭圆B .双曲线C .抛物线D .圆答案 A 二、填空题7.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为 . 答案 (x -10)2+y 2=36 (y ≠0) 8.平面上有三点A (-2,y ),B (0,2y ),C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方程为 .答案 y 2=8x 三、解答题9.如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的 直线CB 与y 轴交于点B .设点M 是线段AB 的中点,求点M 的轨迹方程. 解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1).若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1,故直线CA 方程为:y =k (x -2)+2,令y =0得x =2-k2,则A 点坐标为⎪⎭⎫⎝⎛-0,22k . CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2,则B 点坐标为⎪⎭⎫⎝⎛+k 22,0,由中点坐标公式得M 点的坐标为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=kk y k kx 11222112022 ①消去参数k 得到x +y -2=0 (x ≠1), 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二 (直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ). ∵|MA |=|MC |,∴,)2()2()2(2222-+-=+-y x y x x 化简得x +y -2=0.方法三 (定义法)依题意|MA |=|MC |=|MO |,即:|MC |=|MO |,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.10.如图所示,线段AB 与CD 互相垂直平分于点O ,|AB |=2a (a >0),|CD |=2b (b >0),动点P 满足|PA |²|PB |=|PC |²|PD |.求动点P 的轨迹方程.解 以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系, 则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知|PA |²|PB |=|PC |²|PD |, ∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得x 2-y 2=222b a -.故动点P 的轨迹方程为x 2-y 2=222b a -.11.已知两条直线l 1:2x -3y +2=0和l 2:3x -2y +3=0,有一动圆(圆心和半径都动)与l 1、l 2都相交,且l 1、l 2被圆截得的弦长分别是定值26和24,求圆心的轨迹方程.解 设动圆的圆心为M (x ,y ),半径为r ,点M 到直线l 1,l 2的距离分别为d 1和d 2. 由弦心距、半径、半弦长间的关系得,⎪⎩⎪⎨⎧=-=-,242,262222212d r d r 即⎩⎨⎧=-=-,144,169222212d r d r 消去r 得动点M 满足的几何关系为2122d d -=25,即13)232(13)323(22+--+-y x y x =25.化简得(x +1)2-y 2=65.此即为所求的动圆圆心M 的轨迹方程. 12.已知椭圆9222yx+=1上任意一点P ,由P 向x 轴作垂线段PQ ,垂足为Q ,点M 在线段PQ 上,且PM =2MQ ,点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)若过定点F (0,2)的直线l 交曲线E 于不同的两点G ,H (点G 在点F ,H 之间),且满足FH =2FG ,求直线l 的方程. 解 (1)设M (x ,y ),P (x 0,y 0),。

相关文档
最新文档