高三数学第一轮复习讲义教学设计
高三数学一轮复习精品教案1:线面、面面平行的判定与性质教学设计

9.4直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理文字语言图形语言 符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)⎭⎪⎬⎪⎫l ∥a a ⊂αl ⊄α l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l ∥αl ⊂βα∩β=b l ∥b 2.平面与平面平行的判定定理和性质定理文字语言 图形语言 符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a ∥βb ∥βa ∩b =P a ⊂αb ⊂αα∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b a ∥b1.直线与平面平行的判定中易忽视“线在面内”这一关键条件. 2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.『试一试』1.下列说法中正确的是________(填序号).①一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内.『解析』由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确;③错误,因为经过一点可作一直线与已知直线平行,而经过这条直线可作无数个平面.『答案』①②④2.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,且m ⊥α,则l ⊥α; ②若m ∥l ,且m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m . 其中正确命题的个数是________.『解析』易知①正确;②错误,l 与α的具体关系不能确定;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明.『答案』21.转化与化归思想——平行问题中的转化关系2.判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.『练一练』1.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β ②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β③⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒α∥a其中正确的命题是________(填序号).『解析』②正确.①错在α与β可能相交.③④错在a 可能在α内. 『答案』②2.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件______时,有MN ∥平面B 1BDD 1.『解析』由平面HNF ∥平面B 1BDD 1知,当M 点满足在线段FH 上有MN ∥平面B 1BDD 1.『答案』M ∈线段FH考点一线面平行、面面平行的基本问题1.有互不相同的直线m ,n ,l 和平面α,β,给出下列四个命题: ①若m ⊂α,l ∩α=A ,A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若m ,n 是相交直线,m ⊂α,m ∥β,n ⊂α,n ∥β,则α∥β; ④若l ∥α,m ∥β,α∥β,则l ∥m . 其中真命题有________个.『解析』由异面直线的判定定理,易知①是真命题;由线面平行的性质知,存在直线l ′⊂α,m ′⊂α,使得l ∥l ′,m ∥m ′,∵m ,l 是异面直线,∴l ′与m ′是相交直线,又n ⊥l ,n ⊥m ,∴n ⊥l ′,n ⊥m ′,故n ⊥α,②是真命题;由线面平行的性质和判定知③是真命题;满足条件l ∥α,m ∥β,α∥β的直线m ,l 或相交或平行或异面,故④是假命题.『答案』32.(2014·济宁模拟)过三棱柱ABC A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1 平行的直线共有________条.『解析』过三棱柱ABC A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条.『答案』6『备课札记』『类题通法』解决有关线面平行、面面平行的基本问题要注意(1)判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出判断. (3)举反例否定结论或用反证法推断命题是否正确.考点二直线与平面平行的判定与性质『典例』 (2013·新课标卷Ⅱ)如图,直三棱柱ABC A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C A 1DE 的体积. 『解』 (1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD . (2)因为ABC A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以VC A 1DE =13×12×6×3×2=1.『备课札记』在本例条件下,线段BC 1上是否存在一点M 使得DM ∥平面A 1ACC 1? 解:存在.当M 为BC 1的中点时成立. 证明如下:连结DM ,在△ABC 1中, D ,M 分别为AB ,BC 1的中点 ∵DM 綊12AC 1,又DM ⊄平面A 1ACC 1AC 1⊂平面A 1ACC 1,∴DM ∥平面A 1ACC 1.『类题通法』证明线面平行的关键点及探求线线平行的方法(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线; (2)利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行;(3)注意说明已知的直线不在平面内,即三个条件缺一不可. 『针对训练』如图,已知四棱锥P ABCD 的底面为直角梯形,AB ∥CD ,∠DAB =90°,P A ⊥底面ABCD ,且P A =AD =DC =12AB =1,M 是PB 的中点.(1)求证:AM =CM ;(2)若N 是PC 的中点,求证:DN ∥平面AMC .证明:(1)∵在直角梯形ABCD 中,AD =DC =12AB =1,∴AC =2,BC =2,∴BC ⊥AC ,又P A ⊥平面ABCD ,BC ⊂平面ABCD , ∴BC ⊥P A ,又P A ∩AC =A , ∴BC ⊥平面P AC ,∴BC ⊥PC .在Rt △P AB 中,M 为PB 的中点,则AM =12PB ,在Rt △PBC 中,M 为PB 的中点, 则CM =12PB ,∴AM =CM .(2)如图,连结DB 交AC 于点F , ∵DC 綊12AB ,∴DF =12FB .取PM 的中点G ,连结DG ,FM , 则DG ∥FM ,又DG ⊄平面AMC ,FM ⊂平面AMC , ∴DG ∥平面AMC .连结GN ,则GN ∥MC ,GN ⊄平面AMC , MC ⊂平面AMC . ∴GN ∥平面AMC , 又GN ∩DG =G ,∴平面DNG ∥平面AMC , 又DN ⊂平面DNG ,∴DN ∥平面AMC .考点三平面与平面平行的判定与性质『典例』 (2013·陕西高考)如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心, A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面 A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD A 1B 1D 1的体积. 『解』 (1)证明:由题设知,BB 1綊DD 1, ∴四边形BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1. 又BD 平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C . 又A 1B 平面CD 1B 1, ∴A 1B ∥平面CD 1B 1. 又∵BD ∩A 1B =B , ∴平面A 1BD ∥平面CD 1B 1. (2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD A 1B 1D 1的高. 又∵AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又∵S △ABD =12×2×2=1,∴VABD A 1B 1D 1=S △ABD ×A 1O =1.『备课札记』『类题通法』判断面面平行的常用方法(1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ);(3)利用线面垂直的性质(l⊥α,l⊥β⇒α∥β).『针对训练』如图,在直四棱柱ABCD A1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.求证:(1)平面AD1E∥平面BGF;(2)D1E⊥AC.证明:(1)∵E,F分别是B1B和D1D的中点,∴D1F綊BE.∴四边形BED1F是平行四边形,∴D1E∥BF;又∵D1E⊄平面BGF,BF⊂平面BGF,∴D1E∥平面BGF.∵FG是△DAD1的中位线,∴FG∥AD1;又AD1⊄平面BGF,FG⊂平面BGF,∴AD1∥平面BGF.又∵AD1∩D1E=D1,∴平面AD1E∥平面BGF.(2)连结BD,B1D1,∵底面是正方形,∴AC⊥BD.∵D1D⊥AC,D1D∩BD=D,∴AC⊥平面BDD1B1.∵D1E⊂平面BDD1B1,∴D1E⊥AC.『课堂练通考点』1.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是________.『解析』对于①,若a ∥b ,b ⊂α,则应有a ∥α或a ⊂α,所以①不正确;对于②,若a ∥b ,a ∥α,则应有b ∥α或b ⊂α,因此②不正确;对于③,若a ∥α,b ∥α,则应有a ∥b 或a 与b 相交或a 与b 异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.『答案』02.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________.『解析』对于图形①,平面MNP 与AB 所在的对角面平行,即可得到AB ∥平面MNP ;对于图形④,AB ∥PN ,即可得到AB ∥平面MNP ;图形②③无论用定义还是判定定理都无法证明线面平行.『答案』①④3.(2014·南京学情调研)已知α,β为两个不同的平面,m ,n 为两条不同的直线, 下列命题:(1)若m ∥n ,n ∥α,则m ∥α; (2)若m ⊥α,m ⊥β,则α∥β;(3)若α∩β=n ,m ∥α,m ∥β,则m ∥n ; (4)若α⊥β,m ⊥α,n ⊥β,则m ⊥n . 其中是真命题的是________(填序号).『解析』对于(1),由m ∥n ,n ∥α得m ∥α或m ⊂α,故(1)错误;根据空间中直线与平面的平行、垂直关系进行一一判断.『答案』(2)(3)(4)4.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.『解析』连结AM 并延长,交CD 于E ,连结BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD .『答案』平面ABC、平面ABD5.如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明:(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC.∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形.∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.。
2023届高三数学一轮复习专题 解三角形 讲义 (解析版)

单元(或主题)教学设计模板以下内容、形式均只供参考,参评者可自行设计。
教学过程既可以采用表格式描述,也可以采取叙事的方式。
如教学设计已经过实施,则应尽量采用写实的方式将教学过程的真实情景以及某些值得注意和思考的现象和事件描述清楚;如教学设计尚未经过实施,则应着重将教学中的关键环节以及教学过程中可能出现的问题及处理办法描述清楚。
表格中所列项目及格式仅供参考,应根据实际教学情况进行调整。
问题,体验数学在解决实际问题中的作用,提升学生数学抽象、数学建模、直观想象、数学运算的数学核心素养。
重点:掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。
3.单元(或主题)整体教学思路(教学结构图)第一课时,正弦定理及可以解决的问题第二课时,余弦定理及可以解决的问题第三课时,三角形内角和定理、正弦定理、余弦定理的选择第1课时教学设计课题正弦定理课型新授课□章/单元复习课□专题复习课√习题/试卷讲评课□学科实践活动课□其他□1.教学内容分析本课时是解三角形复习课的起始课,由实际问题出发引起学生对定理及变形的回忆,提升学生数学建模、直观想象的核心素养;由几个典型的例题,归纳出正弦定理可以解决的类型,再由定理本身出发再次分析定理可以解决的类型,提升学生逻辑推理、数学运算的核心素养,提高学生对数学符号解读的能力。
再析定理,进而推出“三角形面积公式”,提升学生逻辑推理的核心素养。
3、你还有哪些收获?活动意图说明对于本节课的重点内容强化提问,既检测又强化重点。
“你还有哪些收获”,希望学生能够答出:三角形面积公式、SSA 的情况可能出现两解、取舍的方法、方程和数形结合的思想方法等。
环节六:课堂检测教的活动61、 在中,已知 45,30,10A C c cm ︒︒===,求a 边. 2、 在△ABC 中,π32,6,2===B b c ,求∠A 。
高三数学一轮复习教学设计

高三数学一轮复习教学设计一、教学任务及对象1、教学任务本教学设计针对的是高三数学一轮复习。
在这一阶段,学生已经完成了高中数学的全部课程,教学任务是在有限的时间内,帮助学生系统地回顾和巩固数学知识,强化解题技能,提高分析问题和解决问题的能力,为高考做好全面准备。
复习内容涵盖《高中数学课程标准》要求的所有知识点,包括但不限于函数与极限、导数与微分、积分、立体几何、解析几何、数列、概率统计等。
2、教学对象教学对象为即将参加高考的高三学生。
他们具备一定的数学基础和逻辑思维能力,但在数学知识的深度和广度、解题技巧方面存在差异。
此外,由于面临高考的压力,学生在心理上可能存在不同程度的焦虑和紧张。
因此,在教学过程中,需要关注学生的个体差异,采取有针对性的教学策略,同时注重缓解学生的心理压力,帮助他们建立自信,以积极的态度迎接高考。
二、教学目标1、知识与技能(1)掌握高中数学课程标准要求的所有核心概念、性质、定理、公式,并能够熟练运用。
(2)提高数学运算速度和准确性,培养解题技巧,形成解题策略。
(3)具备较强的数学思维能力,能够运用逻辑推理、空间想象、数据分析等方法解决数学问题。
(4)灵活运用数学知识解决实际问题,提高数学应用能力。
2、过程与方法(1)培养学生自主学习和合作学习的能力,让学生在复习过程中学会总结、归纳、提炼知识点。
(2)通过问题驱动法、案例分析、小组讨论等形式,引导学生主动探索、发现数学规律,提高解决问题的能力。
(3)采用变式教学、一题多解等方法,培养学生的发散性思维和创新意识。
(4)结合现代信息技术,如多媒体教学、网络资源等,丰富教学手段,提高教学效果。
3、情感,态度与价值观(1)激发学生学习数学的兴趣,培养他们积极、主动、持久的学习态度。
(2)引导学生树立正确的数学观念,认识到数学在科学技术、社会发展中的重要作用,增强学习数学的使命感和责任感。
(3)通过数学学习,培养学生严谨、求实的科学态度,提高他们的逻辑思维能力和批判性思维。
高考数学一轮复习教案

高考数学一轮复习教案教案标题:高考数学一轮复习教案教案目标:1. 确保学生对高考数学考试的各个知识点有全面的了解和掌握。
2. 帮助学生提高解题能力,培养分析和推理的能力。
3. 强化学生的数学思维和解题策略,提高应试能力。
教学内容:本教案主要围绕高考数学考试的各个知识点展开复习,包括代数、函数、几何、概率与统计等内容。
教学步骤:第一步:复习代数知识1. 复习一元二次方程的求根公式和应用。
2. 复习指数与对数的性质和运算法则。
3. 复习不等式的性质和解法。
第二步:复习函数知识1. 复习函数的定义和性质。
2. 复习函数的图像与性质,包括一次函数、二次函数、指数函数和对数函数等。
3. 复习函数的运算法则和复合函数的求解。
第三步:复习几何知识1. 复习平面几何的基本概念和性质。
2. 复习三角函数的定义和性质,包括正弦、余弦和正切等。
3. 复习平面几何中的相似三角形和勾股定理等。
第四步:复习概率与统计知识1. 复习概率的基本概念和计算方法。
2. 复习统计学中的数据收集、整理和分析方法。
3. 复习概率与统计在实际问题中的应用。
第五步:解题技巧和策略的讲解1. 教授解题的基本思路和步骤,包括审题、分析、解答和检查等。
2. 引导学生掌握解题中常用的技巧和策略,如代入法、逆向思维和分类讨论等。
3. 提供一些典型例题和解题方法的讲解和练习。
第六步:模拟考试和反馈1. 安排模拟考试,模拟高考数学试卷的形式和要求。
2. 收集学生的答卷并进行批改,给予详细的评价和建议。
3. 针对学生的错误和不足,进行有针对性的指导和讲解。
教学评估:1. 教师对学生的参与度和理解程度进行观察和评估。
2. 模拟考试的成绩和学生的答卷质量作为评估指标。
3. 学生对教学内容的反馈和问题的解答情况作为评估依据。
教学资源:1. 高考数学教材和辅助教材。
2. 高考数学模拟试卷和真题。
3. 多媒体设备和投影仪等。
教学延伸:1. 鼓励学生进行自主学习和拓展阅读,加深对数学知识的理解和应用能力。
高中一轮复习教案数学

高中一轮复习教案数学第一课:函数及其性质
1.1 函数的定义和性质
概念:函数的定义和表示方法
性质:单调性、奇偶性、周期性等
1.2 函数的基本变换
平移、翻转、缩放等基本函数的变换方法
例题:给出函数图像,要求根据变换规律求新函数的图像1.3 复合函数
概念:复合函数的定义和计算方法
例题:计算复合函数的值,并分析其性质
1.4 反函数
概念:反函数的存在条件及求解方法
例题:给定函数,求其反函数,并验证是否合理
第二课:三角函数及其应用
2.1 三角函数的概念与性质
正弦、余弦、正切等三角函数的定义和性质
例题:解三角函数方程,证明恒等式等
2.2 三角函数的图像与变换
三角函数的图像特征及平移、翻转、缩放等变换规律
例题:给定函数图像,要求根据变换规律求新函数的图像2.3 三角函数的应用
三角函数在几何、物理等领域的应用
例题:实际问题中的三角函数应用
第三课:导数与微分
3.1 导数的概念与性质
导数的定义、导数与函数图像的关系等基本性质
例题:求函数的导数,研究导数的性质
3.2 导数的计算
常见函数的导数计算方法
例题:计算给定函数的导数,并分析其变化规律
3.3 微分的应用
微分的定义及在近似计算、最值问题等方面的应用
例题:利用微分求函数的极值点,解几何问题等
以上是高中数学一轮复习的教案范本,希望对你的备考有所帮助。
祝你取得优异的成绩!。
高三数学第一轮复习教案(学生版)

题型1:比较大小
例1.设 ,试比较A=1+a2与B= 的大小。
变式训练:(2010西城二模)若 ,则下列不等式中正确的是( )
A. B. C. D.
题型2:取值范围
题型2:确定取值范围
例2.若 满足 ,求 的取值范围
解:
变式训练:已知-1<a+b<3且2<a-b<4,求2a+3b的取值范围.
一、知识梳理:
1.两实数大小的比较原理:
(差值比较原理)
(1)a-b>0 a>b;
(2)a-b=0 a=b;
(3)a-b<0 a<b.
特别提示(1)在实际问题中a,b可以是含未知数的代数式;
(2)提供了比较两个实数(代数式)大小的方法,也是利用比较法证明不等式的原理。
2.不等式的基本性质:
(1)a>b ________b<a.
推论:a>b>0 ________________- > (n∈N,n>1);
推论:a>b>0 _____________________-an>bn(n∈N,n>1).
(5)a>b,ab>0 _____________ < ,
特别提示:(1)性质5不能弱化条件得a>b < ;
(2)不等式的性质从形式上可分两类:一类是“ ”型;另一类是“ ”型.要注意二者的区别.
⑤若a>b,c>d能否能判定a-c>b-d?
⑥若a>b,c>d,cd≠0是否有
⑦若a>b,c>d是否有a-c>b-d?
⑧若a>b>0,d>c>0是否有
⑨若a>b,ab<0,是否有
⑩若a<b<0是否有(a)a3<b3;(b)a2>b2.
高三数学一轮复习备考教学设计:平面向量的应用

《平面向量》一轮复习(文科)教学设计一.考纲要求平面向量是高中数学的新增内容是高考命题的基本素材和主要背景之一,也是近几年高考的热点。
向量有着极其丰富的实际背景,是近代数学中重要和基本的概念之一。
向量是沟通代数、几何与三角函数的一种工具,它同时具有代数的运算性和几何的直观性,是数形结合的典范。
向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,能与中学数学教学内容的许多主干知识综合,形成知识交汇。
(一)、2016考试说明及解读(二)近三年全国卷部分考题展示:平面向量与解三角形交汇的题目3个选择题和7个填空题,其中有3道题是平面向量与解三角形的交汇(四)考情分析1.考查题型主要是以选择、填空为主,分值为10分左右,基本属容易题,也可以为中档的解答题.2.考查内容主要是平面向量的共线与垂直的充要条件,平面向量的线性运算和数量积运算,平面向量的应用等.(五)高考预测1.预计本章在今后的高考中,还将以向量的线性运算、向量的夹角、模、数量积为命题热点,将更加注重向量与其他知识的交汇,以考查基础知识、基本技能为主.2.题型主要以选择、填空为主,因此训练题的难度多数应该控制在中档即可,要适当增加以向量为载体考查平面几何,三角函数,解析几何,数列,不等式等问题的综合训练.3.对于能力型高考题的准备,向量具有基础知识的特点,是一种工具性和方法性知识,更要立足基本知识,基本方法,基本技能。
二.复习目标1、通过平面向量的线性运算和数量积运算,强化对平面向量基本概念的理解及提高向量运算求解能力。
2、通过向量与其它知识交汇的题型,体会向量的工具性作用。
特别是要关注向量与三角函数、解三角形、解析几何的结合。
3、关注数学思想方法在本章中的渗透:思想方法:数形结合的思想、类比的思想、分类讨论的思想、化归的思想、函数与方程的思想等。
解题方法:基向量法、坐标法、待定系数法、几何作图法、函数法等。
三.专题知识体系构建的方法与总体构思(复习计划)(一)进度安排本专题共有四讲内容:第一讲平面向量的概念及其线性运算第二讲平面向量基本定理及坐标表示第三讲平面向量的数量积第四讲平面向量应用举例前三讲每讲3课时,第四讲4课时,包括作业评讲,测试及评讲,共需两周时间。
高三数学第一轮复习教学设计

高三数学第一轮复习教学设计一、教学任务及对象1、教学任务本教学设计针对的是高三数学第一轮复习,旨在帮助学生全面回顾和巩固高中数学课程内容,为高考做好充分的准备。
教学内容主要包括:函数与极限、导数与微分、积分、立体几何、解析几何、数列、概率与统计等模块。
通过本轮复习,使学生能够熟练掌握各模块的基本概念、原理和方法,形成完整的知识体系,提高解题能力和数学思维能力。
2、教学对象本教学设计的教学对象为高三学生,他们已经完成了高中数学课程的学习,具有一定的数学基础和解决问题的能力。
但由于学生的个体差异,他们在知识掌握程度、学习方法和兴趣上存在一定差异。
因此,在教学过程中,需要关注每个学生的学习情况,因材施教,提高复习效果。
在教学过程中,教师将充分调动学生的积极性,引导他们主动参与课堂讨论和练习,培养良好的学习习惯和团队合作精神。
同时,针对学生的薄弱环节,进行有针对性的辅导和训练,提高他们的数学素养和应试能力。
二、教学目标1、知识与技能(1)熟练掌握高中数学各模块的基本概念、原理和方法,形成完整的知识体系。
(2)提高数学解题能力,特别是综合应用能力的提升,能够灵活运用所学知识解决实际问题。
(3)培养数学思维能力,包括逻辑推理、空间想象、数据分析等,提高学生的数学素养。
(4)掌握一定的数学研究方法,能够对数学问题进行深入探讨和拓展。
2、过程与方法(1)通过课堂讲解、讨论、练习等多种教学活动,让学生在复习过程中主动参与,提高学习积极性。
(2)采用问题驱动的教学方法,引导学生发现问题、分析问题、解决问题,培养学生的探究精神。
(3)运用案例教学,将数学知识与实际应用相结合,提高学生的应用意识。
(4)鼓励学生进行合作学习,发挥团队协作精神,共同解决问题,提高沟通与协作能力。
3、情感,态度与价值观(1)培养学生对数学的兴趣和热情,使他们认识到数学在生活中的重要作用,增强学习数学的自信心。
(2)引导学生树立正确的价值观,将数学学习与个人发展、国家利益和社会进步相结合,激发学生的社会责任感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新修订高中阶段原创精品配套教材
高三数学第一轮复习讲义
教材定制 / 提高课堂效率 /内容可修改
Lecture notes for the first round of senior high school mathematics
教师:风老师
风顺第二中学
编订:FoonShion教育
高三数学第一轮复习讲义
高三数学第一轮复习讲义空间的距离一.复习目标:1.理解点到直线的距离的概念,掌握两条直线的距离,点到平面的距离,直线和平面的距离,两平行平面间的距离;2.掌握求空间距离的常用方法和各距离之间的相互转化.二.知识要点:1.点到平面的距离:.
2.直线到平面的距离:.
3.两个平面的距离:.
4.异面直线间的距离:.三.课前预习:1.在中,,所在平面外一点到三顶点的距离都是,则到平面的距离是()
2.在四面体中,两两垂直,是面内一点,到三个面的距离分别是,则到的距离是()
3.已知矩形所在平面,,,则到的距离为,到的距离为.4.已知二面角为,平面内一点到平面的距离为,则到平面的距离为.
四.例题分析:例1.已知二面角为,点和分别在平面和平面内,点在棱上,,(1)求证:;(2)求点到平面的距离;(3)设是线段上的一点,直线与平面所成的角为,求的长.
例2.在直三棱柱中,底面是等腰直角三角形,,侧棱,分别是,与的中点,点在平面上的射影是的重心,(1)求与平面所成角的正弦值;(2)求点到平面的距离.例3.已知正四棱柱, 点为的中点,点为的中点,(1)证明:为异面直线的公垂线;(2)求点到平面的距离.
五.课后作业:班级学号姓名1.已知正方形所在平面,,点到平面的距离为,点到平面的距离为,则()
2.把边长为的正三角形沿高线折成的二面角,点到的距离是()3.四面体的棱长都是,两点分别在棱上,则与的最短距离是()4.已知二面角为,角,,则到平面的距离为.5.已知长方体中,,那么直线到平面的距离是.6.如图,已知是边长为的正方形,分别是的中点,,,(1)求证:;(2)求点到面的距离.
7.在棱长为1的正方体中,(1)求:点到平面的距离;(2)求点到平面的距离;(3)求平面与平面的
距离;(4)求直线到的距离.
FoonShion教育研究中心编制
Prepared by foonshion Education Research Center。