高三数学第一轮复习教案

合集下载

高三一轮复习教案数学

高三一轮复习教案数学

高三一轮复习教案数学一、高三数学一轮复习教案1. 概述:高三数学一轮复习是面向高三学生的重点训练,旨在让学生巩固扎实基础知识,理解和掌握数学基本概念,对重难点内容加深理解,弥补知识漏洞,提高学生的学习水平和独立解题能力。

2. 展开:(1)函数的分析与应用a. 函数的性质及其定义域、值域及正文域的概念b. 奇偶性、偶函数及抛物线系列;c. 线性函数及其图象;d. 指数函数及其图象;e. 根式函数及其图象;f. 对数函数及其图象及其性质;g. 函数求几何意义题;h. 曲线拟合、函数综合应用题;(2)统计概率a. 离散型随机变量及其分布;b. 连续型随机变量、概率密度函数与把握体系;c. 单因素分析题,全概率与条件概率、独立性;d. 二项分布与正态分布,综合应用题;(3)空间解析几何a. 直线与圆等元素的性质及其证明;b. 解析几何中几何体的基本定义及其性质;c. 利用向量方法处理几何问题;d. 三视图及位置关系;e. 平面向量及其法向量;f. 利用变换矩阵进行几何变换;(4)向量与矩阵a. 向量、线性组空间、线性变换、矩阵的基本概念;b. 向量的运算法则;c. 矩阵的相关运算;d. 矩阵的特征值;e. 矩阵求解与矩阵变换;(5)二次函数a. 二次函数的概念、性质及标准格式;b. 二次函数的图象及定义域;c. 二次函数的最大值、最小值;d. 不同方程表示同一图象;e. 二次函数应用题;(6)几何水平综合应用题a. 几何初等函数定义及性质;b. 三视图与三面视图及其绘制;c. 向量的几何意义及求解;d. 三维几何图形及其绘图;e. 直角系下三维坐标及其转换;f. 三维几何体体积、表面积和体积公式;g. 平面几何综合应用题;(7)微积分a. 微积分基本概念;b. 函数的定义域和单调性;c. 关于一元函数的极值;d. 函数的增减性及泰勒展开式;e. 一元函数的导数、积分及导数积分公式;f. 函数的图象和几何意义;g. 应用题;二、总结数学的学习有助于提高学生的逻辑思维、分析解决问题的能力,为掌握科学技术打下扎实的基础,帮助学生更好地把握学习中的重难点,提升解题能力,高三一轮复习教案数学是学习和考试的一个重要大纲,覆盖了大量的基础知识和重难。

高三数学一轮复习全套教案

高三数学一轮复习全套教案

高三数学一轮复习全套教案教案标题:高三数学一轮复习全套教案教学目标:1. 复习高三数学课程的核心知识点,巩固基础知识。

2. 提供高效的复习方法和策略,帮助学生提高解题能力。

3. 强化学生对数学概念的理解和应用,培养数学思维能力。

教学内容:本教案将按照高三数学课程的核心知识点进行组织,包括以下内容:1. 函数与方程2. 三角函数与解三角形3. 数列与数学归纳法4. 平面向量与立体几何5. 概率与统计6. 导数与微分7. 积分与定积分8. 一元二次函数与二次方程9. 不等式与绝对值10. 三角函数与三角方程教学步骤:1. 导入阶段:- 激发学生学习数学的兴趣,介绍本次复习的重要性。

- 回顾高三数学课程的学习目标和重点。

- 引导学生回顾已学知识,了解自己的薄弱环节。

2. 知识点复习与讲解:- 按照教学内容的顺序,逐个复习核心知识点。

- 对每个知识点进行讲解,包括基本概念、性质、定理及应用。

- 引导学生通过例题巩固知识点的理解和应用。

3. 解题技巧与策略分享:- 分享解题的常用技巧和策略,如逆向思维、分类讨论、代入法等。

- 给出典型题目,演示解题过程,注重引导学生运用解题技巧。

- 鼓励学生多做题目,熟练掌握解题方法。

4. 习题训练与巩固:- 提供大量的习题,包括选择题、填空题、解答题等。

- 根据学生的水平和进度,分阶段进行习题训练。

- 对学生的习题答案进行讲解和订正,纠正错误和不足。

5. 知识拓展与应用:- 引导学生将所学知识应用到实际问题中,培养数学思维能力。

- 提供拓展题目,挑战学生的思维和解题能力。

- 鼓励学生进行数学建模和实际问题的解决。

6. 总结与反思:- 对本次复习进行总结,强调重点和难点。

- 鼓励学生进行自我评价,找出不足并提出改进措施。

- 激励学生保持积极的学习态度,为高考做好准备。

教学评估:1. 课堂练习:通过课堂上的习题训练,检查学生对知识点的掌握情况。

2. 作业批改:对学生完成的作业进行批改,及时纠正错误和提供反馈。

高三数学第一轮复习方案

高三数学第一轮复习方案

高三数学第一轮复习方案一、引言数学是一门重要的学科,也是高中阶段的一门必修科目。

而在高三这个关键时期,数学的学习更显得至关重要。

为了帮助学生顺利备战高考,制定一个科学合理的复习方案至关重要。

本文将为您介绍高三数学第一轮复习方案,希望能够帮助学生们有条不紊地进行数学知识的巩固和应用。

二、复习目标1. 确定复习重点:系统复习高三数学的所有章节和知识点,明确需要特别关注的重点难点。

2. 掌握解题技巧:理解并掌握各类题型的解题方法和思路,提高解题速度和准确性。

3. 整合知识体系:加强不同章节知识之间的联系,形成完整的数学知识体系,提高综合应用能力。

4. 锻炼思维能力:培养学生的逻辑思维和数学分析能力,提高解决实际问题的能力。

三、复习计划1. 复习方法a) 分阶段复习:将整个复习过程划分为数个阶段,每个阶段专注于复习某一类知识点或题型。

b) 理解为主:通过阅读教材、课堂笔记等资料,深入理解数学概念和原理。

c) 练习为辅:结合教材习题和模拟题,进行大量练习,巩固所学知识和解题技巧。

d) 提问互动:主动向老师和同学提问,积极参与讨论,加深对知识点的理解和记忆。

2. 复习安排第一阶段:恢复基础知识a) 复习高二数学知识:回顾高二阶段学过的知识点,包括代数、函数、几何等内容。

b) 重点强化基础概念:重点复习数列、三角函数等基础概念,构建起扎实的数学基础。

第二阶段:巩固章节重点a) 逐章节复习:按照教材的章节顺序,分阶段复习各个章节的重点内容。

b) 注重难点概念:重点关注难点概念,辅以大量例题和习题训练,加深理解和掌握。

c) 注重综合应用:通过练习各类综合应用题,提高解决实际问题的能力。

第三阶段:模拟测试与强化训练a) 模拟考试:模拟高考真题,检验知识点的掌握情况,发现不足之处。

b) 针对性复习:根据模拟考试的成绩情况,有针对性地复习薄弱知识点和题型。

c) 提高解题效率:通过做题速度的训练,提高解题效率,逐渐适应高考时间的压力。

高中一轮复习教案数学

高中一轮复习教案数学

高中一轮复习教案数学第一课:函数及其性质
1.1 函数的定义和性质
概念:函数的定义和表示方法
性质:单调性、奇偶性、周期性等
1.2 函数的基本变换
平移、翻转、缩放等基本函数的变换方法
例题:给出函数图像,要求根据变换规律求新函数的图像1.3 复合函数
概念:复合函数的定义和计算方法
例题:计算复合函数的值,并分析其性质
1.4 反函数
概念:反函数的存在条件及求解方法
例题:给定函数,求其反函数,并验证是否合理
第二课:三角函数及其应用
2.1 三角函数的概念与性质
正弦、余弦、正切等三角函数的定义和性质
例题:解三角函数方程,证明恒等式等
2.2 三角函数的图像与变换
三角函数的图像特征及平移、翻转、缩放等变换规律
例题:给定函数图像,要求根据变换规律求新函数的图像2.3 三角函数的应用
三角函数在几何、物理等领域的应用
例题:实际问题中的三角函数应用
第三课:导数与微分
3.1 导数的概念与性质
导数的定义、导数与函数图像的关系等基本性质
例题:求函数的导数,研究导数的性质
3.2 导数的计算
常见函数的导数计算方法
例题:计算给定函数的导数,并分析其变化规律
3.3 微分的应用
微分的定义及在近似计算、最值问题等方面的应用
例题:利用微分求函数的极值点,解几何问题等
以上是高中数学一轮复习的教案范本,希望对你的备考有所帮助。

祝你取得优异的成绩!。

高三数学第一轮复习教案(学生版)

高三数学第一轮复习教案(学生版)
二、典型例题分析
题型1:比较大小
例1.设 ,试比较A=1+a2与B= 的大小。
变式训练:(2010西城二模)若 ,则下列不等式中正确的是( )
A. B. C. D.
题型2:取值范围
题型2:确定取值范围
例2.若 满足 ,求 的取值范围
解:
变式训练:已知-1<a+b<3且2<a-b<4,求2a+3b的取值范围.
一、知识梳理:
1.两实数大小的比较原理:
(差值比较原理)
(1)a-b>0 a>b;
(2)a-b=0 a=b;
(3)a-b<0 a<b.
特别提示(1)在实际问题中a,b可以是含未知数的代数式;
(2)提供了比较两个实数(代数式)大小的方法,也是利用比较法证明不等式的原理。
2.不等式的基本性质:
(1)a>b ________b<a.
推论:a>b>0 ________________- > (n∈N,n>1);
推论:a>b>0 _____________________-an>bn(n∈N,n>1).
(5)a>b,ab>0 _____________ < ,
特别提示:(1)性质5不能弱化条件得a>b < ;
(2)不等式的性质从形式上可分两类:一类是“ ”型;另一类是“ ”型.要注意二者的区别.
⑤若a>b,c>d能否能判定a-c>b-d?
⑥若a>b,c>d,cd≠0是否有
⑦若a>b,c>d是否有a-c>b-d?
⑧若a>b>0,d>c>0是否有
⑨若a>b,ab<0,是否有
⑩若a<b<0是否有(a)a3<b3;(b)a2>b2.

高三数学第一轮复习教学设计

高三数学第一轮复习教学设计

高三数学第一轮复习教学设计一、教学任务及对象1、教学任务本教学设计针对的是高三数学第一轮复习,旨在帮助学生全面回顾和巩固高中数学课程内容,为高考做好充分的准备。

教学内容主要包括:函数与极限、导数与微分、积分、立体几何、解析几何、数列、概率与统计等模块。

通过本轮复习,使学生能够熟练掌握各模块的基本概念、原理和方法,形成完整的知识体系,提高解题能力和数学思维能力。

2、教学对象本教学设计的教学对象为高三学生,他们已经完成了高中数学课程的学习,具有一定的数学基础和解决问题的能力。

但由于学生的个体差异,他们在知识掌握程度、学习方法和兴趣上存在一定差异。

因此,在教学过程中,需要关注每个学生的学习情况,因材施教,提高复习效果。

在教学过程中,教师将充分调动学生的积极性,引导他们主动参与课堂讨论和练习,培养良好的学习习惯和团队合作精神。

同时,针对学生的薄弱环节,进行有针对性的辅导和训练,提高他们的数学素养和应试能力。

二、教学目标1、知识与技能(1)熟练掌握高中数学各模块的基本概念、原理和方法,形成完整的知识体系。

(2)提高数学解题能力,特别是综合应用能力的提升,能够灵活运用所学知识解决实际问题。

(3)培养数学思维能力,包括逻辑推理、空间想象、数据分析等,提高学生的数学素养。

(4)掌握一定的数学研究方法,能够对数学问题进行深入探讨和拓展。

2、过程与方法(1)通过课堂讲解、讨论、练习等多种教学活动,让学生在复习过程中主动参与,提高学习积极性。

(2)采用问题驱动的教学方法,引导学生发现问题、分析问题、解决问题,培养学生的探究精神。

(3)运用案例教学,将数学知识与实际应用相结合,提高学生的应用意识。

(4)鼓励学生进行合作学习,发挥团队协作精神,共同解决问题,提高沟通与协作能力。

3、情感,态度与价值观(1)培养学生对数学的兴趣和热情,使他们认识到数学在生活中的重要作用,增强学习数学的自信心。

(2)引导学生树立正确的价值观,将数学学习与个人发展、国家利益和社会进步相结合,激发学生的社会责任感。

高三一轮复习教案

高三一轮复习教案

高三一轮复习教案(全套68个)第一部分力学§1. 力一、力重力和弹力二、摩擦力三、共点力的合成与分解四、物体的受力分析五、物体的平衡六、解答平衡问题时常用的数学方法七、利用整体法和隔离法求解平衡问题八、平衡中的临界、极值问题§2. 物体的运动一、直线运动的基本概念二、匀变速直线运动规律三、自由落体与竖直上抛运动四、直线运动的图象五、追及与相遇问题§3. 牛顿运动定律一、牛顿第一运动定律二、牛顿第二定律三、牛顿第二定律应用(已知受力求运动)四、牛顿第二定律应用(已知运动求力)五、牛顿第二定律应用(超重和失重问题)§4. 曲线运动万有引力定律一、曲线运动二、平抛运动三、平抛运动实验与应用四、匀速圆周运动五、圆周运动动力学六、万有引力定律§5. 动量一、冲量和动量二、动量定理三、动量守恒定律四、动量守恒定律的应用§6. 机械能一、功和功率二、动能定理三、机械能守恒定律四、功能关系五、综合复习(2课时)§7. 机械振动和机械波一、简谐运动二、典型的简谐运动三、受迫振动与共振四、机械波五、振动图象和波的图象声波第二部分热学§1. 分子动理论热和功一、分子动理论二、物体的内能热和功§2.气体、固体和液体的性质一、气体的体积、压强、温度间的关系二、固体和液体的性质第三部分电磁学§1. 电场一、库仑定律二、电场的性质三、带电粒子在电场中的运动四、电容器§2. 恒定电流一、基本概念二、串、并联与混联电路三、闭合电路欧姆定律§3.磁场一、基本概念二、安培力(磁场对电流的作用力)三、洛伦兹力四、带电粒子在混合场中的运动§4.电磁感应一、电磁感应现象二、楞次定律(2课时)三、法拉第电磁感应定律(2课时)§5.交变电流电磁场和电磁波一、正弦交变电流(2课时)二、电磁场和电磁波第四部分光学§1.几何光学一、光的直线传播二、反射平面镜成像三、折射与全反射§2.光的本性一、光的波动性二、光的粒子性三、光的波粒二象性第五部分原子物理学§1.原子和原子核一、原子模型二、天然放射现象三、核反应四、核能第一部分力学§1. 力一、力重力和弹力目的要求:理解力的概念、弄清重力、弹力,会利用胡克定律进行计算知识要点:1、力:是物体对物体的作用(1)施力物体与受力物体是同时存在、同时消失的;(2)力的大小、方向、作用点称为力的三要素;(3)力的分类:根据产生力的原因即根据力的性质命名有重力、弹力、分子力、电场力、磁场力等;根据力的作用效果命名即效果力如拉力、压力、向心力、回复力等。

高三数学一轮复习教案

高三数学一轮复习教案

高三数学一轮复习教案高三数学一轮复习教案一、教学目标:1.熟练掌握高三数学的重点知识点和难点;2.提高学生数学解题的能力和应试技巧;3.巩固和加深学生对数学知识的理解和运用。

二、教学内容:1.数列与数列极限;2.函数分析与函数的极限;3.导数与导数的应用;4.不等式与方程;5.平面解析几何。

三、教学方法:1.讲授法:通过讲解掌握知识点和解题技巧;2.练习法:通过大量的练习巩固知识点和训练解题能力;3.课堂讨论:引导学生进行课堂讨论,培养学生的思辨能力和解决问题的能力。

四、教学过程:第一课时:数列与数列极限1.复习:回顾数列的概念、性质和分类;回顾数列极限的定义和判定方法。

2.讲解:介绍数列的极限存在性和唯一性;介绍数列极限的计算方法和性质;讲解数列极限的应用。

第二课时:函数分析与函数的极限1.复习:回顾函数的定义和性质;回顾函数的奇偶性和周期性。

2.讲解:介绍函数的极限定义和计算方法;讲解函数极限的性质和应用;解析函数的单调性和零点问题。

第三课时:导数与导数的应用1.复习:回顾导数的定义和性质;回顾导数的四则运算和复合函数求导法则。

2.讲解:介绍导数的应用:切线与曲线的位置关系、极值与最值问题;讲解导数的几何意义和物理应用。

第四课时:不等式与方程1.复习:回顾不等式的性质和解法;回顾方程的性质和解法。

2.讲解:介绍一元一次不等式和方程的解法;讲解一元二次不等式和方程的解法;介绍含有绝对值的不等式和方程的解法。

第五课时:平面解析几何1.复习:回顾平面解析几何的基本概念和性质;回顾直线和曲线的方程和性质。

2.讲解:讲解直线与圆的位置关系和相交特点;讲解直线与抛物线的位置关系和相交特点;介绍直线与椭圆、双曲线的位置关系和相交特点。

五、教学反思:通过一轮复习教案的设计和讲授,学生能够系统地复习高三数学的重点知识点和难点,提高了数学解题的能力和应试技巧。

同时,注重课堂讨论和问题引导,培养了学生的思辨能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习教案及知识点第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n个. ②n 个元素的真子集有2n-1个. ③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸第二讲.整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间) 则不等式)0)(0(0022110><>++++--a a x a xa x a n n n n的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论. 0>∆ 0=∆ 0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-==无实根原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.第三讲,简易逻辑及命题1、命题的定义:可以判断真假的语句叫做命题。

2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。

3、“或”、 “且”、 “非”的真值判断(1)“非p ”形式复合命题的真假与F 的真假相反;(2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假;(3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题. 5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题) ①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q.7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。

第四、五讲函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 函数 知识要点一、本章知识网络结构:F:A →B对数函数指数函数二次函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性正确理解奇、偶函数的定义。

相关文档
最新文档