2017-2018学年人教版初一数学上册第四章单元《几何图形初步》检测卷

合集下载

新人教版七年级数学上册第四章《几何图形初步》单元测试试卷及答案

新人教版七年级数学上册第四章《几何图形初步》单元测试试卷及答案

新人教版七年级数学上册第四章《几何图形初步》单元测试试卷及答案一、选择题(题型注释)1、如图,AB=CD,那么AC与BD的大小关系是()A.AC=BD B.AC<BD C.AC>BD D.不能确定2、下列错误的判断是()A.任何一条线段都能度量长度 B.因为线段有长度,所以它们之间能比较大小C.利用圆规配合尺子,也能比较线段的大小 D.两条直线也能进行度量和比较大小3、如图是一个能折成长方体的模型,那么由它折成的长方体是下列图形中的( )A. B. C. D.4、已知线段AB=6cm,在直线AB上画线段AC=2,则BC的长为()A.4cm B.8cm C.4cm或8cm D.不能确定5、如图是某个几何体的展开图,该几何体是()A.正方体 B.圆锥 C.圆柱 D.三棱柱6、如果一个角的补角是150°,那么这个角的余角的度数是()A.30° B.120° C.90° D.60°7、下列语句错误的是( )A.锐角的补角一定是钝角 B.一个锐角和一个钝角一定互补C.互补的两角不能都是钝角 D.互余且相等的两角都是45°8、钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为A. B. C. D.9、建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线.这个实例体现的数学知识是()A.两点之间,线段最短 B.过已知三点可以画一条直线C.一条直线通过无数个点 D.两点确定一条直线10、如图所示的各图中,不是正方体表面展开图的是()A. B.C. D.二、填空题(题型注释)11、点A、B、C是同一直线上的三点,并且AB=10cm,BC=6cm.若点M是AB中点,点N是BC中点,则MN的长为________cm.12、一个角的余角比这个角的补角的一半小40°,则这个角为________度.13、∠AOB的度数与时钟4:00整时时针与分针所成的角度相同,那么∠AOB=___°,∠AOB=_______°,90°-∠AOB=90°-_____°=__________°.14、如图,锐角的个数共有_______个.15、∠α+∠β=90°,且∠α=2∠β,则∠α=___________,∠β=_________.16、已知点c在直线AB上,若AC= 4cm,BC= 6cm,E、F分别为线段AC、BC的中点,则EF=________________cm.17、已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB =60,BC=40,则MN的长为_____________.18、如图,OC平分∠AOB,若∠AOC=27°32′,则∠AOB=________.19、如图,已知OE是∠BOC的平分线,OD是∠AOC的平分线,且∠AOB=150°,则∠DOE的度数是____度.20、判断题(1)∠1是钝角,则∠1一定是锐角.(______)(2)图中∠CAB也可表示成∠A.(______)(3)两条射线组成的图形叫做角. (______)(4)两条直线相交形成的图形叫做角. (______)(5)射线绕它上面一点旋转形成的图形叫做角.(___)三、解答题(题型注释)21、如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC.(注:顶点均在网格线交点处的三角形称为格点三角形.)(1)△ABC是三角形(填“锐角”、“直角”或“钝角”);(2)若P、Q分别为线段AB、BC上的动点,当PC+PQ取得最小值时,①在网格中用无刻度的直尺,画出线段PC、PQ.(请保留作图痕迹.)②直接写出PC+PQ的最小值: .22、一个角的补角比它的余角的4倍少,求这个角的度数.23、如图,直线AB、CD相交于点O,射线OM,ON分别平分∠AOC,∠AOD,,求的度数.24、如图,已知CO⊥AB于点O,∠AOD=5∠DOB,求∠COD的度数.25、如图,在直线l上顺次取A,B,C三点,使得AB=4cm,BC=3cm,如果O为线段AC的中点,M为线段AB的中点,N为线段BC的中点.(1)求线段MN的长度;(2)求线段OB的长度.26、三角板如下图所示放置,在图上加弧线的角为多少度?参考答案1、A2、D3、D4、C5、B6、D7、B8、C9、D10、C11、2或812、8013、 120 60 40 5014、515、 60° 30°16、5cm 1cm17、50或1018、55°4′19、7520、√ × × × ×21、(1)直角;(2)①画图见解析;②.22、这个角的度数是.23、90°.24、∠COD="60°" .25、(1)MN =cm;(2)OB=cm.26、75°, 15°【解析】1、试题分析:根据AB=CD可得:AC+BC=BD+BC,则AC=BD,故选择A.2、试题分析:直线和射线的长度是无法度量的,则两条直线不能比较大小.3、【分析】由展开图可以推出长方体对面的颜色,据此可以推断正确选项.【详解】由展开图可以推出长方体对面的颜色,可知对面的颜色应该相同,且前后都有阴影,故选项A,B,C错误.故选:D【点睛】本题考核知识点:展开图.解题关键点:分析出立方体对面的颜色.4、分析:画出图形,分情况讨论:①当点C在线段AB上;②当点C在线段BA的延长线上;③因为AB大于AC,所以点C不可能在AB的延长线上.详解:如图所示,可知:①当点C在线段AB上时,BC=AB-AC=4;②当点C在线段BA的延长线上时,BC=AB+AC=8.故选C.点睛:本题主要考查的是线段的长度计算,属于基础题型.注意根据题意,分情况讨论,要画出正确的图形,结合图形进行计算.5、分析:详解:因为圆锥的展开图为一个扇形和一个圆形,故这个几何体是圆锥,故选:B.点睛:本题考查立体图形的平面展开图.掌握平面图形与立体图形的关系,并熟知常见几何体的平面展开图是解题的关键.6、分析:首先根据补角得出这个角的度数,然后根据余角的性质得出答案.详解:设这个角为x°,则x+150=180,解得:x=30°,则这个角的余角为90°-30°=60°,故选D.点睛:本题主要考查的是余角和补角的性质,属于基础题型.解决这个问题的关键就是要明确补角和余角的定义.7、A. ∵锐角小于90°,∴锐角的补角一定是钝角,故正确;B. ∵如:30°+100°=130°,∴一个锐角和一个钝角不一定互补,故不正确;C. ∵如果两个角都是钝角,则其和就大于180°,∴互补的两角不能都是钝角,故正确;D. ∵互余且相等的两角都是45°,故正确;故选B.8、分析:可画出草图,利用钟表表盘的特征解答.详解:10×30+40×0.5-6×40=320-240=80(°)故选:C.点睛:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每钟转动6°,时针每分钟转动(12)°,并且利用起点时间时针和分针的位置关系建立角的图形.9、解:建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线.这个实例体现的数学知识是两点确定一条直线,故选D.点睛:此题主要考查了直线的性质,关键是掌握两点确定一条直线.10、正方体的展开图有下列11种:故选C.11、试题解析:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴MN=8(2)当C在AB上时,如图2,同理可知BM=5,BN=3,∴MN=2.所以MN=8或2,故答案为:8或2.12、试题解析:设这个角为x,则它的余角为补角为由题意得,解得故答案为:80.13、试题解析:4:00整,时针和分针夹角是4份,每份30°,故4×30°=120°,即∠AOB=120°.∴∠AOB=60°,90°-∠AOB=90°-40°=50°.14、试题解析:以OA为一边的角∠AOB=20°,∠AOC=20°+30°=50°,∠AOD=20°+30°+50°=100°(钝角舍去),以OB为一边的角∠BOC=30°,∠BOD=50°+30°=80°,以OC为一边的角∠COD=50°.共有∠AOB,∠AOC,∠BOC,∠BOD,∠COD.故答案为5个.15、试题解析:∵∠α+∠β=90°,且∠α=2∠β,∴,解得∠α=60°,∠β=30°,16、分析:分类讨论:点C在线段AB上,点C在线段AB的反向延长线上,根据中点分线段相等,可得AE与CE的关系,BF与CF的关系,可根据线段的和差,可得答案.详解:点C在线段AB上, E、F分别为线段AC、BC的中点,CE=AE=AC=2cm,CF=BF=BC=3cm,EF=CE+CF=2+3=5cm;点C在线段AB的反向延长线上,E、F分别为线段AC、BC的中点,CE=AE=AC=2cm,CF=BF=BC=3cm,EF=CF-CE=3-2=1cm,故答案为:5cm或1cm.点睛:本题考查了两点间的距离,分类讨论是解题关键.17、试题解析:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴MN=50.(2)当C在AB上时,如图2,同理可知BM=30,BN=20,∴MN=10,所以MN=50或10,故答案为:50或10.18、∵OC平分∠AOB,∴∠AOB=2∠AOC,又∵∠AOC=27°32′,∴∠AOB==27°32′×2=54°64′=55°4′.19、因为OE是∠BOC的平分线,OD是∠AOC的平分线,所以∠DOE=∠AOC+∠BOC= (∠AOC+∠BOC)=∠AOB,因为∠AOB=150°,所以∠DOE=150°÷2=75°.故答案为:75.20、试题解析:(1)∵∠1是钝角,∴90°<∠1<180°,∴45°<∠1<90°,∵大于0度小于90°的角叫锐角,∴此结论正确.(2)只有顶点处有一个角时,才能用一个字母表示此角.故答案为×.(3)两条具有公共端点的射线组成的图形叫做角,故错误;(4)两条具有公共端点的射线组成的图形叫做角,故错误;(5)两条具有公共端点的射线组成的图形叫做角,故错误;21、分析:(1)先利用勾股定理求出△ABC的三边长,再利用勾股定理的逆定理即可进行判断;(2)利用轴对称即可作图,利用相似的性质及勾股定理即可计算出PC+PQ的最小值. 详解:(1)∵网格图是由边长为1的小正方形组成,∴,,∵,∴∴△ABC是直角三角形.故答案为:直角.(2)①作图如图所示,②∵PC+PQ,又∵,∴PC+PQ.故答案为:.点睛:本题考查了勾股定理及其逆定理、轴对称、最短路径等知识. 借助网格得到平行与垂直是画图与计算的关键.22、分析:设这个角为x,根据互为补角的两个角的和等于180°表示出它的补角,互为余角的两个两个角的和等于90°表示出它的余角,然后列方程求解即可.详解:设这个角为x,由题意得,,解得,答:这个角的度数是.点睛:本题主要考查了余角和补角,熟记概念并列出方程时解题的关键.23、分析:首先根据角平分线的性质得出,,然后根据平角的性质得出∠MON=90°.详解:∵射线OM,ON分别平分∠AOC,∠AOD,∴,,∴,即,∵∠COD=180°,∴.点睛:本题主要考查的就是角平分线的性质,属于基础题型.解答这个问题的关键就是明白角平分线的定义,将所求的角进行转化.24、分析:根据∠AOD和∠DOB互补以及∠AOD=5∠DOB求出∠BOD的度数,然后根据∠COD与∠BOD互余即可求出∠COD的度数.详解:∵∠AOD=5∠BOD,设∠BOD=x°,∠AOD=5x°.∵∠AOD+∠BOD=180°,∴x+5x=180,∴x=30,∴∠BOD="30°,"∵CO⊥AB,∴∠BOC="90°,"∴∠COD=∠BOC-∠BOD=90°-30°=60°.点睛:本题考查角的计算,涉及垂线的定义,邻补角的性质,一元一次方程的解法,根据∠AOD与∠COD互补列出方程求出∠BOD的度数是解决此题的关键.25、试题分析:(1)可先求出MB、BN,继而根据MN=MB+BN即可得出答案;(2)先求出OC的长度,然后根据OB=OC-BC可得出答案.试题分析:(1)因为AB=4cm,BC=3cm,M为线段AB的中点,N为线段BC的中点,所以MB=AB=2cm,BN= BC=cm,故可得MN=MB+BN=cm.(2)因为O为线段AC的中点,AC=AB+BC=7cm,所以OC=AC=cm,故可得:OB=OC-BC=cm.26、试题分析:根据一副三角板的特点进行解答,等腰直角三角形有两个角是45°,一个含30°角的直角三角形,通过这两个角之间的关系即可得出答案.试题解析:(1)根据图象知:图上加弧线的角为:45°+30°=75°;(2)根据图象知:图上加弧线的角为:45°-30°=15°.。

人教版初中数学七年级数学上册第四单元《几何图形初步》检测卷(有答案解析)(1)

人教版初中数学七年级数学上册第四单元《几何图形初步》检测卷(有答案解析)(1)

一、选择题1.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 2.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 3.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线4.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 5.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个 6.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30°B .60°C .120°D .150° 7.在钟表上,1点30分时,时针与分针所成的角是( ).A .150°B .165°C .135°D .120° 8.下图是一个三面带有标记的正方体,它的表面展开图是( )A .B .C .D . 9.下列图形中,不可以作为一个正方体的展开图的是( )A .B .C .D . 10.由A 站到G 站的某次列车,运行途中停靠的车站依次是A 站——B 站—C 站——D 站——E 站——F 站——G 站,那么要为这次列车制作的火车票有( )A .6种B .12种C .21种D .42种11.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 12.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°二、填空题13.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.14.把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .15.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B 为顶点的角共有______个,分别表示为_______________________.16.如图,用边长为4cm的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm2.17.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.18.已知∠A=67°,则∠A的余角等于______度.19.如图所示,O是直线AB上一点,OD平分∠BOC, ∠COE=90°,若∠AOC=40°,则∠DOE=_________.20.在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分.三、解答题21.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,则求∠BOC,∠EOC的度数.22.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.23.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒. (1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)24.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.25.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线.[知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 26.如图,把下列物体和与其相似的图形连接起来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C根据折叠的性质,结合折叠不变性,可知剪下来的图形是C ,有四个直角三角形构成的特殊四边形.故选C.2.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.3.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 4.C解析:C【分析】根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.5.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 6.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C .【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.7.C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.【详解】钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.8.D解析:D【解析】【分析】根据正方体侧面展开图中相邻的面和相对的面,进行判断即可.【详解】A三角形和正方形是对面,不符合题意;B不符合题意;C. 三角形和正方形是对面,不符合题意;D符合题意;故选D【点睛】本题考查正方体展开图,掌握正方体侧面展开图中相邻的面和相对的面是解题的关键.9.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.10.C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.11.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.12.B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题13.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON与∠AOB的关系即可求出∠MON的度数【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC∠NOC=∠BOC∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12(∠AOB+∠B0C-∠BOC)=12∠AOB=45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.14.【分析】棱长为1cm的正方体拼的表面积是6要使拼接成的长方体表面积最大则重合的面要最少当四个正方体排成一列时面积最大重合的有6个面【详解】解:当四个正方体排成一列时面积最大重合的有6个面根据以上分析解析:18【分析】棱长为1cm的正方体拼的表面积是6,要使拼接成的长方体表面积最大则重合的面要最少,当四个正方体排成一列时,面积最大.重合的有6个面.解:当四个正方体排成一列时,面积最大.重合的有6个面.根据以上分析表面积最大的为:4×(4×1)+2×(1×1)=18.故答案为18.【点睛】本题的考查了长方体表面积的计算,关键是要分析出什么情况下表面积最大.15.3【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示也可以用三个大写字母表示其中顶点字母要写在中间唯有在顶点处只有一个角的情况才可用顶点处的一个字母来记这个角否则分不清这个字母究竟表示哪个 解析:A ∠,C ∠ ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ 3 ABD ∠,ABC ∠,DBC ∠【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】(1)∵以A 、 C 为顶点的角有两个,∴能用一个大写字母表示的角有A ∠,C ∠ ;(2)∵只要角的顶点及两边均有大写字母,则此角可用三个大写字母表示,∴可用三个大写字母表示的角是ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ ; (3)由图可知以B 为顶点的角共有3个,分别是ABD ∠,ABC ∠,DBC ∠.【点睛】此题考查角的概念,解题关键在于掌握其概念.16.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=1解析:9【解析】【分析】先求出最小的等腰直角三角形的面积=18×12×42=1,再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可.【详解】 解:阴影部分的面积=42-7×18×12×42=16-7=9. 故答案为9.本题考查七巧板、图形的拼剪,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积.17.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.18.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.19.20【解析】【分析】求出∠BOC=140°根据OD平分∠BOC得出∠COD=∠BOC求出∠COD=70°根据∠DOE=∠COE-∠COD求出即可【详解】∵O 是直线AB上一点∴∠AOC+∠BOC=18解析:20【解析】【分析】求出∠BOC=140°,根据OD平分∠BOC得出∠COD=12∠BOC,求出∠COD=70°,根据∠DOE=∠COE-∠COD求出即可.【详解】∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=40°,∴∠BOC=140°,∵OD平分∠BOC,∴∠COD=12∠BOC=70°, ∵∠DOE=∠COE-∠COD ,∠COE=90°,∴∠DOE=20°,故答案为20°.【点睛】本题考查了角的计算、角平分线的定义,解题的关键是能求出各个角的度数. 20.或【分析】设分针转的度数为x 则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x 则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理 解析:4011或32011 【分析】 设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷= 当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】 本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.三、解答题21.∠BOC =76°,∠EOC =19°.【分析】由∠BOC =2∠AOC ,则∠AOB=∠BOC+∠AOC=3∠AOC ,即∠BOC=23∠AOB ,然后求解即可;再根据OE 是∠AOB 的平分线求得∠BOE ,最后根据角的和差即可求得∠EOC .【详解】解:∵∠BOC =2∠AOC ,∠AOB =114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.22.(1)∠BOD,∠BOC;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE,∠COD,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD的补角是∠BOD;∠AOC的补角是∠BOC;(2)∵OD平分∠AOC,OE平分∠BOC,∴∠COD= 12∠AOC,∠COE=12∠BOC.由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°.【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解.23.(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,所以甲型盒的容积为24540⨯⨯=(立方分米).乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,容积为2228⨯⨯=(立方分米),故答案为40,8.(2)甲型盒的底面积为248⨯=(平方分米),两个乙型盒中的水的体积为8216⨯=(立方分米),所以甲型盒内水的高度为1682÷=(分米).答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.24.(1)7.5;(2)12a,理由见解析;(3)能,MN=12b,画图和理由见解析【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可.(2)据题意画出图形,利用MN=MC+CN即可得出答案.(3)据题意画出图形,利用MN=MC-NC即可得出答案.【详解】解:(1)点M、N分别是AC、BC的中点,∴CM=12AC=4.5cm,CN=12BC=3cm,∴MN=CM+CN=4.5+3=7.5cm.所以线段MN的长为7.5cm.(2)MN的长度等于12 a,根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC)=12a;(3)MN的长度等于12 b,根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.25.(1)40︒,16α;(2)①存在,当20t=秒或25秒时,∠COD的度数是20︒;②当907t=,36019,1807,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.26.见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.。

2017-2018七年级上第四章《几何图形初步》测试卷及答案

2017-2018七年级上第四章《几何图形初步》测试卷及答案

DC B AB A第1题图会社谐和设建C B A βββααα第3题图第4章《几何图形初步》测试卷时间:90分钟 满分:150分班级_______姓名____________分数____________一、选择题(每小题4分,共40分)1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )A.和B.谐C.社D.会2. 如图,有一个正方体纸巾盒,它的平面展开图是( )A .B .C .D .3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A. 正方体、圆柱、三棱柱、圆锥B. 正方体、圆锥、三棱柱、圆柱C. 正方体、圆柱、三棱锥、圆锥D. 正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是()1乙甲N MPD C B A B ()D C A D CB AC 7. 点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( )A. 3cmB. 4cmC. 5cmD. 6cm9. 一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是( )A .B .C . 或D . 或10.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°;乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题(每小题4分,共32分)11.下列各图形中, 不是正方体的展开图(填序号).12.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6cm ,则AB = cm.13.已知线段AB ,延长AB 到C ,使BC =2AB ,D 为AB 的中点,若BD =3cm ,则AC 的长为 cm.14.若时针由2点30分走到2点55分,则时针转过 度,分针转过 度.15.一个角的补角是这个角的余角的4倍,则这个角的度数是 .第18题D C B A O 第16题D C B A b a D C 16.如图,已知点O 是直线AD 上的点,∠AOB 、∠BOC 、∠COD 三个角从小到大依次相差25°,则这三个角的度数分别为.17.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC +∠DOB = .18.如图所示,一艘船从A 点出发,沿东北方向航行至点B ,再从B 点出发沿南偏东15°方向行至点C ,则∠ABC = 度.三、解答题:(本大题共78分)19.(6分)根据下列语句,画出图形. ⑴已知四点A 、B 、C 、D.① 画直线AB ; ② 连接AC 、BD ,相交于点O ;③ 画射线AD 、BC ,交于点P.(2)(8分)如图,已知线段a 、b ,画一条线段,使它等于2a -b.(不要求写画法)20.计算题:(每小题6分,共12分)⑴ (180°-91°32/24//)×3 ⑵ 34°25/×3+35°42/21.解答下面试题:(每小题8分,共16分)(1)一个角的余角比它的补角的31还少20°,求这个角.(2)如图,AOB 为直线,OC 平分∠AOD ,∠BOD =42°,求∠AOC 的度数.第25题图E A /DC B A22.(12分)探究题:如图,将书页一角斜折过去,使角的顶点A 落在A /处,BC 为折痕,BD 平分∠A /BE ,求∠CBD 的度数.23.(12分)下面是由同一型号的黑白两种颜色的等边三角形瓷砖按一定规律铺设的图形。

人教版数学七年级上册第四章《几何图形初步》单元检测卷(含答案)

人教版数学七年级上册第四章《几何图形初步》单元检测卷(含答案)

人教版数学七年级上册第四章《几何图形初步》单元检测卷满分:100分 时间:100分钟一、选择题(每小题3分,共30分)1. 如图所示,将平面图形绕轴旋转一周,得到的几何体是( ) A . 球 B . 圆柱 C . 半球 D . 圆锥2. 如图是由4个大小相同的小正方体摆成的几何体,它的左视图是( )A .B .C .D .3. A ,B ,C 三点在同一直线上,线段AB =5cm ,BC =4cm ,那么A ,C 两点的距离是( ) A .1cm B .9cmC .1cm 或9cmD .以上答案都不对 4. 下列说法中正确的是( )A .如果两个角互余,则这两个角的和为180°B .连接两点的线段叫两点的距离C .两点之间线段最短D .若AC =BC ,则点C 是线段AB 的中点 5. 如果∠1与∠2互补,∠2与∠3相等,则∠1与∠3的关系是( ) A . ∠1=∠3 B . ∠1=180°-∠3 C . ∠1=90°+∠3 D . 以上都不对 6. 从点A 看B 的方向是北偏东35°,那么从B 看A 的方向为( )A . 南偏东55°B . 南偏西55°C . 南偏东35°D . 南偏西35° 7. 如图,已知线段AB =BC +CD ,若AC =6,CD =2,则AB 的长是()A . 3B . 4C . 5D . 6 8. 一个角的余角是它补角的25,这个角的补角的大小是( )A . 30°B . 60°C . 120°D . 150°9. 将长方形ABCD 沿AE 折叠,使点D 落到D ′处,得到如图所示的图形,已知∠CED ′=60°,则∠AED 的大小是( )A . 60°B . 50° B .C . 75°D . 55°10.在下午4时与5时之间,时针与分针的夹角为90°A .4时30分B .4时45分C .4时1160或4时11420分 D .4时13210分或4时13310分 二、填空题(每小题3分,满分24分)11. 如图,点A ,B ,C 在直线l 上,则图中共有 条线段,有 条射线.12. 一个角的余角为70°37′,那么这个角等于 .13. 如图,△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则点B 到直线CD 的距离是线段 的长.14. 已知线段AB =4cm ,延长线段AB 至点C ,使BC =2AB ,若D 点为线段AC 的中点,则15.将一副三角板如图放置,若∠A O D =20°,则∠B O C 的大小为________°.16. 如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠MON 等于 °.17. 如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,AC =8,NB =5,则线段MN = .18. 如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n 条最多可将平面分成56个部分,则n 的值为 .三、解答题(66分)19.(8分)如图,已知三点A,B,C.求作:(1)画直线AB;(2)画射线AC;(3)连接BC.20.(8分)如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠A O B=114°.求∠COD的度数.21.(9分)如图,有一艘渔船上午九点在A处沿正东方向航行,在A处测得灯塔C在北偏东60°方向上,行驶2小时到达B处,测得灯塔C在北偏东15°方向,求∠C的度数.22.(9分)如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,求线段AB的长;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长.23.(10分)如图,线段AB=12,动点P从点A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当点P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当点P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN的长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.24.(12分)点O为直线AB上一点,过点O作射线OC,使∠BOC=65°.将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求旋转角∠BON=________;∠CON=________;(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=5°,求∠AOM的度数.图1 图2 图3答案一、选择题:BCCCB DBAAC二、填空题:11.3,6 12.19°23′13.BD 14.215.160 16.135 17.4 18.10三、解答题19.略20.∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD=57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=38°.∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.21.∵A处测得灯塔C在北偏东60°方向上,∴∠MAC=60°,∴∠CAB=30°.∵行驶2小时到达B处,测得灯塔C在北偏东15°方向,∴∠NBC=15°,∴∠ABC=105°,∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣105°=45°.24.(1)25°(2)40°25°(3)因为∠NOC=5°,∠BOC=65°,所以∠BON=∠NOC+∠BOC=70°.因为∠MON=90°,∠AOM+∠MON+∠BON=180°.所以∠AOM=180°-∠MON-∠BON=180°-90°-70°=20°.。

【七年级数学】人教版七年级数学上第四章几何图形初步单元综合检测试卷(带答案)

【七年级数学】人教版七年级数学上第四章几何图形初步单元综合检测试卷(带答案)

人教版七年级数学上第四章几何图形初步单元综合检测试
卷(带答案)
第四《几何图形初步》单元综合检测试卷
学校___________姓名___________班级___________考号___________
注意事项
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.下列语句错误的是()
A.两点确定一条直线
B.同角的余角相等
c.两点之间线段最短
D.两点之间的距离是指连接这两点的线段
2.如图,四个几何体分别为长方体、圆柱体、球体和三棱桂,这四个几何体中截面不可能是长方形的几何体是()
A.长方体B.圆珠体
c.球体D.三棱柱
3.用一副三角板可以画出的最大锐角的度数是()
A.85°B.75°c.60°D.45°
4.已知∠AB=70°,以端点作射线c,使∠Ac=28°,则∠Bc的度数为()
A.42°B.98°c.42°或98°D.82°
5.如图是一个长方体纸盒的表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为()
A.6B.8c.10D.15。

2018年秋人教版七年级上册数学《第四章 几何图形初步》单元测试卷及解析

2018年秋人教版七年级上册数学《第四章 几何图形初步》单元测试卷及解析

2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题,哪种物体最接近于圆柱( )A. B. C. D.2.下列几何体的截面分别是()A. 圆、平行四边形、三角形、圆B. 圆、长方形、三角形、圆C. 圆、长方形、长方形、三角形D. 圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A. 三亚﹣﹣永兴岛B. 永兴岛﹣﹣黄岩岛C. 黄岩岛﹣﹣弹丸礁D. 渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()A. 7条B. 8条C. 9条D. 10条5.如图,C 为线段 AB 上一点,D 为线段 BC 的中点,AB=20,AD=14,则 AC的长为( )A. 10B. 8C. 7D. 66.如图,∠AOB 是平角,∠AOC=50°,∠BOD =60°,OM 平分∠BOD,ON 平分∠AOC,则∠MON 的度数是()A. 135°B. 155°C. 125°D. 145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A. 50°B. 65°C. 45°D. 60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A. S3<S1<S2B. S1<S2<S3C. S2<S1<S3D. S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A. 1个B. 2个C. 3个D. 4个10.如图是一个棱长为1的正方体的展开图,点A ,B ,C 是展开后小正方形的顶点,连接AB ,BC ,则∠ABC 的大小是( )A. 60°B. 50°C. 45°D. 30°第II 卷(非选择题)二、解答题(题型注释)6.96×108m ,太阳的体积大约是多少?(球的体积的计算公式是V=43πr 3,π取3.14)12.已知一个长方体的长为1cm ,宽为1cm ,高为2cm ,请求出: (1)长方体有 条棱, 个面; (2)长方体所有棱长的和; (3)长方体的表面积.13.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?14.如图,点 B 、C 把线段 MN 分成三部分,其比是 MB :BC :CN=2:3:4,P 是 MN 的中点,且 MN=18cm ,求 PC 的长.15.如图,∠AOB 是平角,∠DOE=90°,OC 平分∠DOB . (1)若∠AOE=32°,求∠BOC 的度数;(2)若OD 是∠AOC 的角平分线,求∠AOE 的度数.16.以直线AB 上一点O 为端点作射线 OC ,使∠BOC =60°,将一个直角三角形的直角顶点放在点O 处.(注:∠DOE =90°)(1)如图1,若直角三角板DOE 的一边OD 放在射线OB 上,则∠COE = °;(2)如图2,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OE 恰好平分∠AOC ,请说明OD 所在射线是∠BOC 的平分线;(3)如图3,将三角板DOE 绕点O 逆时针转动到某个位置时,若恰好∠COD = 15∠AOE ,求∠BOD 的度数?17.探索性问题:已知A ,B 在数轴上分别表示m ,n . (1)填表:(2)若A ,B 两点的距离为d ,则d 与m ,n 有何数量关系.(3)在数轴上整数点P 到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.三、填空题18.下面的几何体中,属于柱体的有______个.19.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是______20.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D两点间的距离是______.21.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是_____cm.22.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于_____.23.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是_____.24.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=_______° .25.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是_____.若∠1=28°32′35″,则∠1的补角=_____.参考答案1.A【解析】1.根据圆柱的特点:圆柱由一个曲面,两个平面(底面)围成的;圆柱两个面之间距离叫做高,圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长观察所给图形,观察图形用排除法可做出判断.A选项:有一个曲面,两个平面围成的,最接近圆柱,故本选项正确;B选项:有两个平面,但圆柱的母线没有垂直于底面,故本选项错误;C选项:两个底面的大小不同,故本选项错误;D选项:有两个平面,有两个曲面,故本选项错误;故选:A2.B【解析】2.根据平面图形得出截面.由图可知,下列几何体的截面分别是:圆、长方形、三角形、圆.故答案选B.3.A【解析】3.根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.4.B【解析】4.根据线段的定义找出所有的线段即可解答.由图可知,线段有AD,DB,BC,CE,EA,DE,AB,AC,一共八条,所以答案选择B.5.B【解析】5.先根据AB=20,AD=14求出BD的长,再由D为线段BC的中点求出BC的长;由已知AB=20得出AC的长,对比四个选项即可确定出正确答案.∵AB=20,AD=14, ∴BD=AB-AD=20-14=6, ∵D 为线段BC 的中点, ∴BC=2BD=12, ∴AC=AB-BC=20-12=8. 故选:B . 6.C【解析】6.根据条件可求出∠COD 的度数,利用角平分线的性质可求出∠MOC 与∠DON 的度数,最后根据∠MON=∠MOC+∠COD+∠DON 即可求出答案. 解:∵∠AOC+∠COD+∠BOD=180°, ∴∠COD=180°-∠AOC-∠COD=70°,∵OM 、ON 分别是∠AOC 、∠BOD 的平分线, ∴∠MOC=12∠AOC=25°,∠DON=12∠BOD=30°, ∴∠MON=∠MOC+∠COD+∠DON=125°, 故选:C . 7.B【解析】7.根据折叠的性质得到∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,再根据平角的定义有∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,易得∠A ′BC +∠E ′BD =180°×12=90°,则∠CBD =90°,再根据平角的定义即可求出∠DBE 的值.∵一张长方形纸片沿BC 、BD 折叠,∴∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,而∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,∴∠A ′BC +∠E ′BD =180°×12=90°,即∠CBD =90°. ∵∠ABE =180°,∴∠DBE =180°-∠ABC -∠CBD =180°-25°-90°=65°. 故选B . 8.C【解析】8.利用分割图形法找出S 1、S 2、S 3的面积,再根据平行四边形的面积公式找出S 4、S 5、S 6的面积,由此即可得出结论.∵矩形的长为a 米,宽为b 米,小路的宽为x 米, ∴S 1=ab−(a+b)x+S 4;S 2=ab−(a+b)x+S 5;S 3=ab−(a+b)x+S 6.S 4=x ⋅x sin60°= 2√33x 2,S 5=x 2,S 6=x ⋅ xsin30°=2x 2, ∴S 2<S 1<S 3. 故答案选C. 9.B【解析】9.由平面图形的折叠及正方体的表面展开图的特点进行判断即可. 解:常见立方体的展开图可以总结为11幅基础图形,如下,据此可知是正方体的平面展开图的有:故选:B . 10.C【解析】10.连接AC ,由图可知∠ACB=90°,简单计算即可发现AC=BC. 解:连接AC ,由图可知∠ACB=90°,由勾股定理可得AC=BC=√5,则△ACB 是一个直角等腰三角形,则∠ABC=45°, 故选择C. 11.1.41×1027m 3.【解析】11.根据已知条件太阳的半径,然后根据球体的体积公式即能得出答案. 解:当r=6.96×108时,V=πr 3≈×3.14×(6.96×108)3≈1.41×1027m 3,答:太阳的体积大约是1.41×1027m3.12.(1)12,6;(2)16(cm);(3)长方体的表面积是10cm2.【解析】12.(1)根据长方体的性质可得出;(2)长方体的棱长总和=4(长+宽+高);(3)长方体的表面积=2(长×宽+长×高+宽×高),把相关数字代入即可.解:(1)长方体有12条棱,6个面;故答案为:12,6;(2)(1+1+2)×4,,=4×4,=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2,=(1+2+2)×2,,=5×2,=10(cm2).故长方体的表面积是10cm2.13.A=﹣2,B=﹣3,C=﹣4.【解析】13.两数互为相反数,和为0.本题应对图形进行分析,可知A对应-2,B对应-3,C对应-4,由此可得结论.解:依题意得:A=﹣2,B=﹣3,C=﹣4.14.PC=1.【解析】14.根据比例设MB=2x,BC=3x,CN=4x,再根据线段中点的定义表示出MP并求出x,再根据PC= MC﹣MP列方程代入x的值,从而得解.解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC ﹣MP=2x+3x ﹣x=0.5x=1.15.(1)61°;(2)30°.【解析】15.(1)求出∠AOD 和∠BOD ,由OC 平分∠DOB ,求出∠BOC ;(2)根据OC 平分∠BOD ,OD 平分∠AOC 得出∠BOC=∠DOC=∠AOD ,求出∠AOD 即可得出∠AOE.解:(1)∠AOD=∠DOE ﹣∠AOE=90°﹣32°=58°,,∠BOD=∠AOB ﹣∠AOD=180°﹣58°=122°,又OC 平分∠BOD ,所以:∠BOC=∠BOD=×122°=61°;(2)因为OC 平分∠BOD,OD 平分∠AOC ,所以∠BOC=∠DOC=∠AOD ,又∠BOC+∠DOC+∠AOD=180°,所以∠AOD=×180°=60°,所以∠AOE=∠DOE ﹣∠AOD=90°﹣60°=30°.16.(1)30;(2)答案见解析;(3)65°或52.5°.【解析】16.试题分析:(1)根据图形得出∠COE=∠BOE-∠COB ,代入求出即可;(2)根据角平分线定义求出∠COE=∠AOE=12∠COA ,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB ,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x +90﹣x=120,解方程即可得.试题解析:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=∠BOE-∠COB=30°,故答案为:30;(2)∵OE 平分∠AOC ,∴∠COE=∠AOE=12∠COA , ∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB ,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120,∴x=5或7.5,即∠COD=65°或37.5°,∴∠BOD=65°或52.5°.17.(1)3,4,12,1,92,2;(2)d=|m﹣n|;(3)﹣5.【解析】17.(1)根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.(2)数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.(3)设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.18.4【解析】18.解这类题首先要明确柱体的概念,然后根据图示进行解答.柱体分为圆柱和棱柱,所以柱体有:第1、3、5、6,故答案为:4个.19.中.【解析】19.正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答. 根据正方形的平面展开图,观察可知,爱与中相对.20.2或8【解析】20.由于线段BC 与线段AB 的位置关系不能确定,故应分C 在线段AB 内和AB 外两种情况进行解答.解:①如图1所示,∵AB=10,BC=6,∴AC=AB-BC=10-6=4,∵D 是线段AC 的中点,∴AD=12AC=12×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D 是线段AC 的中点,∴AD=12AC=12×16=8.故答案为:2或8.21.16【解析】21. 分两种情况:①点P 在线段MN 上;②点P 在线段MN 外;然后利用两点之间距离性质,结合图形得出即可.①点P 在线段MN 上,MP+NP=MN=16cm ,②点P 在线段MN 外,当点P 在线段MN 的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P 在线段MN 的延长线上时,MP+NP > MN =16.综上所述:线段MP 和NP 的长度的和的最小值是16,此时点P 的位置在线段MN 上, 故答案为:16.22.32°【解析】22.根据比例可设∠3=2x,∠2=5x,利用方程和平角解答即可.∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2-∠1=12°,可得:5x-12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°23.60°.【解析】23.根据互补得出∠COB,进而得出∠AOC的度数.∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°-150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.24.56°【解析】24.分析:由折叠的性质和平角的定义得出2∠1+∠2=180°,即可求出结果.详解:根据题意得:2∠1+∠2=180°,∴∠2=180°-2×62°=56°,故答案为:56°.25.∠AOD,151°27′25″【解析】25.根据互补和互余解答即可.∵∠1=∠2,∴与∠1互补的角是∠AOD.∵∠1=28°32′35″,∴∠1的补角=151°27′25″.故答案为:∠AOD;151°27′25″.。

人教版七年级上第四章《几何图形初步》单元测试题(含参考答案)

《几何图形初步》单元检测题一、选择题1.如图所示,连接边长为1的正方形各边的中点,连接正方形的对角线,则图中共有三角形()A. 16个B. 32个C. 22个D. 44个2.如图是正方体的展开图,原正方体相对两个面上的数字和最大是()A. 7B. 8C. 9D. 103.已知OC平分∠AOB,则下列各式:①∠AOB=2∠AOC;②∠BOC=∠AOB;③∠AOC=∠BOC;④∠AOB=∠BOC.其中正确的是()A.①②B.①③C.②④D.①②③4.一个圆柱和一个圆锥底面积相等,圆柱的高是圆锥的2倍,圆锥的体积是圆柱的()A.12B.13C.14D.165.如图,点C为线段AB的中点,点D为线段AC的中点、已知AB=8,则BD=()A. 2B. 4C. 6D. 86.如图,点B,C,D依次在射线AP上,根据线段长度错误的是()A.AD=2aB.BC=a-bC.AC=a+bD.AC=2a-b7.如图,几何体是由3个大小完全一样的正方体组成的,它从左面看是()A.B.C.D.8.如图,共有线段()A. 3条B. 4条C. 5条D. 6条9.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90度,然后在桌面上按逆时针方向旋转90度,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成32次变换后,骰子朝上一面的点数是()A. 6B. 5C. 3D. 210.时钟显示为8:30时,时针与分针所夹的角是()A. 90°B. 120°C. 75°D. 84°11.如图所示的是一座房子的平面图,组成这幅图的几何图形有()A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形二、填空题12.钟表上4时15分钟,时针与分针的夹角的度数是.13.如图,∠AOB=60°,且∠AOC=1∠AOB,则∠BOC=度.314.如图,直线上四点A、B、C、D,看图填空:①AC=+BC ;②CD=AD- ;③AC+BD-BC= .15.一个直棱柱有18条棱,则它是一个直棱柱.三、解答题16.读下面的语句,并按照这些语句画出图形.(1)点P在直线AB上,但不在直线CD上.(2)点Q既不在直线a上,也不在直线b上.(3)直线a、b交于点A,直线b、c交于点B,直线c、a交于点C.(4)直线a、b、c两两相交.(5)直线a和b相交于点P;点A在直线a上,但在直线b外.17.如图,已知OE是∠COA的平分线,∠AOE=59°35′,∠AOB=∠COD=16°17′22″.(1)求∠BOC的度数.(2)比较∠AOC与∠BOD的大小.18.把一根长16米的钢管截成12段,再焊接成一个长方体形状的架子,若要求高与宽都是1米,那么做成这个长方体形状的架子体积有多大?19.女主人把一只山羊带入牧场,在彼此相距10米处打下两个小木桩,在小木桩之间系紧一条带一个环的绳子,环能从一根小木桩滑向另一根小木桩,用一条5米长的绳子把山羊系在环上,画出山羊能够达到的点所组成的图形.20.有一个小立方块,每一个面上分别写着数字1、2、3、4、5、6,有三个人分别从不同角度观察的结果如图所示,问这个小立方块相对的两个面上的数字分别是多少?答案解析1.【答案】D【解析】根据图形得:最小的三角形有4×4=16个; 两个三角形组成的三角形有4×4=16; 四个三角形组成的三角形有:8个; 八个三角形组成的三角形有:4个. ∴共有16+16+8+4=44个. 故选D . 2.【答案】B【解析】根据所给出的图形可得:2和6是相对的两个面;3和4是相对两个面;1和5是相对的两个面,则原正方体相对两个面上的数字和最大值是8; 故选B . 3.【答案】B【解析】如图:OC 平分∠AOB ,可得∠AOB =2∠AOC =2∠BOC ;∠AOC =∠BOC =12∠AOB .正确的是①③. 故选B .4.【答案】D【解析】V 圆柱=Sh ,V 圆锥=13Sh ,∵一个圆柱和一个圆锥底面积相等,圆柱的高是圆锥的2倍, ∴V 圆柱=S ·(2h ),V 圆锥=13Sh , ∴圆锥的体积是圆柱:==16. 故选D . 5.【答案】C【解析】∵点C 为线段AB 的中点,AB =8, 则BC=AC =4.点D 为线段AC 的中点,则AD=DC =2. ∴BD=CD+BC =6. 故选C . 6.【答案】C【解析】∵由图可知,AB=BD=a ,CD=b , ∴AD=AB+BD =2a ,故A 正确; BC=BD-CD=a-b ,故B 正确;AC=AB+BC=AB+BD-CD=a+a-b =2a-b ,故C 错误,D 正确. 故选C . 7.【答案】D 【解析】 8.【答案】D【解析】线段AB 、AC 、AD 、BC 、BD 、CD 共六条, 也可以根据公式计算,4×32=6,故选D .9.【答案】A【解析】先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变换是一个循环,然后再求32被3整除后余数是2,从而确定第1次变换的第2步变换. 解:根据题意可知连续3次变换是一循环. 因为32÷3=10…2,所以是第2次变换后的图形. 故选A . 10.【答案】C【解析】由于钟面被分成12大格,每格为30°,8点30分时, 钟面上时针指向数字8与9的中间,分针指向数字6, 所以时针与分针所成的角等于2×30°+12×30°=75°. 故选C . 11.【答案】C【解析】图中的几何图形有:三角形,正方形,矩形以及梯形. 故选C .12.【答案】(752)°【解析】4时15分,时针与分针相距1+1560=54份,4时15分钟,时针与分针的夹角的度数30×54=(752)°, 故答案为:(752)°. 13.【答案】40【解析】∵∠AOB =60°, ∠AOC =13∠AOB =20°,∠BOC =∠AOB -∠AOC =60°-20°=40°. 故答案为:40. 14.【答案】AB ;AC ;AD 【解析】 15.【答案】六【解析】根据一个n 直棱柱有3n 条棱,进行填空即可. 解:一个直棱柱有18条棱,则它是直六棱柱. 16.【答案】解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:(5)如图所示:【解析】(1)根据点在不在直线的作图进行解答即可;(2)根据点在不在直线的作图进行解答即可;(3)根据直线相交的作图进行解答即可;(4)根据直线的相交进行作图即可;(5)根据直线的相交和点在直线的作图解答.17.【答案】解:(1)∵OE是∠COA的平分线,∠AOE=59°35′,∴∠AOC=2∠AOE=119°10′,∵∠AOB=16°17′22″,∴∠BOC=∠AOC-∠AOB=102°52′38″;(2)∠AOC=∠BOD,理由如下:∵∠BOC=102°52′38″,∠COD=16°17′22″,∴∠BOD=∠BOC+∠COD=119°10′,∵∠AOC=119°10′,∴∠AOC=∠BOD.【解析】(1)根据角平分线定义求出∠AOC,根据∠BOC=∠AOC-∠AOB代入求出即可;(2)∠AOC=∠BOD,理由是根据∠BOD=∠BOC+∠COD求出∠BOD=119°10′,即可得出答案.18.【答案】解:长方体的长是(16-8)÷4=2,长方体的体积是2×1×1=2(m3),答:做成这个长方体形状的架子体积是2 m3.【解析】根据长方体的宽、高,可得长方体的长,根据长方体的体积公式,可得答案.19.【答案】解:根据题意可画出图形:【解析】分三种情况:①在左点往左运动时形成半圆,②在右点往右运动时形成半圆,③在两连心线上运动时形成一条直线.20.【答案】解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.【解析】由图一和图二可看出1的相对面是5;再由图二和图三可看出3的相对面是6,从而2的相对面是4.。

人教版七年级数学上册第四章 几何图形初步测试题(含答案)

第四章几何图形初步测试题一、选择题(本大题共10小题,每小题3分,共30分)1.下列几何体中由三个面围成的是()2.下列说法中错误的是()A.直线AB和直线BA是同一条直线B.射线AB和射线BA是同一条射线C.线段AB和射线AB都是直线AB的一部分D.∠ABC和∠CBA表示同一个角3 .如图1所示,能折成棱柱的有()A.1个B.2个C.3个D.4个图14.下列角度换算不正确的是()A. 5°16′=316′B. 10.2°=612′C. 72 000″=20°D. 18°25′=18.5°5.如图2,C,D是线段AB上的两点,D是AC的中点,AD=2.5 cm,AB=8 cm,则BC的长等于()A. 2.5 cm B. 3 cm C. 3.5 cm D. 4 cm6.图3是由8个相同的小正方体堆砌而成的几何体,从上面看这个几何体的形状图的是()A B C D7.过平面上A,B,C三点中的任意两点作直线,共可以作()A.1条B.3条C.1条或3条D.无数条8. 将如图4所示表面带有图案的正方体沿某些棱剪开展平后,得到的图形是()A B C D 图49.甲、乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图5),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM,AN折叠,分别使B,D落在对角线AC上的点P处,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错图510.如图6,已知B在线段AC上,且BC=2AB,D,E分別是AB,BC的中点,有下列结论:①AB=31AC;②B是AE的中点;③EC=2BD;④DE=23AB.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)11. 在图7所示的横线上写出图中的几何体的名称.图712.经过刨平的木板上的两个点能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数知识是.图613. 如图8所示,三个正方体摆成一个几何体,则①是从 看的形状图,②是从 看 的形状图,③是从 看的形状图.图814.已知∠α与∠β互补,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③21(∠α+∠β);④21(∠α- ∠β).其中能表示∠β的余角的是_________(填序号).15. 一个棱柱有 12 个顶点,所有侧棱长的和是48 cm ,则每条侧棱长是 cm .16. 一个正方体,六个面上分别写着六个连续整数,且每两个相对面上的两个数的和都相等,如图9所示,能 看到的所写的数为16,19,20,则这6 个整数的和为 .图9三、解答题(本大题共6小题,共52分)17.(6分)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.18.(8分)如图10,货轮O 在航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A ,同时 在它的南偏东30°方向上,与之相距20海里处发现货轮B ,在它的西南方向上发现客轮C ,按下列要求画出. (1)画出线段OB ; (2)画出射线OC ; (3)连接AB 交OE 于点D.图1019.(8分)图11是从正面、上面看由一些大小相同的小正方体搭成的几何体得到的平面图形. (1)这样的几何体只有一种情况吗?(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能的值.图1120. (10分)如图12,小华用若干个正方形和长方形准备拼成一个长方体的表面展开图.拼完后,小华看来 看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2 cm ,长方形的长为3 cm ,宽为2 cm ,请直接写出修正后所折叠而成的长方体的容积 cm 3(不计长方体容器的壁厚).图12 21.(10分)如图13,已知C 是线段AB 的中点,E 是线段AB 上的点,D 是线段AE 的中点. (1)若线段AB =a ,CE =b ,且a ,b 满足|a-15|+(b-4.5)2=0,求a ,b 的值; (2)在(1)的条件下,求线段DE 的长; (3)若AB =15,AD =2BE ,求线段CE 的长.图1323.(12分)如图14-①,含30°角的直角三角尺的直角顶点O 在直线AB 上,OC ,OD 是三角尺的两条直角边,OE 平分∠AOD .(1)若∠COE=20°,则∠BOD= ;若∠COE=α,则∠BOD= .(用含α的式子表示)(2)当三角尺绕点O 逆时针旋转到图5-②的位置,其它条件不变,试猜测∠COE 与∠BOD 之间有怎样的数 量关系?并说明理由.BECD A图14附加题(20分)1.(6分)如图1,将三个三角形板直角顶点重叠在一起,公共的直角顶点为点B,若∠ABE=45°,∠GBH=30°,那么∠FBC的度数为()A.30°B.25°C.20°D.15°2.(14分)围成立体图形的每个面都是平面,这样的立体图形叫多面体.仔细观察图2中所示的四面体、六面体、八面体,解决下列问题:(1)填空:①四面体的顶点数V=,面数F=,棱数E=.②六面体的顶点数V=,面数F=,棱数E=.③八面体的顶点数V=,面数F=,棱数E=.(2)若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V,F,E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式.请写出欧拉公式:.(3)如果一个多面体的棱数为30,顶点数为20,那么这个多面体有多少个面?第四章 几何图形初步测试题参考答案一、1.B 2.B 3. B 4.D 5.B 6. C 7. C 8.C 9. A10. D 提示:由BC=2AB ,AC=AB+BC ,得AC=3AB ,故①正确;由E 分别是BC 的中点,BC=2AB ,得 BE=AB ,故②正确;由D ,E 分别是AB ,BC 的中点,得EC=BE=AB=2BD ,故③正确;由上述结论,得DE=DB+ BE=21AB+AB=23AB ,故④正确. 二、11. 圆锥 长方体 圆柱 球 五棱柱 12. 7 14 13. 正面 左面 上面 14.①②④ 15. 816. 111三、17. 解:设这个角为x°,则其余角为(90-x )°,补角为(180-x )°. 根据题意,得180-x=2(90-x )+40,解得x=40. 答:这个角的度数是40°.18. 解: (1)(2)(3)如图1所示.图119. 解:(1)这样的几何体不只一种情况;(2)因为从上面看有5个正方形,所以最底层有5个正方体; 由正面看可得第2层最少有2个正方体,第3层最少有1个正方体; 由正面看可得第2层最多有4个正方体,第3层最多有2个正方体;所以该组合几何体最少有正方体5+2+1=8(个),最多有正方体5+4+2=11(个). 所以n 可能为8,9,10或11.20. 解:(1)如图2所示,拼图存在问题,多了一块.图2(2)1221. 解:(1)由|a-15|+(b-4.5)2=0,得a-15=0,b-4.5=0,解得a =15,b =4.5. (2)由(1)知AB =15,CE =4.5. 因为C 是线段AB 的中点,所以AC=21AB=21×15=7.5,所以AE=AC+CE=7.5+4.5=12. 因为D 是线段AE 的中点,所以DE =21AE=21×12=6. (3)设BE =x ,由AD =2BE ,得AD =DE =2x .由AB =15,且AB=AD+DE+EB ,得5x =15,解得x =3,即BE=3. 因为C 是线段AB 的中点,所以BC=21AB=21×15=7.5,所以CE =BC-BE=7.5-3=4.5. 22.解:(1)40° 2α 提示:若∠COE=20°,因为∠COD=90°,∠COE=20°,所以∠EOD=90°-20°=70°.因为OE 平分∠AOD ,所以∠AOD=2∠EOD=140°,所以∠BOD=180°-140°=40°.若∠COE=α,则∠EOD=90-α.因为OE 平分∠AOD ,所以∠AOD=2∠EOD=2(90-α)=180-2α,所以∠BOD=180°-(180-2α)=2α.(2)∠BOD=2∠COE ,理由如下: 设∠BOD=β,则∠AOD=180°-β. 因为OE 平分∠AOD ,所以∠EOD=12∠AOD= 1802β-=90°-2β. 因为∠COD=90°,所以∠COE=90°-(90°-2β)= 2β,即∠BOD=2∠COE . 附加题1. D 提示:∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG- ∠CBG=60°-45°=15°.2. (1)①4 4 6 ②8 6 12 ③6 8 12 (2)V+F-E=2(3)由欧拉公式可知,E=30,V=20,可得面数F=12.所以这个多面体有12个面.。

七年级数学上册《第四章 几何图形初步》单元检测卷带答案-人教版

七年级数学上册《第四章 几何图形初步》单元检测卷带答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如图,将矩形绕着它的一边所在的直线l 旋转一周,可以得到的立体图形是( )A .B .C .D .2.1∠的余角是50︒,2∠的补角是150︒,则1∠与2∠的大小关系是( )A .12∠∠<B .12∠>∠C .12∠=∠D .不能确定3.在同一平面内,若∠AOB =90º,∠BOC =40º,则∠AOB 的平分线与∠BOC 的平分线的夹角等于( )A .65ºB .25ºC .65º或25ºD .60º或20º4.如图,点O 在直线AB 上,∠AOC=∠BOD=20°,则图中互补的角的对数是( )A .1对B .2对C .3对D .4对5.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3︰4B .2︰3C .3︰5D .1︰26.如图,已知线段20AB =cm ,C 为直线AB 上一点,且4AC =cm ,M ,N 分别是AC 、BC 的中点,则MN 等于( )cm.A .13B .12C .10或8D .107.一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( )A .A 代表B .B 代表C .C 代表D .B 代表8.如图,O 是直线AC 上的一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC ∠内,且60DOE ∠=︒,13BOE EOC ∠=∠下列四个结论:①30BOD ∠=︒;②射线OE 平分AOC ∠;③图中与BOE ∠互余的角有2个;④图中互补的角有6对.其中结论正确的序号有( )A .①③④B .②④C .①②③D .①②③④二、填空题:(本题共5小题,每小题3分,共15分.)9.计算:180°﹣20°40′= .10.下午12:20 分,钟表上时针与分针所夹角的度数为 度(所求夹角小于180°).11.已知 60AOB ∠=︒ ,以点 O 为端点作射线 OC ,使 20BOC ∠=︒ ,再作 AOC ∠ 的平分线 OD ,那么 AOD ∠ 的度数为 .12.已知线段AB=60cm ,在直线AB 上画线段BC ,使BC=20cm ,点D 是AC 的中点,则CD 的长度是 .13.火车往返于A 、B 两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有 种不同的车票.三、解答题:(本题共6题,共45分)14.已知如图,点B C 、是线段AD 上的两点,点M 和点N 分别在线段AB 和线段CD 上.已知 9cm AD = 6cm MN = 2AM BM = 2DN CN = 时,求 BC 的长度.15.如图,如果直线l 上依次有3个点A ,B ,C ,那么(1)在直线l 上共有多少条射线?多少条线段?(2)在直线l 上增加一个点,共增加了多少条射线?多少条线段?(3)如果在直线l 上增加到n 个点,则共有多少条射线?多少条线段?16.如图是一个正方体的平面展开图,标注了字母M 的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x 的值;(2)求正方体的上面和底面的数字和.17.如图,射线OA 的方向是北偏东15,射线OB 的方向是北偏西40AOB AOC ∠=∠,,射线OD 是OB 的反向延长线.(1)射线OC 的方向是 ;(2)求COD ∠的度数;(3)若射线OE 平分COD ∠,求AOE ∠的度数.18.如图,点O 是直线AB 上一点,射线OC ,OD ,OE 在直线AB 的同一侧,且OC 平分∠AOE ,OD ⊥OC .(1)如果∠COE=40°,求∠AOD 的度数.(2)如果∠AOE+30°=∠BOE ,求∠BOD 的度数.19.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a+24|+|b+10|+(c-10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由参考答案:1.B 2.B 3.A 4.C 5.A 6.D 7.A 8.D9.159°20′10.11011.20︒ 或 40︒12.40cm 或20cm13.3014.解: 9cm 6cm AD MN ==,()963cm AM DN AD MN ∴+=-=-= .22AM BM DN CN ==,()1() 1.5cm 2BM CN AM DN ∴+=+=()()6 1.5 4.5cm BC MN BM CN ∴=-+=-= 15.(1)解:共有射线6条,共有段3条(2)解:共增加2条射线,增加3条线段(3)解:共有2n 条射线,线段的总条数是12n(n-1)条. 16.(1)解:正方体的表面展开图,相对的面之间一定相隔一个正方形“M ”与“x ”是相对面“-2”与“-3”是相对面“4x ”与“2x+3”是相对面∵正方体的左面与右面标注的式子相等∴4x=2x+3解得x=1.5(2)解:∵标注了A 字母的是正方体的正面,左面与右面标注的式子相等∴上面和底面上的两个数字-2和-3∴-2-3=-5.17.16.(1)北偏东70(2)解:∵∠AOB =55∘ ∠AOC =∠AOB∴∠BOC =110∘. 又射线OD 是OB 的反向延长线∴∠BOD =180∘.∴∠COD =180∘−110∘=70∘.(3)解:∵∠COD =70∘,OE 平分COD ∠∴∠COE =35∘.∴∠AOC=55∘.∴90AOE∠=.18.(1)解:∵OC平分∠AOE∴∠AOE=2∠COE=2×40°=80°∵OC⊥OD∴∠COE+∠DOE=90°∴∠DOE=90°-40°=50°∴∠AOD=∠AOE+∠DOE=80°+50°=130°(2)解:∵∠AOE+30°=∠BOE,∠AOE+∠BOE=180°解之:∠AOE=75°,∠BOE=105°∵OC平分∠AOE∴∠AOC=12∠AOE=12×75°=37.5°∴∠BOD=180°-∠AOC-∠COD=180°-37.5°-90°=52.5°. 19.(1)解:∵|a+24|+|b+10|+(c-10)2=0∴a+24=0,b+10=0,c-10=0解得:a=-24,b=-10,c=10;(2)解:-10-(-24)=14①点P在AB之间,AP=14×221+=283-24+ 283=-443点P的对应的数是- 443;②点P在AB的延长线上,AP=14×2=28-24+28=4点P的对应的数是4;(3)解:∵AB=14,BC=20,AC=34∴t P=20÷1=20(s),即点P运动时间0≤t≤20点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s)当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t= 463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t= 623>20(舍去)当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8。

人教版七年级上册第四章几何图形初步单元检测试题(含答案)

第 1 页 共 34 页人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有( )个.A. 9B. 8C. 5D. 4 2.如图所示几何图形中,是棱柱的是( )A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是( ) A. 正方体 B. 长方体 C. 三棱柱 D. 四棱锥4.如图,∠AOC >∠BOD ,则( )A. ∠AOB >∠CODB. ∠AOB=∠CODC. ∠AOB <∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC 的度数为( )A. 30°B. 40°C. 50°D. 60°6.如图,线段CD 在线段AB 上,且CD=2,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是( )度. A.45 B.60 C.90 D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC 的度数为( )A. 50°B. 50° 或120°C. 50°或130°D. 130° 9.直棱柱的侧面都是( )A. 正方形B. 长方形C. 五边形D. 菱形 10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有 ( ) A. 1次 B. 2次 C. 3次 D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露.的面涂上颜色,那么涂颜色面的面积之和是________cm218.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《几何图形初步》单元检测卷
一、选择题(本大题共8小题,每小题3分,共24分)
1、围成下列这些立体图形的各个面中,都是平的面为( ).
2、下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )
3、 下列说法正确的是( )
A .直线A
B 和直线BA 是两条直线; B .射线AB 和射线BA 是两条射线;
C .线段AB 和线段BA 是两条线段;
D .直线AB 和直线a 不能是同一条直线。

4、如下图,该物体的俯视图是( )
C
D
B A
5.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程. 其中可用公理“两点之间,线段最短”来解释的现象有( )
A .①②
B .①③
C .②④
D .③④
6.下列平面图形中不能围成正方体的是( )
7.用一副三角板不能画出( )
A.75°角
B.135°角
C.160°角
D.105°角
8、把一副三角板按照如图所示的位置摆放,则形成两个角,
设分别为∠α、∠β,若已知
∠α=65°,则∠β=().
A.15°B.25°C.35°D.45°
二、填空题(本大题共6小题,每小题3分,共18分)
9.已知∠1=200,∠2=300,∠3=600,∠4=1500,则∠2是____的余角,_____是∠4的补角.
10.由若干个小立方块搭成的几何体的三视图如图所示,则该几何体中小立方块的个数是
个。

11.己知点C为线段AB的中点,且AB=6 cm,若点D是线段AB的三等分点,则DC= cm。

12.若将一副直角三角板叠放在一起,使直角顶点重合于点O,
则AOC +DOB 的度数为_______.
13.南偏东80°的射线与西南方向的射线组成的角(小于平角)的度数是 . 14.同一平面内有三点,每过两点画一条直线,则直线的条数是
三、解答题(本大题共5小题,共58分) 15. (9分)一个角的余角比它的补角的3
2
还少40°,求这个角。

16.(11分)(1)已知:如图,线段a ,b ;
请按下列步骤画图:(用圆规和直尺画图,不写画法、保留作图痕迹) ①画线段BC ,使得BC=a b ;
②在直线BC 外任取一点A ,画直线AB 和射线AC .
③试估计你在(1)题所画的图形中∠ABC 与∠BAC 的大小关系.
17、(12分)已知,如图,点C在线段AB上,线段AC=6cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度。

18、(12分)如图,点O是射线OC与直线AB的交点.
(1)若∠1=120°,求∠2的度数;
(2)若已知∠1的一半比∠2小30°,求∠1和∠2的度数.
19、(14分)如图,O是直线AB上一点,OD平分∠AOC.
(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.
(2)若∠AOD和∠DOE互余,且∠AOD=1
3
∠AOE,请求出∠AOD和∠COE的度数.
附加题(本大题共2小题,共20分)
1.(10分)如图所示是从上面看由几个小立方块所搭几何体得到的平面图形,小正方形内的数字表示该位置上小立方块的个数.请画出从正面、左面看这个几何体得到的平面图形.
2、(10分)如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:
(1)将点B向左移动三个单位长度后,三个点所表示的数中,谁最小?最小数是多少?
(2)怎样移动A、B、C中的一个点,才能使其中一点为连接另外两点之间的线段的中点?请写出所有的移动方法.
(3)若A、B、C三个点移动后得到三个互不相等的有理数,既可以表示为1,a,a+b
的形式,又可以表示为0,b,b
a
的形式,试求a,b的值.
答案:
1、B
2、D
3、B
4、D
5、D
6、A
7、C
8、B
9. ∠3,∠2 10. 11. 1 12. 180° 13. 125° 14. 1或3
15.设这个角为x ,列方程得︒--︒=-︒40)180(3
2
90x x ,解得︒=30x ,答:这个角是30°
角。

16.图略 17. MN= 5cm
18、(1)∠2=60°;(2)∠1=100°,∠2 =80°
19、(1)∠AOD =30°,∠BOC =120°;(2)∠AOD =∠COE =30° 1. 作图如下:
2. (1)B 最小,最小数是-5;
(2)方法一:将点A 向右移4.5个单位长度;方法二:将点B 向右移1.5个单位长度;方法三:将点C 向左移6个单位长度;
(3)由b
a
可知a ≠0,由“A 、B 、C 三个点移动后得到三个互不相等的有理数”可知a +b =0,则a 、b 互为相反数,所以b
a
= -1,因此,b=1,则a= -1.。

相关文档
最新文档