6.1从实际问题到方程

合集下载

6.1 《从实际问题到方程》 课件 华师大版 (9)

6.1 《从实际问题到方程》 课件 华师大版 (9)
右边=-13 因为左边≠右边, 所以x=1不是方程的解.
根据题意设未知数,并列出方程(不必求解): 1. 某班原分成两个小组活动,第一组26人,第二 组22人,根据学校活动器材的数量,要将第一组人 数调整为第二组人数的一半,应从第一组调多少人 到第二组去? 2. 小明的爸爸三年前为小明存了一份 3000元的教育储 蓄 . 今年到期时取出,得到的本息和为 3243 元 . 请你 帮小明算一算这种储蓄的年利率.
等量关系: 胜的分数 + 平的分数 = 总分
如果设甲队胜了x场,则平的场数是 (10- x) 场, 那么可得到方程
3x (10 x) 22

测一测:
1、根据题意列方程:
在一卷公元前 1600年左右遗留下来的古埃及草卷 中,记载着一些数学问题,其中一个问题翻译过 1 来是:“啊哈,它的全部,它的 ,其和等于 — 19”,你能求出问题中的它吗? 7
(3)某长方形足球场的周长是 310米,长和宽之 差为25米,这个足球场的长和宽分别是多少米? 等量关系: 2(长+宽)=周长
如果设这个足球场的宽为x 米, 那么它的长 就是 ( x 25)米。 由此可得方程 2x ( x 25) 310.
x+25 足球场 x
(2)甲、乙两队开展足球对抗赛,规定每队 胜一场得3分,平一场得1分,负一场得0分, 甲队与乙队一共比赛了 10 场,甲队保持了不 败的记录,一共得了 22 分,甲队胜了几场? 平了几场?
例2 检验下面方程后面括号内所列各 数是否为这个方程的解: 2(x+2)-5(1-2x)=-13, {x=-1,1}
解:将x=-1代入方程的两边得
将x=1代入方程的两边得
左边=2(-1+2)-5[1-2×(-1)]=-13

华师版七年级下册数学第6章 一元一次方程 从实际问题到方程

华师版七年级下册数学第6章 一元一次方程  从实际问题到方程

【点拨】已知上半年每月平均用电 x 千瓦时,则下半年每月平均 用电(x-2 000)千瓦时.由题意,得 6x+6(x-2 000)=150 000.故 选 A. 易错警示:在列方程时,要注意单位的统一,本题易因没 有统一单位而错选 C.
【答案】A
6.已知下列方程后面的大括号里有一个数是方程的解,请把它 找出来:
(1)4x-2x-3=0 4,32;
解:把 x=4 代入原方程的左边,得左边=4×4-2×4-3=5. 因为右边=0,所以左边≠右边, 所以 x=4 不是原方程的解. 把 x=32代入原方程的左边,得左边=4×32-2×32-3=0. 因为右边=0,所以左边=右边. 所以 x=32是原方程的解.
(2)4x-3=2x+3 {-2,3}. 解:把 x=-2 代入原方程的左右两边,得左边=4×(-2)-3= -11,右边=2×(-2)+3=-1. 所以左边≠右边. 所以 x=-2 不是原方程的解. 把 x=3 代入原方程的左右两边,得左边=4×3-3=9,右边=2×3 +3=9.所以左边=右边. 所以 x=3 是原方程的解.
【答案】C
5.【易错题】某工厂采取节能措施后,去年下半年与上半年相比, 月平均用电量减少 2 000 千瓦时,全年用电 15 万千瓦时.若 设上半年每月平均用电 x 千瓦时,则所列方程正确的是( ) A.6x+6(x-2 000)=150 000 B.6x+6(x+2 000)=150 000 C.6x+6(x-2 000)=15 D.6x+6(x+2 000)=15
由题意可得 0<x<10 且 x 为整数,列表计算:
x
123456789
0.3x+0.5·(10-x) 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2

6.1_华师大从实际问题到方程

6.1_华师大从实际问题到方程

2.全班同学去划船,如果减少一条船,每条 船正好坐9个同学;如果增加一条船,每条 船正好坐6个同学.问这个班有多少个同学? (只列方程不求解) 解:设这个班有x个同学 x 根据题意列方程,得:9 1
x 1 6
小结
1、什么是等式?什么是方程? 2、根据题意列出方程的一般步骤?
(1)弄清题意和其中的数量关系,用字母表示适当 的未知数。 (2)找出题目中有关数量的相等关系。 (3)对这个等量关系中涉及的量,列出所需的表达 式,根据等量关系,得到方程。
2 n 1
是同类项, ∴m-1=2,n-1=2.解得m=3,n=3. ∴x=3.把x=3分别代入方程的左边和右边, 得左边=2×3-6=0=右边, mn ∴x ,即x=3是方程2x-6=0的解。
2
思维训练:
1.甲.乙两个运输队,甲队32人, 乙队28人,若乙队调走x人到甲队, 则甲队人数是乙队人数的2倍,其 中x应满足的条件是( ) B A 2(32+x)=28-x C 32=2(28-x) B D 32+x=2(28-x) 3×32=28-x
请大家把下面的句子用方程的形式表示 出来:
4 (1)某数的 与1的和是2; 5 (2)某数的4倍等于某数的3倍
2 (3)某数与8的差的 等于0。 3
与7的差;
(1)弄清题意和其中的数量关系, 用字母表示适当的未知数。 (2)找出题目中有关数量的相等关系。 (3)对这个等量关系中涉及的量, 列出所需的表达式,根据等量关系, 得到方程。
右边= - 123
左边=右边
∴ y= - 10 是方程的解
当y= 10时,左边=11 y – 13= 97 右边= 147
左边≠右边
∴ y= 10不 是方程的解

第六章_一元一次方程教案 导学案 (共11课时)

第六章_一元一次方程教案 导学案 (共11课时)

§6.1 从实际问题到方程科目:七年级数学备课人:王淑轶【教学目标】1.能判断一个数是不是某个方程的解,掌握用尝试检验方法求方程的解的思想方法;2.会列一元一次方程解决一些简单的应用题;3.初步认识方程与现实问题的联系,感受数学的应用价值,激发数学学习兴趣。

【教学重点】能判断一个数是不是某个方程的解,会列一元一次方程解决一些简单的应用题。

【教学难点】会列一元一次方程解决一些简单的应用题。

【教学过程】一、复习回顾,导入新课1.列方程解下面的应用题:一本笔记本1.2元。

小红有6元钱,那么她最多能买到多少本这样的笔记本呢?解:设小红能买到x本笔记本,根据题意得:1.2x=6解得:x=5答:小红能买到5本这样的笔记本。

2.结合上题的解答,说说列方程解应用题的一般步骤是什么?有哪些应当注意的问题?二、自主探索1.阅读课本1页“第6章导图”内容,试分别用算术法和方程法解答:一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?算术法:方程法:(328-64)÷44 解:设需要租用x辆客车,根据题意得:=264÷44 44x+64=328=6(辆) 解得:x=6答:还要租用6辆客车。

答:还要租用6辆客车。

2.阅读课本2页~3页“问题2”内容,完成下列问题:(1)小敏同学得出答案使用的是什么方法?他的答案正确吗?小敏同学是用“尝试、检验”的方法找出方程的解的。

他的答案是正确的。

(2)你能列方程解答张老师的这道题吗?试一试。

三、合作交流1.你用方程法得到的答案和小敏的答案一样吗?你有什么发现?2.讨论:如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果试验根本无法入手又该怎么办呢?四、实践应用1.课本3页“习题6.1”第1~3题。

2.补充练习:(1)检验下列方程后面括号内所列各数是否为相应方程的解。

(a)x-3(x+2)=6+x (x=3,x=-4)(b)2y(y-1)=3 (y=-1,y=32) (c)5(x-1)(x-2)=0 (x=0,x=1,x=2)(2)根据题意,列出相应的方程,不必求解。

从实际问题到方程

从实际问题到方程

§6.1 从实际问题到方程科目:七年级数学备课人:王淑轶【教学目标】1.能判断一个数是不是某个方程的解,掌握用尝试检验方法求方程的解的思想方法;2.会列一元一次方程解决一些简单的应用题;3.初步认识方程与现实问题的联系,感受数学的应用价值,激发数学学习兴趣。

【教学重点】能判断一个数是不是某个方程的解,会列一元一次方程解决一些简单的应用题。

【教学难点】会列一元一次方程解决一些简单的应用题。

【教学过程】一、复习回顾,导入新课1.列方程解下面的应用题:一本笔记本1.2元。

小红有6元钱,那么她最多能买到多少本这样的笔记本呢?解:设小红能买到x本笔记本,根据题意得:1.2x=6解得:x=5答:小红能买到5本这样的笔记本。

2.结合上题的解答,说说列方程解应用题的一般步骤是什么?有哪些应当注意的问题?二、自主探索1.阅读课本1页“第6章导图”内容,试分别用算术法和方程法解答:一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?算术法:方程法:(328-64)÷44 解:设需要租用x辆客车,根据题意得:=264÷44 44x+64=328=6(辆) 解得: x =6答:还要租用6辆客车。

答:还要租用6辆客车。

2.阅读课本2页~3页“问题2”内容,完成下列问题:(1)小敏同学得出答案使用的是什么方法?他的答案正确吗?小敏同学是用“尝试、检验”的方法找出方程的解的。

他的答案是正确的。

(2)你能列方程解答张老师的这道题吗?试一试。

三、合作交流1.你用方程法得到的答案和小敏的答案一样吗?你有什么发现?2.讨论:如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果试验根本无法入手又该怎么办呢?四、实践应用1.课本3页“习题6.1”第1~3题。

2.补充练习:(1)检验下列方程后面括号内所列各数是否为相应方程的解。

(a)x-3(x+2)=6+x (x=3,x=-4)(b)2y(y-1)=3 (y=-1,y=32) (c)5(x-1)(x-2)=0 (x=0,x=1,x=2)(2)根据题意,列出相应的方程,不必求解。

6.1从实际问题倒方程

6.1从实际问题倒方程
分析:1年后的情况是:老师46,学生14,不是老师年龄的三分之一 2年后的情况是:老师47,学生15,不是老师年龄的三分之一 3年后的情况是:老师48,学生16,是老师年龄的三分之一
例题与练习
例2:在课外活动中,张老师发现同学们的年龄大多是 13岁,就问同学们:“我今年45岁,几年后你们 的年龄是我的三分之一?“(你能给出答案吗?) 解:设x年后学生年龄是老师年龄的三分之一
学生年龄= 1 老师年龄 3 1
13+x = 3 (45+x)
使方程的左边=右边的未知数的值叫着方程的解
1
13+x = 3 (45+x) 当x=1时:左边=1)≠14
当x=2时:左边=13+2=15,右边=
1 3
(45+2)≠15
当x=3时:左边=13+3=16,右边=
二、选择题 1、方程2(x+3)=x+10的解是 ( C )
A x=3 B x=-3 C x=4 D x=-4 2、已知x=2是方程2(x-3)+1=x+m的解,则m=( C )
A 3 B 2 C -3 D -2
教学目标
1 知识与技能 (1) 使学生会列一元一次方程 (2) 会判断一个数是不是某个方程的解 2 过程与方法 (1) 让学生初步认识方程与现实生活的联系,感受数学价值 (2) 让学生在练习中尝试、检验的方法找出部分方程的解 3情感目标 注重联系实际,激发学生学习的兴趣 教学重点 会列一元一次方程解决一些简单的应用题 教学难点 列一元一次方程
课前复习
列出下列代数式 (1)一本笔记本1.2元,x本需要___1_._2_x __钱。
(2)一支铅笔a元,一支钢笔b元,小强买2支铅笔和 3支钢笔一共需要______(_2_a_+_3_b_)元钱。

华东师大版七年级下册数学教案全册

华东师大版七年级下册数学教案全册

1华东师大版七年级下册数学教案(全册)6.1 从实际问题到方程【教学目标】知识与能力1.掌握如何设未知数。

2.掌握如何找等式来列方程。

3.了解尝试、代人法寻找方程的解。

情感、态度、价值观通过本节的教学,应该使学生体会到数学与实际生活的密切联系,认识到数学的价值。

【重点难点】重点:1、确定所有的已知量和确定“谁”是未知数x ;2、列方程。

难点:1、找出问题中的相等关系。

2、使用数学符号来表示相等关系。

【教学过程】第一课时教学流程设计教师指导学生活动1、开场白 1、进入学习状态2、进行教学 2、配合教师学习3、总结,布置预习和练习 3、记录相关内容和任务一、谁能解决这个问题:23四、试一试,找出方程的解。

五、本课小结本节主要是学习分析问题列方程的三个步骤:1、确定未知量;2、找相等关系;3、列方程。

还学习了通过尝试、代入寻找方程的解。

这是一个很重要的思想和方法,要记住如何尝试以及如何代入。

(2)看题目问什么,就设什么为未知数x 。

(3)找出相等关系。

(4)根据相等关系列出方程。

(5)试着求出方程的解。

华师七下6.2.1 方程的简单变形【教学内容】本小节的内容在教材第4-7页。

主要内容为:通过对方程变形的分析,探索求解简单方程的规律,学会通过变形求解简单方程。

4【教学目标】了解方程的基本变形:移项和化简未知数的系数为1. 了解未知数的基本变形在解方程中的作用。

知识与能力1.了解方程可以进行的基本变形,知道通过变形可以求出方程的解。

2.了解移项的定义,注意移项要变号。

3.了解未知数系数化为1的方法。

4.知道方程的解的形式是“x=a”,学会通过变形求解简单方程。

情感、态度、价值观通过本节的教学,应该达到使学生体会数学的价值的目的。

【重点难点】重点:1、方程的简单变形;2,简单变形的简单应用。

难点:1、移项和简单变形的关系。

2、移项要变号,为什么要变号。

3、简单变形和方程的解的关系。

【教学过程】第一课时教学流程设计教师指导学生活动1、课堂教学试验 1、观察试验,分析结果2、讲解移项知识 2、学习3、讲解未知数系数化1 3、学习 4、布置练习 4、练习56五、本课小结初步按照分步骤学习通过方程的基本变形来求解简单方程,主要是按照“移项-把未知数的系数化为1”的思路来走,所得结果就是方程的解。

长江作业本七年级下册数学答案

长江作业本七年级下册数学答案

三一文库()/初中一年级〔长江作业本七年级下册数学答案[1]〕第6章一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1. x = - 6 2. 2x-15=25 3. x =3(12-x)三、1.解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米,可列方程为:5.8-x=3x+0.62.解:设苹果买了x千克, 则可列方程为: 4x+3(5-x)=173.解:设原来课外数学小组的人数为x,则可列方程为:§6.2 解一元一次方程(一)一、1. D 2. C 3.A二、1.x=-3,x= 2.10 3. x=5三、1. x=7 2. x=4 3. x= 4. x= 5. x=3 6. y=§6.2 解一元一次方程(二)一、1. B 2. D 3. A二、1.x=-5,y=3 2. 3. -3三、1. (1)x= (2)x=-2 (3)x= (4) x=-4 (5)x = (6)x=-22. (1)设初一(2)班乒乓球小组共有x人, 得:9x-5=8x+2. 解得:x=7 (2)48人3. (1)x=-7 (2)x=-3§6.2 解一元一次方程(三)一、1. C 2. D 3. B 4. B二、1. 1 2. 3. 10三、1. (1) x=3 (2) x=7 (3)x=–1 (4)x= (5) x=4 (6) x=2. 3( x-2) -4(x- )=4 解得 x=-33. 3元§6.2 解一元一次方程(四)一、1. B 2.B 3. D二、1. 5 2. , 3. 4. 15三、1. (1)y = (2)y =6 (3)(4)x=2. 由方程3(5x-6)=3-20x 解得x= ,把x= 代入方程a-x=2a+10x,得a =-8.∴当a=-8时,方程3(5x-6)=3-20x与方程a- x=2a+10x有相同的解.3. 解得:x=9§6.2 解一元一次方程(五)一、1.A 2. B 3. C二、1.2(x +8)=40 2. 4,6,8 3.2x+10=6x+5 4. 15 5. 160元三、1. 设调往甲处x人, 根据题意,得27+x=2[19+(20-x)]. 解得:x=172. 设该用户5月份用水量为x吨,依题意,得1.2×6+2(x-6)=1.4 x.解得 x=8. 于是1.4x=11.2(元) .3. 设学生人数为x人时,两家旅行社的收费一样多. 根据题意,得240+120x=144(x+1),解得 x=4.§6.3 实践与探索(一)一、1. B 2. B 3. A二、1. 36 2. 3. 42,270三、1. 设原来两位数的个位上的数字为x,根据题意,得10x+11-x=10(11-x)+x+63. 解得 x=9. 则原来两位数是29. 2.设儿童票售出x张,则成人票售出(700-x)张.依题意,得30x+50(700-x)=29000 . 解得:x=300, 则700-x=700-300=400人. 则儿童票售出300张,成人票售出400张.§6.3 实践与探索(二)一、1. A 2. C 3. C二、1. x+ x+1+1=x 2. 23.75% 3. 2045三、1. 设乙每小时加工x个零件,依题意得,5(x+2)+4(2x+2)=200 解得x=14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x元,依题意得,3.6%x+4.77%(250000-x)=10170. 解得 x=150000. 则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x个月能完成,依题意,得解得 x = 14. 小时第7章二元一次方程组§7.1 二元一次方程组和它的解一、1. C 2. C 3. B二、1. 2. 5 3.三、1. 设甲原来有x本书、乙原来有y本书,根据题意,得2. 设每大件装x罐,每小件装y罐,依题意,得 .3. 设有x辆车,y个学生,依题意§7.2二元一次方程组的解法(一)一、1. D 2. B 3. B二、1. 2.略 3. 20三、1. 2. 3. 4.§7.2二元一次方程组的解法(二)一、1. D 2. C 3.A二、1. , 2. 18,12 3.三、1. 2. 3. 4.四、设甲、乙两种蔬菜的种植面积分别为x、y亩,依题意可得:解这个方程组得§7.2二元一次方程组的解法(三)一、1. B 2.A3.B 4. C二、1. 2. 9 3. 180,20三、1. 2. 3.四、设金、银牌分别为x枚、y枚,则铜牌为(y+7)枚,依题意,得解这个方程组, , 所以 y+7=21+7=28.§7.2二元一次方程组的解法(四)一、1. D 2. C 3. B二、1. 2. 3, 3. -13三、1. 1. 2. 3. 4. 5. 6.四、设小明预订了B等级、C等级门票分别为x张和y张. 依题意,得解这个方程组得§7.2二元一次方程组的解法(五)一、1. D 2. D 3. A二、1. 24 2. 6三、1. (1)加工类型项目精加工粗加工加工的天数(天)获得的利润(元)6000x 3. 28元,20元8000y(2)由(1)得:解得∴答:这批蔬菜共有70吨.2.设A种篮球每个元,B种篮球每个元,依题意,得解得3.设不打折前购买1件A商品和1件B商品需分别用x元,y元,依题意,得解这个方程组,得因此50×16+50×4-960=40(元).§7.3实践与探索(一)一、1. C 2. D3.A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6. 1从实际问题到方程(华师大版)
6. 1从实际问题到方程教学目的1•通过对多个实际问题的分析,使
学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点1 .重点会列一元一次方程解决一些简单的应用题。

2.难点弄清题意,找出相等关系。

教学过程一、复习提问一本笔记本1. 2元。

小红有6元钱,那么她最多能买到几本这样的笔记本呢?解设小红能买到工本笔记本,那么根据题意,得12 = 6因为12X5= 6,所以小红能买到5本笔记本。

二、新授问题1某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?让学生思考后,回答,教师再作讲评算术法328 —64宁44= 264宁44= 6辆列方程设需要租用辆客车,可得。

44+64 = 3281解这个方程,就能得到所求的结果。

问你会解这个方程吗?试试看?问题2在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学我今年45岁,几年以后你们的年龄是我
年龄的三分之一?通过分析,列出方程13+= 45 +问你会解这个方程吗?
你能否从小敏同学的解法中得到启发?把= 3代人方程2,左边=13+3=
16,右边=45+3= X 4= 16,因为左边=右边,所以=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。

也可以据此检验一下一个数是不是方程的解。

问若把例2中的三分之一改为二分之一,那么答案是多少?动手试一试,大家发现了什么问题?同样,用检验的方法也很难得到方程的解,因为这里的值很大。

另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?三、巩固练习教科书第3页练习1、2。

四、小结。

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问
题。

谈谈你的学习体会。

五、作业。

教科书第3页,习题61第1、3题。

相关文档
最新文档