2018年高考数学总复习高考达标检测五十六证明4方法_综合法分析法反证法数学归纳法理20170916

合集下载

数学证明题的八种方法

数学证明题的八种方法

常见的证明方法有综合法、分析法、反证法、归纳法、类比法等。

分析法分析法是一种从结论到题设的逻辑推理方法,也就是执果索因法的证明方法。

分析法的证明路径与综合法恰恰相反。

反证法由于原命题与逆否命题等效,所以当证明原命题有困难或者无法证明时,可以考虑证明它的逆否命题,通过正确推理如果逆否命题正确或者推出与原命题题设、公理、定理等不相容的结论,从而判定结论的反面不成立,也就证明了原命题的结论是正确的。

反证法视逆否命题的题设也就是原命题的结论的反面的情况又分为两种:1)归谬法:若结论的反面只有一种情况,那么把这种情况推翻就达到证明的目的了。

2)穷举法:若结论的反面不只一种情况,则必须将所有情况都驳倒,这样才能达到证明的目的。

前三种方法也叫演绎法。

都是按照“从一般到特殊”的思维过程进行推理的。

归纳法归纳法或归纳推理,有时叫做归纳逻辑,是从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能真的结论。

它把特性或关系归结到基于对特殊的代表的有限观察的类型;或公式表达基于对反复再现的现象的模式的有限观察的规律。

归纳法有如下几类:1)不完全归纳法所谓不完全归纳法就是通过对某类事物的真子集逐个进行考察,发现它们具有某种性质,就大胆预见某类事物具有某种性质。

2)完全归纳法完全归纳法也叫枚举归纳法。

某类事物可分为有限种情况,如果通过逐个考察,各种情况都具有某种性质,则可以归纳地得出结论,某类事物均具有某种性质。

3)数学归纳法如果某类事物有可数无限多种情况,就无法逐个考察各种情况都具有某种性质。

数学归纳法是一种用递推的办法,通过“有限”解决“无限”的一种方法,它是用归纳法证明命题的巨大飞跃。

类比法它也叫“比较类推法”,类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理。

简称类推、类比。

或者由一类事物所具有的某种属性,可以推测与其类似的事物也应具有这种属性的推理方法。

其结论必须由实验来检验,类比对象间共有的属性越多,则类比结论的可靠性越大。

近年高考数学复习 第6章 不等式、推理与证明 第5节 综合法与分析法、反证法教师用书 文 北师大版

近年高考数学复习 第6章 不等式、推理与证明 第5节 综合法与分析法、反证法教师用书 文 北师大版

2018高考数学一轮复习第6章不等式、推理与证明第5节综合法与分析法、反证法教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第6章不等式、推理与证明第5节综合法与分析法、反证法教师用书文北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第6章不等式、推理与证明第5节综合法与分析法、反证法教师用书文北师大版的全部内容。

第五节综合法与分析法、反证法[考纲传真] 1.了解直接证明的两种基本方法-—分析法和综合法;了解分析法和综合法的思考过程、特点。

2。

了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.1.综合法从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明,这样的思维方法称为综合法.2.分析法从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等,这样的思维方法称为分析法.3.反证法(1)定义:在证明数学命题时,先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.(2)反证法的证明步骤是:①作出否定结论的假设;②进行推理,导出矛盾;③否定假设,肯定结论.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)用反证法证明时,推出的矛盾不能与假设矛盾.()(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )[答案](1)√(2)×(3)×(4)√2.要证明错误!+错误!〈2错误!,可选择的方法有以下几种,其中最合理的是( )A.综合法B.分析法C.反证法D.归纳法B[要证明错误!+错误!<2错误!成立,可采用分析法对不等式两边平方后再证明.]3.用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根A[“方程x2+ax+b=0至少有一个实根"的反面是“方程x2+ax+b=0没有实根",故选A。

【高中数学】综合法与分析法 、反证法

【高中数学】综合法与分析法 、反证法

题型 用反证法证明“至多”,“至少”等存在性问题
π
π
若 a,b,c 均为实数,且 a=x2-2y+ 2 ,b=y2-2z+ 3 ,c=z2
π -2x+ 6 ,求证:a,b,c 中至少有一个大于 0.
证明:假设 a,b,c 都不大于 0,即 a≤0,b≤0,c≤0,则 a+b+c
≤0.
而 a+b+c=x2-2y+π2 +y2-2z+π3 +z2-2x+π6 =(x-1)2+(y -1)2+(z-1)2+π-3.
a(a-1) ,
所以 a+1- a< a-1- aC 成等差数列,且角 A,B,C 的对 边分别为 a,b,c,求证:(a+b)-1+(b+c)-1=3(a+b+c)-1.
证明:方法一 (分析综合法) 要证(a+b)-1+(b+c)-1=3(a+b+c)-1 成立, 即证a+1 b+b+1 c=a+3b+c成立,
反证法证明时反设不全面致误.
【典例】 已知a,b,c是互不相等的非零实 数.求证:三个方程ax2+2bx+c=0,bx2+ 2cx+a=0,cx2+2ax+b=0至少有一个方程有 两个相异实根.
解析:假设三个方程都没有两个相异实根, 则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0. 相加有 a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0, 即(a-b)2+(b-c)2+(c-a)2≤0,(*) 由题意 a,b,c 互不相等,所以(*)式不能成立. 所以假设不成立,即三个方程中至少有一个方程有两个相异实 根.
即a+a+b+b c+a+b+b+c c=3,化简得a+c b+b+a c=1, 又需证 c(b+c)+(a+b)a=(a+b)(b+c), 即 c2+a2=b2+ac. 又△ABC 的三个内角 A,B,C 成等数列,所以 B=60°. 由余弦定理,得 cos B=a2+2ca2c-b2=21. 所以 a2+c2-b2=ac,所以原命题成立.

高中数学常用证明方法归纳(比较法、综合法、分析法、反证法、数学归纳法、放缩法)

高中数学常用证明方法归纳(比较法、综合法、分析法、反证法、数学归纳法、放缩法)

高中数学常用证明方法(比较法、综合法、分析法、反证法、数学归纳法、放缩法)江西省永丰中学陈保进高中数学证明题是学生学习的一个难点,学生对基本的数学证明方法不熟悉,证明题过程书写不规范,条理不清晰,为此有必要归纳一些常见的数学证明方法。

1.比较法比较法包括作差比较、作商比较,比如要证a >b ,只需证a -b >0;若b >0,要证a >b ,只需证a b >1。

例1:已知b a ,是正数,用比较法证明:b a a b b a +≥+22证明:0))((11)(()(222222222≥-+=--=-+-=+-+ab b a b a a b b a a a b b b a b a a b b a 所以b a ab b a +≥+222.综合法(由因导果法)利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出要证明的结论成立。

例2:已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证:证明:由ab b a 2≥+,1=+b a ,得41≤ab ,111111211 11111189119.a b a b a b ab ab ab ab a b +⎛⎫⎛⎫⎛⎫⎛⎫++=+++=++=+≥+=∴++≥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭而3.分析法(执果索因法)从要证明的结论出发,逐步寻求使它成立的充分条件,直到把要证明的结论归结为一个显然成立的条件(已知条件、定理、定义、公理等)为止。

书写格式:要证……只需证……即证……例3:若a ,b ∈(1,+∞),证明:a +b <1+ab .证明:要证a +b <1+ab ,只需证(a +b )2<(1+ab )2,只需证a +b -1-ab <0,即证(a -1)(1-b )<0.因为a >1,b >1,所以a -1>0,1-b <0,即(a -1)(1-b )<0成立,所以原不等式成立.4.反证法当命题从正面出发不好证明时,可以从反面入手,用反证法,正所谓"正难则反"。

2018版高考数学复习第十二章推理与证明算法复数12.2综合法分析法与反证法教师用书文北师大版

2018版高考数学复习第十二章推理与证明算法复数12.2综合法分析法与反证法教师用书文北师大版

2018版高考数学大一轮复习第十二章推理与证明、算法、复数 12.2 综合法、分析法与反证法教师用书文北师大版1.综合法(1)定义:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.我们把这样的思维方法称为综合法.(2)框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证明的结论).2.分析法(1)定义:从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.我们把这样的思维方法称为分析法.(2)框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.3.反证法我们可以先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.反证法的证题步骤是:(1)作出否定结论的假设;(2)进行推理,导出矛盾;(3)否定假设,肯定结论.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( ×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ×)(3)用反证法证明结论“a>b”时,应假设“a<b”.( ×)(4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2B .a 2>ab >b 2C.1a <1bD.b a >a b答案 B解析 a 2-ab =a (a -b ), ∵a <b <0,∴a -b <0,∴a 2-ab >0, ∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为( ) A .a ,b 都能被5整除 B .a ,b 不都能被5整除 C .a ,b 至少有一个能被5整除 D .a ,b 至多有一个能被5整除 答案 C解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.a +b22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·青岛模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x n n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 答案332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π). ∴f A +f B +f C3≤f (A +B +C3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用 例1 数列{a n }满足a n +1=a n2a n +1,a 1=1. (1)证明:数列{1a n}是等差数列;(2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n=2,故数列{1a n}是以1为首项,2为公差的等差数列.(2)解 由(1)知1a n=2n -1,∴S n =n+2n -2=n 2.方法一1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+ (1)n +=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=nn +1.方法二 1S 1+1S 2+…+1S n =112+122+…+1n 2>1, 又∵1>nn +1,∴1S 1+1S 2+…+1S n >nn +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞), ∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立.上式两边同时取常用对数,得 lg(a +b 2·b +c 2·c +a2)>lg abc ,∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明x 1+x 22cos x 1cos x 2>x 1+x 21+x 1+x 2.由于x 1,x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证明f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22,即证明1212(32)(32)2x x x x -+-≥1223x x +-2·x 1+x 22,因此只要证明12233x x +-(x 1+x 2)≥1223x x +-(x 1+x 2),即证明,121223233x xx x ++≥因此只要证明12233x x+由于x 1,x 2∈R 时,13x >0,23x>0,由基本不等式知12233x x+思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2016·重庆月考)设a >0,b >0,2c >a +b ,求证:(1)c 2>ab ;(2)c -c 2-ab <a <c +c 2-ab . 证明 (1)∵a >0,b >0,2c >a +b ≥2ab , ∴c >ab ,平方得c 2>ab .(2)要证c -c 2-ab <a <c +c 2-ab , 只要证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,即(a -c )2<c 2-ab . ∵(a -c )2-c 2+ab =a (a +b -2c )<0成立, ∴原不等式成立. 题型三 反证法的应用 命题点1 证明否定性命题例3 (2016·西安模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n, ∴S n =a 1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 命题点2 证明存在性问题例4 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB . 又AB ∩AD =A ,AB 平面ABCD ,AD平面ABCD ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD . ∵BC ∥AD ,BC 平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =ba. 假设x 1,x 2是它的两个不同的根,即ax 1=b ,①ax 2=b ,②由①-②得a (x 1-x 2)=0, 因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误. 所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤: 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图像与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明 (1)∵f (x )的图像与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a,∴x 2=1a (1a≠c ),∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点.(2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0,知f (1a )>0,与f (1a )=0矛盾,∴1a≥c ,又∵1a ≠c ,∴1a>c .23.反证法在证明题中的应用典例 (12分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去. 规范解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1),所以设点A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m 1+4k2.所以AC 的中点为M ⎝⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分]因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝ ⎛⎭⎪⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]1.(2017·泰安质检)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( ) A .方程x 2+ax +b =0没有实根 B .方程x 2+ax +b =0至多有一个实根 C .方程x 2+ax +b =0至多有两个实根 D .方程x 2+ax +b =0恰好有两个实根 答案 A解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A. 2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0]答案 D解析 2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k -38或k =0.解得-3<k ≤0.3.(2017·上饶质检)设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2答案 C 解析 因为(y x +y z )+(z x +z y )+(x z +x y )=(y x +x y )+(y z +z y )+(z x +x z )≥6,当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,故选C.4.①已知p 3+q 3=2,证明:p +q ≤2.用反证法证明时,可假设p +q ≥2;②若a ,b ∈R ,|a |+|b |<1,求证:方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①的假设正确;②的假设错误C .①与②的假设都正确D .①的假设错误;②的假设正确答案 D解析 对于①,结论的否定是p +q >2,故①中的假设错误;对于②,其假设正确,故选D.5.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案 C 解析 因为a +1b +b +1c +c +1a≤-6, 所以三者不能都大于-2.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎪⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧ f -=-2p 2+p +1≤0,f =-2p 2-3p +9≤0,解得p ≤-3或p ≥32, 故满足题干条件的p 的取值范围为⎝⎛⎭⎪⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图像关于y 轴对称,求证:f (x +12)为偶函数. 证明 由函数f (x +1)与f (x )的图像关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得f (x -12+1)=f [-(x -12)], 即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴21x x a->1且1x a >0, ∴21x x a a -=121(1)x x x a a ->0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=x 2-x 1+-x 1-x 2+x 1+x 2+=x 2-x 1x 1+x 2+>0.于是f (x 2)-f (x 1)=21x x a a -+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则0x a =-x 0-2x 0+1. ∵a >1,∴0<0x a <1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·浙江)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1--x 41--x =1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1,得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=x -x +x ++32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34, 又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. 13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b > c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b > c +d . ②若a +b > c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b > c +d 是|a -b |<|c -d |的充要条件.。

数学:不等式证明四法比较法综合法分析法反证法与放缩法

数学:不等式证明四法比较法综合法分析法反证法与放缩法

不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。

比较法分为:作差法和作商法 一、 作差法若a ,b ∈R ,则: a —b >0⇔a >b ;a —b =0⇔a =b ;a —b <0⇔a <b 它的三个步骤:作差——变形——判断符号(与零的大小)——结论. 作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左—右的符号,从而降低了问题的难度。

作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x 2 + 3 > 3x 证:∵(x 2 + 3) 3x = 043)23(3)23()23(32222>+-=+-+-x x x ∴x 2 + 3 > 3x例2、 (课本P 22例2)已知a, b, m 都是正数,并且a < b ,求证:bam b m a >++ 证:)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a,b,m 都是正数,并且a<b ,∴b + m > 0 , b a > 0 ∴0)()(>+-m b b a b m 即:bam b m a >++变式:若a > b ,结果会怎样?若没有“a < b ”这个条件,应如何判断?例3、 已知a, b 都是正数,并且a b ,求证:a 5 + b 5 > a 2b 3 + a 3b 2 证:(a 5 + b 5 )(a 2b 3 + a 3b 2) = ( a 5 a 3b 2) + (b 5 a2b 3)= a 3 (a 2b 2 )b 3 (a 2b 2) = (a 2b 2 )(a 3 b 3)= (a + b )(a b )2(a 2 + ab + b 2)∵a, b 都是正数,∴a + b, a 2 + ab + b 2 > 0又∵a b ,∴(a b )2 > 0 ∴(a + b )(a b )2(a 2 + ab + b2) > 0即:a 5 + b 5 > a 2b 3 + a 3b 2例4、 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果m n ,问:甲乙两人谁先到达指定地点?解:设从出发地到指定地点的路程为S ,甲乙两人走完全程所需时间分别是t 1, t 2,则:21122,22t n S m S S n t m t=+=+可得:mnn m S t n m S t 2)(,221+=+= ∴)(2)()(2])(4[2)(22221n m mn n m S mn n m n m mn S mn n m S n m S t t +--=++-=+-+=- ∵S, m, n 都是正数,且m n ,∴t 1 t 2 < 0 即:t 1 < t 2从而:甲先到到达指定地点。

近年高考数学复习 第6章 不等式、推理与证明 第5节 综合法与分析法、反证法课时分层训练 文 北师

2018高考数学一轮复习第6章不等式、推理与证明第5节综合法与分析法、反证法课时分层训练文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第6章不等式、推理与证明第5节综合法与分析法、反证法课时分层训练文北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第6章不等式、推理与证明第5节综合法与分析法、反证法课时分层训练文北师大版的全部内容。

课时分层训练(三十五)综合法与分析法、反证法A组基础达标(建议用时:30分钟)一、选择题1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的个数有()A.2个B.3个C.4个D.5个D[由分析法、综合法、反证法的定义知①②③④⑤都正确.]2.用反证法证明命题:若整数系数的一元二次方程ax2+bx+c=0(a≠0)有有理实数根,则a,b,c中至少有一个是偶数.下列假设中正确的是()【导学号:66482314】A.假设a,b,c至多有一个是偶数B.假设a,b,c至多有两个偶数C.假设a,b,c都是偶数D.假设a,b,c都不是偶数D[“至少有一个”的否定为“一个都没有”,即假设a,b,c都不是偶数.]3.若a,b,c为实数,且a〈b<0,则下列命题正确的是()【导学号:66482315】A.ac2〈bc2B.a2〉ab〉b2C.错误!〈错误!D.错误!>错误!B[a2-ab=a(a-b),∵a〈b〈0,∴a-b〈0,∴a2-ab>0,∴a2>ab.①又ab-b2=b(a-b)〉0,∴ab>b2,②由①②得a2>ab>b2。

证明不等式的几种方法

不等式证明题的命题形式多样,证明不等式的方法也很多,如综合法、分析法、反证法、放缩法、构造法等.本文主要介绍一下综合法、分析法、反证法的应用技巧.一、综合法用综合法证明不等式,需先根据题目中的已知信息,以及已知的事实、结论、性质、定理等,一步步推导,直到推导出需要证明的式子为止.因而综合法就是由“因”到“果”的推导过程.每一步的推导过程一定要符合数学逻辑.在证明不等式时,可以从左往右推导,也可以从右往左推导.例1.若a,b,c是不完全相等的正数,求证:ln a+b2+ln b+c2+ln c+a2>ln a+ln b+ln c.证明:由于a,b,c都是正数,所以a+b2≥ab>0,b+c2≥bc>0,a+c2≥ac>0,又因为a,b,c是不完全相等的正数,如果这三个不等式都成立,就取不到等号,因此a+b2·b+c2·c+a2>ab·bc·ca=abc,在上式的两边取对数得:ln(a+b2·b+c2·c+a2)>ln(abc),即:lna+b2+ln b+c2+ln c+a2>ln a+ln b+ln c.解答本题主要运用基本不等式a+b2≥ab;然后根据不等式的可乘性,通过取对数,将不等式左边的式子进行化简.在推导不等式的过程中,经常需要用到这几个不等式:a2+b2≥2ab,a+b2≥ab(当且仅当a=b时取等号).二、分析法用分析法解题的思路和综合法相反,用分析法证明不等式,需要从要证明的不等式出发,然后分析这个不等式成立的充分条件是什么,一步一步递推,证明不等式成立的充分条件符合题中给出的信息,或者符合已知的数学结论.一般来说,分析法常用于证明较复杂的不等式问题.若由不等式一边的式子很难推导出另一边的式子,就可以采用分析法进行证明,通过分析、推理,一步步简化不等式,最终得到一个比较简便的等价不等式.例2.设a>b>0,求证:(a-b)28a<a+b2-ab<(a-b)28b.证明:要证:(a-b)28a a+b2ab(a-b)28b,即证:(a+b)28a<(a-b)22<(a-b)28b,由于a>b>0,所以a≠b,即证:(a+b)24a<1<(a+b)24b,<1<1<,根据a>b>0,可知该不等式成立,于是得证:(a+b)28a<a+b2-ab<(a-b)28b.这个不等式较为复杂,我们很难从不等式左边的式子推导出右边的式子,同样也很难反向推导出结论,但是可以用分析法,将不等式一步步简化,先将中间项合并,再将其化为1,然后通过恒等变换,化简即可.三、反证法反证法是解答证明题的一个重要手段.一般地,当题目中出现“至少”“不存在”“至多”等字眼时,都可以考虑使用反证法进行证明.用反证法证明不等式,要首先假设命题不成立;然后结合题中已知的信息和已有的数学知识,得到存在矛盾的结论,那就说明假设的命题不成立,这样就可以证明不等式成立.例3.已知a>0,b>0,且a+b>2,求证:1+b a,1+a b中至少有一个小于2.证明:假设1+b a,1+a b都大于2,因为a>0,b>0,则1+b≥2a,1+a≥2b,将这两个式子相加得:2+a+b≥2a+2b,化简得:a+b≤2,与题目中的a+b>2相矛盾,因此,1+b a,1+a b中至少有一个小于2.由题目中出现了“至少”的字眼,所以考虑使用反证法进行证明.在提出假设命题时,要注意命题的反面情况,如“1+b a、1+a b至少有一个小于2”的反面情况是“1+b a、1+a b都大于2”.熟练掌握综合法、分析法、反证法的适用情形、特点,以及解题的步骤,对解题有很大的帮助.同学们在日常学习中,要学会积累解题技巧和规律,以提升解题的效率.(作者单位:江西省龙南中学)赖明辉备考指南59。

综合法、分析法、反证法

一、复习: 推 理
合情推理
演绎推理
归纳
类比
三段论
(特殊到一般) (特殊到特殊)(一般到特殊)
演绎推理是证明数学结论、建立数学体系的 重要思维过程.
数学结论、证明思路的发现,主要靠合情推理.
直接证明
2.2.1 综合法
例1.已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc 证明:因为b2+c2 ≥2bc,a>0 所以a(b2+c2)≥2abc. 又因为c2+b2 ≥2bc,b>0 所以b(c2+a2)≥ 2abc. 因此a(b2+c2)+b(c2+a2)≥4abc.
b ac 由a,b,c成等比数列可得什么?
2
怎样把边,角联系起来?
点评:解决数学问题时,
文字语言
学会语言转换;还要细
致,找出隐含条件。
图形语言
符号语言
例3.在锐角三角形ABC中, 求证sinA+sinB+sinC>cosA+cosB+cosC
课堂练习:
1.已知a,b,c > 0,且不全等,求证: a(b2 + c2)+ b(c2 + a2)+ c(a2 + b2)> 6abc
只需证:AE⊥BC 只需证:BC⊥平面SAB 只需证:BC⊥SA 只需证:SA⊥平面ABC
F E
A
C
B
因为:SA⊥平面ABC成立 所以. AF⊥SC成立
思考:请对综合法与分析法进行比
较,说出它们各自的特点。回顾以往 的数学学习,说说你对这两种证明方 法的新认识。

综合法、分析法、反证法

只需证 14 18
只需证 14<18,这显然成立 所以 2 + 7 3 + 6成立
例2:如图,SA⊥平面ABC,AB⊥BC,过A作 SB的垂线,垂足为E,过E作SC的垂线,垂 足为F,求证 AF⊥SC S
证明:要证AF⊥SC
只需证:SC⊥平面AEF
只需证:AE⊥SC 只需证:AE⊥平面SBC
只需证:AE⊥BC 只需证:BC⊥平面SAB 只需证:BC⊥SA 只需证:SA⊥平面ABC
F E
A
C
B
因为:SA⊥平面ABC成立 所以. AF⊥SC成立
思考:请对综合法与分析法进行比
较,说出它们各自的特点。回顾以往 的数学学习,说说你对这两种证明方 法的新认识。
综合法的特点:由因导果
分析法的特点:执果索因.
回顾基本不等式:a
+ 2
b
ab
分析法
(a>0,综b>合0)法的证明.
证法1Q a + b ab
2
a + b ab 2
( a b)2
2
因为 ( a b)2 0
所以
a+b 2
ab成立
证法2要证
a
+ 2
b

ab
只需证 a + b 2 ab
只需证 a + b 2 ab 0
• 为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王 才说——
• 国王:不管我做出什么决定,都肯定要破坏这条法律。我们还 是宽大为怀算了,让这个人自由吧。
b ac 由a,b,c成等比数列可得什么?
2
怎样把边,角联系起来?
点评:解决数学问题时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考达标检测(五十六)证明4方法——综合法、分析法、反证法、
数学归纳法
一、选择题
1.(2017·广州调研)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2
<bc 2
B .a 2>ab >b 2
C.1a <1b
D.b a >a b
解析:选B a 2
-ab =a (a -b ), ∵a <b <0,∴a -b <0, ∴a 2
-ab >0, ∴a 2>ab .①
又ab -b 2
=b (a -b )>0, ∴ab >b 2,② 由①②得a 2
>ab >b 2
.
2.(2017·常德模拟)数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算
a 2,a 3,a 4后,猜想a n 的表达式是( )
A .3n -2
B .n 2
C .3
n -1
D .4n -3
解析:选B 计算出a 1=1,a 2=4,a 3=9,a 4=16.可猜想a n =n 2
.
3.(2016·大连一模)设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若
x 1+x 2>0,则f (x 1)+f (x 2)的值( )
A .恒为负值
B .恒等于零
C .恒为正值
D .无法确定正负
解析:选A 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减, 可知f (x )是R 上的单调递减函数,
由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2), 则f (x 1)+f (x 2)<0.
4.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 为正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭

⎫2ab a +b ,则A ,
B ,
C 的大小关系为( )
A .A ≤
B ≤
C B .A ≤C ≤B C .B ≤C ≤A
D .C ≤B ≤A
解析:选A 因为a +b
2
≥ab ≥
2ab a +b ,又f (x )=⎝ ⎛⎭
⎪⎫12x
在R 上是单调减函数, 故f ⎝
⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭
⎪⎫2ab a +b .
5.已知m >1,a =m +1-m ,b =m -m -1,则以下结论正确的是( ) A .a >b B .a <b
C .a =b
D .a ,b 大小不定 解析:选B ∵a =m +1-m =
1
m +1+m

b =m -m -1=
1
m +m -1
.
而m +1+m >m +m -1>0(m >1), ∴
1
m +1+m

1
m +m -1
,即a <b .
6.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1
a
( )
A .都大于2
B .都小于2
C .至少有一个不大于2
D .至少有一个不小于2
解析:选D ∵a >0,b >0,c >0,
∴⎝
⎛⎭
⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭
⎪⎫c +1c ≥6,当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.
二、填空题
7.(2017·临汾模拟)下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b
≥2成立的条件的序号是________.
解析:要使b a +a b ≥2,只需b a >0且a b
>0成立,即a ,b 不为0且同号即可, 故①③④都能使b a +a b
≥2成立. 答案:①③④
8.若二次函数f (x )=4x 2
-2(p -2)x -2p 2
-p +1,在区间[-1,1]内至少存在一点c ,使
f (c )>0,则实数p 的取值范围是________.
解析:法一:(补集法)
令⎩
⎪⎨⎪⎧
f -=-2p 2
+p +1≤0,f =-2p 2
-3p +9≤0,
解得p ≤-3或p ≥3
2

故满足条件的p 的范围为⎝ ⎛⎭⎪⎫-3,32. 法二:(直接法)
依题意有f (-1)>0或f (1)>0, 即2p 2
-p -1<0或2p 2
+3p -9<0, 得-12<p <1或-3<p <3
2

故满足条件的p 的取值范围是⎝ ⎛⎭⎪⎫-3,32.
答案:⎝
⎛⎭⎪⎫-3,32
9.(2017·德州一模)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是________三角形.
解析:由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.
由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭
⎪⎫π2-A 1,sin B 2
=cos B 1
=sin ⎝ ⎛⎭⎪⎫π2-B 1

sin C 2
=cos C 1
=sin ⎝ ⎛⎭
⎪⎫π2-C 1
,得⎩⎪⎨⎪⎧
A 2=π2
-A 1,
B 2
=π
2-B 1

C 2
=π2-C 1
.
那么,A 2+B 2+C 2=π
2,这与三角形内角和为180°相矛盾.
所以假设不成立,又显然△A 2B 2C 2不是直角三角形. 所以△A 2B 2C 2是钝角三角形. 答案:钝角 三、解答题
10.已知a ,b ,c 为不全相等的正数,求证:b +c -a a +c +a -b b +a +b -c
c
>3. 证明:因为a ,b ,c 为不全相等的正数, 所以
b +
c -a a +c +a -b b +a +b -c
c
=b a +a b +c a +a c +c b +b c
-3, >2
b a ·a b
+2 c a ·a c +2 c b ·b
c
-3=3,

b +
c -a a +c +a -b b +a +b -c
c
>3. 11.(2016·武汉模拟)已知数列{a n },a n ≥0,a 1=0,a 2
n +1+a n +1-1=a 2
n . 求证:当n ∈N +时,a n <a n +1.
证明:(1)当n =1时,因为a 2是方程a 2
2+a 2-1=0的正根,所以a 1<a 2. (2)假设当n =k (k ∈N *
)时,0≤a k <a k +1,
则由a 2
k +1-a 2
k =(a 2
k +2+a k +2-1)-(a 2
k +1+a k +1-1)=(a k +2-a k +1)(a k +2+a k +1+1)>0,得a k +1
<a k +2,
即当n =k +1时,a n <a n +1也成立.
根据(1)和(2),可知a n <a n +1对任何n ∈N *
都成立.
12.已知f (x )=ax 2
+bx +c ,若a +c =0,f (x )在[-1,1]上的最大值为2,最小值为-52.
求证:a ≠0且⎪⎪⎪⎪
⎪⎪
b a <2.
证明:假设a =0或⎪⎪⎪⎪
⎪⎪b a
≥2.
(1)当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在[-1,1]上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件,得|b |+(-|b |)=2-52=-1
2,
这与|b |+(-|b |)=0相矛盾,所以a ≠0.
(2)当⎪⎪⎪⎪
⎪⎪
b a ≥2时,由二次函数的对称轴为x =-b
2a ,
知f (x )在[-1,1]上是单调函数,故其最值在区间的端点处取得.
所以⎩
⎪⎨⎪⎧
f =a +b +c =2,f -=a -b +c =-5
2,
或⎩⎪⎨
⎪⎧
f =a +b +c =-52,
f -=a -b +c =2.
又a +c =0,则此时b 无解,所以⎪⎪⎪⎪
⎪⎪b a <2.
由(1)(2),得假设不成立,所以a ≠0且⎪⎪⎪⎪
⎪⎪b a
<2.。

相关文档
最新文档