22章第1课时:一元二次方程--复习课

合集下载

一元二次方程复习课(绝对经典)

一元二次方程复习课(绝对经典)
2
2
关于 x的一元二次方程 x (2k 3) x k 0有
2 2
两个不相等的实数根 、
(1)求k的取值范围; ( )若 6, 求( ) 3 5的值 2 解: )由题意得, (2
2
解得, k1 1, k 2 3 3 k , k 1 4
2 8、x 2 4 x 2 0, 请用配方法转化成( m) n的 x
形式,则
( x 2) 2
2
9、请写出一个一元二次方程,
它的根为-1和2
(x+1)(x-2)=0
将4个数a、b、c、d排成2行2列,两边各加一条竖线记成
a b a b , 定义 ad bc,这个式子叫做2阶行列式。 c d c d 若 x+1 x-1 1-x x+1 =6则x=
的一个根是-1,则
4 , 另一根为______ x=-3
若a为方程 x2 x 5 0 的解,则 a 2 a 1 的值 为 6
6、若a是方程x 3x 3 0的一个根,则
2
3a 9a 2
2
11
2
7、n是方程x m x n 0一个根(n 0), n m -1
2、若(m+2)x 2 +(m-2) x -2=0是关于x的一元二 ≠- 2 次方程则m 。
一元二次方程的一般式
ax bx c 0 (a≠0)
2
一元二次方程 一般形式 二次项系 一次项 常数项 数 系数
3x²=1
2y(y-3)= -4
3x²-1=0
2y2-6y+4=0
3 2
0
-6
-1 4

《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊一、教材分析1.教材的地位和作用一元二次方程是中学数学的重要内容之一。

一方面,可以对以前学过的一元一次方程、因式分解等知识加以巩固,另一方面,又为以后学习二次函数等知识打下基础。

此外,一元二次方程对其它学科的学习也有重要意义。

因此,其地位可谓是“承上启下”,不可或缺。

2.教学目标分析知识与技能目标:1.理解一元二次方程的概念2.能灵活熟练的解一元二次方程3.会运用一元二次方程解决实际问题。

过程与方法目标:经历一元二次方程求解过程,提高观察分析能力,加深对转化等数学思想的认识。

情感态度与价值观目标:通过自主合作探究学习,养成独立思考的好习惯,培养团队合作意识。

3.教学重难点重点:构建一元二次方程知识体系,全面复习一元二次方程的解法及应用。

难点:利用根的判别式确定字母取值范围和运用一元二次方程解决实际问题。

二、教法与学法分析教法分析:叶圣陶先生主张:“教师务必启发学生的能动性,引导他们尽可能自己去探索。

”结合本节课的内容特点,我将采用启发式、讨论式以及探索式教学方法。

给学生留出足够的思考时间和空间,让学生自己去探索,归纳。

从真正意义上完成对知识的自我构建。

并用多媒体直观演示,最大限度地调动学生学习的积极性。

学法分析:人们常说:“现代文盲不是不识字的人,而是没有掌握学习方法的人”,因此教师要特别注重对学生学习方法的指导。

我贯彻的指导思想是把“学习的主动权还给学生”,倡导“合作交流、自主探究”的学习方式,具体的学法是利用学案导学,小组合作交流法,让学生养成自主学习的习惯,真正实现课堂的高效。

三、教学过程分析教学流程图:1.呈现诊断问题构建知识体系问题1:观察下列方程:⑴(x+3)²=2 ; ⑵x ²-8x+1=0 ; ⑶3x(x-1)=2(x-1);⑷x ²-4x-7=0 ; ⑸x ²+17=8x (无实数根)①这几个都是什么方程?诊断一: ②解这样的方程你有哪些方法? ③它们都有实数根吗?为什么?【教后反思】问题1出示了五个方程,目的是为了引出一元二次方程的概念、解法,以及根的判别式等知识点。

2014年秋华师大版数学九上第22章《一元二次方程》复习课ppt课件

2014年秋华师大版数学九上第22章《一元二次方程》复习课ppt课件

当 b 2 4ac 0 时
(4)公式法
b b2 4ac x 2a
适应于任何一个 一元二次方程
当b2-4ac<0时,方程没有实数根
随堂 练习 用适当方法解下列方程
(1) (2) (3)
( x 1)
2
2
0
x 4x 5 0
5x x 0
2
(4)
(5)
3x 6 x 2 0
22章 一元二次方程
选择适当的方法求解下列方程 (1) (2) (3) (4)
( x 10) 2 3
x 6x 3 0
2
-----直接开平方法 -----配方法
9 x 10x 4 0
2
-------公式法
2 x 5x 0
2
----------因式分解法
(1)直接开平方法
x2=b(b 0)
1、提取公因式法
适应于没有一次项的 一元二次方程
一 元 二 次 方 程 的 解 法
(2)因式分解法
2、平方差公式 3、完全平方公式
适应于左边能分解 为两个一次式的积 右边是0的方程
(3) 配方法
当二次项系数为1的时 候,方程两边同加上 一次项系数一半的平 方
适应于任何一个 一元二次方程
2
3x 2
2Leabharlann 4x 02随堂 练习 不解方程,判断下列方程根的情况:
(1)5(x2-1)-x=0; (2)9x2+6x+1=0; (3)6x2+8x=-3.
思考题
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0 有两个相等的实数解 2、关于x的一元二次方程(k+1)x2-2(k-1)x+k=0有 两个不相等实数根,求k的取值范围.

华师版九年级数学上册课件(HS)第22章 一元二次方程 一元二次方程的解法 直接开平方法和因式分解法

华师版九年级数学上册课件(HS)第22章 一元二次方程 一元二次方程的解法 直接开平方法和因式分解法
解:依题意有(m+1)+(2m-4)=0,∴m=1,∴x1=m+1=2,x2=2m-4= -2,∴ba =x2=4
17.(湘潭中考)由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到 左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+ a)(x+b) 示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3) (1)尝试:分解因式:x2+6x+8=(x+________)(x+________); (2)应用:请用上述方法解方程:x2-3x-4=0.
华师版
22.2 一元二次方程的解法
第1课时 直接开平方法和因式分解法
知识点❶:用直接开平方法解一元二次方程
1.(徐州中考)方程 x2-4=0 的解是_±_2__.
2.下列方程能用直接开平方法求解的是( B )
A.2x2-x+1=5
B.x2-41 =3
C.x2-x+1=4 D.x2-3x=5
3.用直接开平方法解下列方程: (1)(教材 P21 例题 1 变式)2x2-32=0;
解:x1=4,x2=-4
(2)(教材 P23 例题 3 变式)(2020·扬州)(x+1)2=9;
解:x1=2,x2=-4
(3)16y2-40y+25=72.
解:y1=-21 ,y2=3
知识点❷:用因式分解法解一元二次方程 4.(2020·镇江)一元二次方程 x2-2x=0 的两根分别为_x_1_=__0_,__x_2_=__2__.
7.若实数 x,y 满足(x2+y2+1)(x2+y2-2)=0, 则 x2+y2 的值为( B ) A.-1 B.2 C.2 或-1 D.-2 或-1
8.(凉山州中考)若关于 x 的方程 x2+2x-3=0 与x+2 3 =x-1 a 有一个解相同,

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程(第1课时)》说课稿一、教材分析《二次函数与一元二次方程》是人教版九年级上册第22章第二节的第1课时的内容。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

用函数的观点看方程,可以把方程看成函数值为某个定值时的情况,所以,研究函数与方程的关系是对函数的进一步深化。

学生在一次函数时已经了解了一次函数与一元一次方程、一元一次不等式、二元一次不等式组之间的联系,本章专设一节,通过探讨二次函数与一元二次方程的联系,再次展示函数与方程之间的联系。

这样既深化学生对一元二次方程的认识,又可以运用二次函数解决一元二次方程的相关问题,体现了知识之间的联系。

二、学情分析学生已经学习了一元一次方程和一次函数,一元二次方程,二次函数的图像和性质等知识,对函数与方程的关系已有初步认识。

但是运用函数的思想解决问题的意识还不够,仍习惯于孤立地看待方程与不等式的问题。

本节学习可以帮助学生进一步建立函数与方程的联系,提升用函数思想解决问题的意识和能力。

三、教学目标1.了解一元二次方程的根的几何意义;理解抛物线与横轴的三种位置关系对应一元二次方程的根的三种情况.2.经历探索二次函数与一元二次方程关系的过程,结合图象,进一步体会函数与方程之间的联系。

3.运用函数思想解决问题,体会事物之间的转化,提升思维品质。

四、教学重难点重点:二次函数与一元二次方程的联系,利用函数解决方程的有关问题.难点:将方程问题转化为函数问题,运用函数的思想解决问题。

五、教学策略由一次函数与一元一次方程的关系说起,采用类比的方法研究二次函数与一元二次方程的关系。

以实际问题为情境从数与形两个角度理解函数与方程之间的联系。

一元二次方程说课稿

一元二次方程说课稿

一元二次方程说课稿一、教材分析(一)、教材的地位和作用《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。

同时为今后学习一元二次不等式及二次函数打下基础。

(二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。

(三)、教学重难点及关键介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。

教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。

因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。

二、学生分析任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。

这就要求我们教师必须从学生的认知结构和心理特征出发。

九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。

使得他们很快就能融入课堂,接受知识也事半功倍。

当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。

从而激发学生学习的兴趣,促进学生个性的形成和发展。

要让学生成为课堂真正的主人,变厌学为乐学。

人教版九年级数学上册第22章二次函数《复习课》导学案

人教版九年级数学上册第22章二次函数《复习课》导学案

人教版九年级数学上册第22章二次函数《复习课》导学案第二十二章复课1.知道二次函数的概念、图象和性质,能根据解析式判断抛物线的开口方向、对称轴、顶点坐标和函数的增减性.2.知道抛物线与对应的一元二次方程的关系,会用待定系数法求二次函数的解析式.3.能够运用二次函数解决一些实际问题,从中体会数学建模思想.4.重点:二次函数解析式的求法,二次函数的图象、性质和应用.◆体系构建◆核心梳理1.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.2.二次函数y=ax2+bx+c(a≠0)与一元二次方程的关系:(1)当b2-4ac>时,抛物线与x轴有2个交点,对应的一元二次方程有两个不相等的实数解;(2)当b2-4ac=时,抛物线与x轴有1个交点,对应的一元二次方程有两个相等的实数解;(3)当b2-4ac<时,抛物线与x轴无交点,对应的一元二次方程无实数解.3.填表:特征函数启齿偏向对称轴极点坐标(0,0)(0,k)(h,0)(h,k)最值最小值最大值最小值k最大值k最小值最大值最小值k最大值k最小值y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k a>时启齿向上a<时开口向下a>时开口向上a<时启齿向下a>时启齿向上a<时启齿向下a>时开口向上a<时开口向下a>时启齿向上y轴y轴x=hx=hy=ax2+bx+ca<时开口向下x=-(-,)最大值专题一:二次函数的概念、图象和性质1.二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac,2a+b,a+b+c这四个代数式中,值为正数的有(B)A.4个B.3个C.2个D.1个2.二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象可能是(C)3.如图,已知二次函数y 1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-2,4),B(8,2),则能使y1>y2成立的x的取值范围是x<-2或x>8.【方法归纳交流】根据抛物线的开口方向判断a的正负;根据抛物线与y轴的交点判断c的值;若抛物线的对称轴在y 轴左侧,则a与b同号,若抛物线的对称轴在y轴右侧,则a与b异号;根据抛物线与x轴交点的个数判断b2-4ac的符号.专题二:求抛物线的顶点和对称轴4.求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标.(用两种方法)解:(1)y=(x2-8x+10)=[(x2-8x+16)-16+10]=(x-4)2-3,所以抛物线的开口向上,对称轴是x=4,顶点坐标是(4,-3).(2)对称轴:x=-=4,y最小==-3,顶点坐标为(4,-3).【方法归纳交流】求抛物线的顶点和对称轴一般有两种方法:配方法和公式法.专题三:抛物线的平移5.申明抛物线y=-3x2-6x+8通过如何的平移,可获得抛物线y=-3x2.解:配方:y=-3x2-6x+8=-3(x2+2x-)=-3[(x2+2x+1)-1-]=-3(x+1)2+11,∴抛物线的顶点坐标是(-1,11),∴把抛物线y=-3x2-6x+8先向右平移1个单位长度,再向下平移11个单位长度得到y=-3x2.6.如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)把C(5,4)代入y=ax2-5ax+4a,得25a-25a+4a=4。

22 一元二次方程

22 一元二次方程

22.1一元二次方程(第1课时)1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .22.1一元二次方程(第2课时)1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .22.2.1配方法(第1课时)1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,- 1 -x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得, .开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= . 8.用配方法解方程:x2-6x+7=0.22.2.1配方法(第2课时)1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方, .开平方,得,x1= ,x2= .4.完成下面的解题过程:- 2 -用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.22.2.1配方法(第3课时)1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.22.2.2公式法(第1课时)1.完成下面的解题过程:利用求根公式解方程:x2+x-6=0.解:a= ,b= ,c= .b2-4ac== >0.=_________,1x=_________,1x=__________.2.利用求根公式解下列方程:(1)21x=04;- 3 -- 4 -(2)24x ;(3)3x 2-4x+2=0.22.2.2公式法(第2课时) 1.完成下面的解题过程: 用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.=_________,1x =_________,1x =__________.解:整理,得 . a= ,b= ,c= . b 2-4ac= = .=_________,12x =x =_________.(3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac== <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.22.2.3因式分解法(第1课时) 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3) 解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.x=__________________=______, 1x =_________,2x =__________.2.完成下面的解题过程:用因式分解法解方程:x2解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2. 22.2.3因式分解法(第2课时)1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:3x2-x-4=0;解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .(3)用公式法解方程:x(2x-4)=2.5-8x.解:整理,得 .a= ,b= ,c= .b2-4ac== >0.=_________,x1= ,x2= .(4)用因式分解法解方程:x(x+2)=3x+6.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;- 5 -(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.22.3实际问题与一元二次方程(第1课时)1.完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为 cm,则另一条直角边的长为 cm.根据题意列方程,得.整理,得 .解方程,得x1= ,x2= (不合题意,舍去).答:一条直角边的长为 cm,则另一条直角边的长为 cm.2.一个菱形两条对角线长的和是10cm,面积是12cm2,(1)求菱形的两条对角线长;(2)求菱形的周长.(提示:菱形的面积=两条对角线积的一半)- 6 -22.3实际问题与一元二次方程(第2课时)1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得 x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.22.3实际问题与一元二次方程(第3课时)1.填空:(1)扎西家2006年收入是2万元,以后每年增长10%,则扎西家2007年的收入是万元,2008年的收入是万元;(2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是万元,2008年的收入是万元.2.完成下面的解题过程:某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少?解:设该公司利润的年平均增长率是x.根据题意列方程,得.- 7 -解方程,得x1≈,x2≈(不合题意,舍去).答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空:(1)明年该公司年利润要达到万元;(2)后年该公司年利润要达到万元;(3)第三年该公司年利润要达到万元;(4)第十年该公司年利润要达到万元.第二十二章一元二次方程复习(第1、2、3课时)1.填空(以下内容是本章的基础知识,是需要你理解的,先直接用铅笔填,想不起来再在课本中找)(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程. (2)ax2+bx+c=0这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.(3)能使一元二次方程左右相等的未知数的值叫做一元二次方程的解,一元二次方程的解也叫一元二次方程的 .(4)一元二次方程的四种解法是:直接开平方法、、、.(5)一元二次方程ax2+bx+c=0,当b2-4ac 时,方程有两个不相等的实数根;当b2-4ac 时,方程有两个相等的实数根;当b2-4ac 时,方程没有实数根. (6)b2-4ac叫做一元二次方程ax2+bx+c=0根的,用来表示.(7)利用一元二次方程解决实际问题的步骤是:审题,,,, .2.填空:(1)把(x+2)(x-5)=1化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(2)把(x+3)(x-3)=5x2-2化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(3)已知一元二次方程x2-kx+2=0的一个根是-3,则k= .(4)一个长方形的长比宽多2,面积是100,求长方形的长x.根据这个问题,可以列出的方程是 .(5)x2+12x+ =(x+ )2,x2-43x+ =(x- )2.(6)在方程①3x2,②5x2,③8x2=3x-1中,没有实数根的是,有两个不相等的实数根是,有两个相等的实数根是 .(7)有一人得了流感,他把流感传染给了x个人,则经过两轮传染后,共有人得流感.(8)经过两年的努力,某村的青稞亩产由250千克达到300千克,求每年的平均增长率x.根据这个问题,可以列出的方程是.3.完成下面解题过程:(1)用直接开平方法解方程:4(x+2)2-9=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:x2+2x-4=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .(3)用公式法解下列方程:2x(x-1)=3(x+1);解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.- 8 -- 9 -=_________,1x =_________,2x =__________. (4)用因式分解法解方程:(2x-3)2=x 2.解:移项,得 . 因式分解,得 . 于是得或 , x 1= ,x 2= .4.用适当的方法解下列方程:(1)196x 2-1=0;(2)x 2+8x=0;(3)x(2x-5)=4x-10;(4)x(x-7)=1;(5)2x 2+3x+3=0;(6)4x 2+12x+9=81.5.一元二次方程kx 2-2x+1=0,填空:(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程没有实数根. 6.把小圆形场地的半径增加5米得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.7.某银行经过最近的两次降息,使一年期存款的年利率由4%降至2%,平均每次降息的百分率是多少?8.一个直角梯形的下底比上底大2cm ,高比上底小1cm ,面积等于8cm 2,求这个直角梯形的周长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时:一元二次方程的复习课
学习目标和要求:
知道一元二次方程的定义,能把一元二次方程整理成一般形式;会用试验的方法估计一元二次方程的解;理解配方法,会用因式分解法、公式法、配方法解一元二次方程。

学习重点和难点:
重点:一元二次方程的定义及一般形式;会用因式分解法、公式法、配方法解一元二次方程。

难点:会分析题意,找出题中相等关系,列一元二次方程解应用题。

学习过程:
一、温故知新:
1.,a的取值范围()。

A.B.C.D.
2.若有意义,那么x的取值范围是。

3.比较大小:3 。

4.若请你写出一个二次项系数与常数项均为2的一元二次方程。

5.已知,那么的值是。

二、走进新课
1.一元二次方程:等号两边都是,只含有未知数,并且未知数的最高次数是的方程叫做一元二次方程。

2.一元二次方程的一般形式是(、b、c是已知数,)。

其中叫做二次项,a叫做;
bx叫做一次项,b叫做,c叫做。

3.一元二次方程的情况的判别:一般地,式子叫做方程的根的判别式通常用希腊字母△表示
它,即△= 。

(1)当△ 0时,方程有两个不相等的实数根;(2)当△ 0时,方程有两个相等的实数根;(3)当△ 0时,方程没有实数根。

4.一元二次方程的解(根):使一元二次方程的叫做一元二次方程的解(根)。

三、巩固练习
1.(1)(2)
(3)(4)
2.不解方程,判断下列方程根的情况:
(1)(1) (2)
3.求下列方程两根的和与积:
(1)(2)(3)
十环训练
1.下列各式是代数式的是()。

A. B. C.0 D.
2. 计算的结果是。

3.使代数式有意义的x的取值范围是( )。

A. B. C. D.
4.方程的解为。

5.“传播”问题中的数量关系:若设共有a人患病,每轮平均一个人传染b个人,则一轮后,传染了,共有人患病,第二轮后,又传染了人,共有人患病。

6.若最简二次根式和可以合并,则m的值为()。

A.9或-1
B.-1
C.1
D.9
7. 下列方程中,是关于x的一元二次方程的是()。

A. B.
C. D.
8.方程的一次项是()。

A.2x
B.4x
C.-6
D.-6x
9.解方程。

(1)(2)
10.关于x的一元二次方程的两个实数根分别为。

(1)求m的取值范围;
(2 ) 若,求m的值。

纠错与反思:。

相关文档
最新文档