合成孔径长度

合集下载

合成孔径matlab -回复

合成孔径matlab -回复

合成孔径matlab -回复如何在MATLAB中进行合成孔径成像(Synthetic Aperture Imaging)。

合成孔径成像是一种通过将多个部分成像组合成高分辨率图像的技术。

它可以通过合成较长有效孔径(有效孔径长度大于实际孔径长度)来提高图像分辨率。

在本篇文章中,我们将介绍如何使用MATLAB进行合成孔径成像。

合成孔径成像的基本原理是通过对同一目标进行多次部分成像,然后将这些部分成像组合成一个高分辨率图像。

在实际应用中,这些成像可以通过机器运动或者集成多个接收器来获得。

首先,我们需要定义一个目标场景来进行合成孔径成像。

在MATLAB中,我们可以使用imageScene类来创建一个目标场景。

imageScene类提供了一个灵活的接口来生成各种不同类型的目标场景。

scene = imageScene;接下来,我们需要定义目标场景的参数,包括目标位置、目标尺寸和目标反射率。

我们可以使用imageTarget类来定义这些参数。

target = imageTarget('Position',[0,0],'Size',[1,1],'Reflectivity',1);然后,我们将目标添加到场景中。

scene.add(target);现在,我们可以使用scene.calculateBackscatteredField函数来计算目标在每个成像位置的反射场。

scene.calculateBackscatteredField;接下来,我们需要定义成像系统的参数,包括发射源和接收器的位置以及它们之间的距离。

我们可以使用configuration类来定义这些参数。

config =configuration('SourcePosition',[-1,0],'ReceiverPosition',[1,0],'Distan ce',2);然后,我们可以使用producer类来生成成像的输入数据。

合成孔径雷达原理

合成孔径雷达原理

)



( t k
)(t

tk
)

( t k 2!
)
(t

tk )2

在 t-tk 很小的条件下,取前三项即可。
t

(t)

tk

(tk )

(tk ) 2
(t

t k )2
那么,
tk
S() a(tk )e jtk (tk )
e j(tk ) 2(t tk )2 dt
24 3
frPtG23
R 3kT0BFn Dx va
①其中 Pav Ptfr ,又有:
②接收机带宽B选择得与调频带宽相匹配
S N

2 4
PavG 2 3
3 R3kT0FnDxva
把假天定线天增线益为G用椭有圆效形孔,径半A轴e来尺表寸示为:DxG和D4y,A2 e利用 系数为50%,则有:
R0

(xa xp 2R0
)2
天线发出的是周期性的相干等幅高频脉冲波,设
其频率为f0,振幅为A,脉冲重复频率为fr,脉宽 为τ。
①假设发射的为一连续波余弦信号, 把实际信
号看成是对连续信号的抽样,其抽样率即为脉冲
重复频率fr;
②假定余弦信号的振幅归一化为1,起始相位为0, 则有:
s0(t) Re ej0t , 0 2f0 发射信号
tk
S()
2
a(tk )
e
j[
t
k


(
t
k
)

4
]

a(t k )
e-j[
t

合成孔径雷达(SAR)

合成孔径雷达(SAR)
2 2 2 2 s 2
3 合成孔径原理(非聚焦与聚焦处理)
则对任意位置y,在整个孔径时间内积分可 以得到目标在所有y位置上的信号包络. 当对雷达 载体沿直线飞行产生的二次相位误差不补偿时:
4 x 4 v t 1 (t ) 2R 2R
2
2 2 s
这时的积分处理称非聚焦处理, 否则称为聚焦 处理。
设发射信号为:
S (t ) exp( jt )
则接收信号为:
Sr (t ) exp( j (t ))
0
其中:
2r 2 R0 ( X 0 X p ) c c cR0
2
9.2 SAR回波信号特性(信号模型)
则接收信号为:
2 R0 ( X 0 X p ) Sr (t ) exp( j[t ]) c cR0
2 0
e e
4 R0 j j 0 j t
2 ( X 0 X p )2
e
R0
该信号的相位为:
1 2 3
9.2 SAR回波信号特性(信号模型)
发射信号的线性相位:
1 t
2
4 R0
与距离有关的常数相位:

雷达平台运动产生的二次相位:
x R
R
2TD vs sin
4 合成孔径原理(频率分析方法)
当φ=90 度, 多普勒滤波器的时间常数为:
TD
最终的方位分辨率为:
R
vs D
D x 2
5

SAR 基本参数
Lmax
最大聚焦合成孔径长度:
R
D

天线尺寸的减小导致更长的聚焦合成孔径长度 SAR 聚焦分辨率:

合成孔径雷达

合成孔径雷达
对于真实孔径和合成孔径雷达来 说,两者的距离分辨率是一样的。
4
方位分辨率:由多普勒效应产生
x
r
2 X D sin
XD 是卫星在整个采样时间内移动的距离,λ是雷达发射的 电磁波波长,r是从卫星到探测点的距离(斜距),ψ是 方位角(雷达波束与卫星飞行方向间的夹角)。
真实孔径雷达(侧视雷达)的方位分辨率
入射角越大,距离分辨率越高;反之越低。
利用技术:脉冲压缩技术
15
谢谢!
f
1 T
v
7
多普勒效应三种情况
1. 观察者静止,波源相对于 媒质运动
波源以速度vs接近观察者
经过时间T(波周期):
SS ' vs
T
vs f
B点接收到的声波波长为
' S ' B SB SS ' v vs v vs
ff f
频率为 f ' v v f ' v vs
f ' f
波源运动速度vs背离观察者 波长和频率分别为
w' wcos
被观测点所接收的电磁波频率f ’为
c f ' c w' f0
到达被观测点的电磁波以频率 f ’ 散射,一部分被雷达接收。由于 相对运动,此时被观测点成为波源。雷达接收到的回波频率 f 为
f
c w' c
f
'
c w' c 前下方:
f f0
波束指向卫星后下方:
f f0
10
方位分辨率推导
多普勒频率:由相对运动引起的接收频率和发射 频率之间的“差频”
f
f0
c w' c w'
f0

合成孔径

合成孔径

发射信号的线性相位
1 t
与距离有关的常数相位
2
飞机运动产生的二次相位
4 R0

2
3
2 ( X 0 X p )
R0
如果令Xo=V*to,Xp=V*t,则有
3
2 V (t t0 )
2
2
R0
4 R0 2 V (t t0 )
2 2
将相位对时间求导数,再除以360度,即得回波 信号的瞬时频率:
从目标散射回来的回波脉冲数N与三个因素有关: • 天线的发射脉冲的周期Tr
• 雷达的运动速度Va
• 波束在目标P点处的直线长度Ls
Ls R
Ts N Ts Tr Ls Va Ls Va .Tr 1 Ls x 1
1
图 阵列天线的概念
如果从目标P散射回来的N个脉冲回波的相位关系与 实际小天线元所接收到的信号的相位关系完全一样,必 须注意它是往返的双程差,则合成天线的波束角应为:
合成孔径雷达原理

回波信号的特性


合成孔径的匹配滤波
合成孔径的相关处理
图 合成孔径雷达空间几何关系
飞机以Va的速度沿X方向作匀速直线飞行,飞行高度为 H,机载雷达天线以规定的高低角向航线正侧方向地面发射 无线电波。设其垂直波束,方位波束角,测绘带宽,最大 合成孔径长度(远距点),最小合成孔径长度(近距点)。
f Dc
2
( s sc )
fr
4
( s sc )
2
距离迁移是SAR处理中必然出现的现象,距离迁移为
R R( s) R0
虽然距离迁移是SAR处理中必然出现的现象,但它的 大小随系统参数不同而变化,并不总需要补偿。通常认 为,如果最大距离迁移值不大于四分之一个距离分辨单 元,则距离迁移不需要补偿,即:

合成孔径雷达SAR技术

合成孔径雷达SAR技术
Stripmap, Spotlight, Scan, ISAR (not pictured)
SAR成像模式
Stripmap(条带式):
最早的成像模式,1950’s 低分辨率成像的最有效方法
Spotlight(聚束式):
在1970’s提出 获得较高的分辨率 一次飞行中,通过不同视角改变对同
脉冲重复周期(PRI)或频率(PRF) 采样定理的限制 脉冲重复频率增加,方位分辨率提高
SAR信号处理
距离采样
满足采样定律
方位采样(PRF)
必须满足:
PRI2 c(Rf a r Rnea ) rTp
Rfar = 远距点, Rnear =近距点
SAR使用的波段
VHF/UHF 125 to 950 MHz C band 5.3 GHz X band 7.5 to 10.2 GHz Ku band 14 to 16 GHz Ka band 32.6 to 37.0 GHz
The Alaska SAR Facility. /
合成孔径雷达SAR技术
SAR的特点 I
为什么使用雷达成像技术
全天候,穿透云雾能力 全天时工作 穿透植被和树叶 目标与频率的相互关系 运动检测
SAR的特点 II
方位分辨率:
实例:
R
D
23.5cm R85k0m 25m D8km
星载SAR距离850km,工作频率 1.276GHz,像素分辨率25m 需要 8km 合成孔径
Soumekh, M. Synthetic Aperture Radar Signal Processing. Wiley, New York, 1999.
Carrara, W. G., et al. Spotlight Synthetic Aperture Radar Signal Processing Algorithms. Artech House, Boston, 1995.

两种合成孔径成像算法介绍-RDA、CSA

两种合成孔径成像算法介绍-RDA、CSA

距离多普勒算法1.简介距离多普勒算法(RDA)是在1976年至1978年为处理SEASAT SAR数据而提出的,至今仍在广泛使用,它通过距离和方位上的频域操作,达到了高效的模块化处理要求,同时又具有了一维操作的简便性。

该算法根据距离和方位上的大尺度时间差异,在两个一维操作之间使用距离徙动校正(RCMC),对距离和方位进行了近似的分离处理。

由于RCMC是在距离时域-方位频域中实现的,所以也可以进行高效的模块化处理。

因为方位频率等同于多普勒频率,所以该处理域又称为“距离多普勒”域。

RCMC的“距离多普勒”域实现是RDA与其他算法的主要区别点,因而称其为距离多普勒算法。

距离相同而方位不同的点目标能量变换到方位频域后,其位置重合,因此频域中的单一目标轨迹校正等效于同一最近斜距处的一组目标轨迹的校正。

这是算法的关键,使RCMC能在距离多普勒域高效地实现。

2.算法概述图1示意了RDA的处理流程。

1.当数据处在方位时域时,可通过快速卷积进行距离压缩。

也就是说,距离FFT后随即进行距离向匹配滤波,再利用距离IFFT完成距离压缩。

图1(a)和图1(b)就是这种情况,图1(c)则不同。

2.通过方位FFT将数据变换至距离多普勒域,多普勒中心频率估计以及大部分后续操作都将在该域进行。

3.在距离多普勒域进行随距离时间及方位频率变化的RCMC,该域中同距离上的一组目标轨迹相互生命。

RCMC将距离徙动曲线拉直到与方位频率轴平等的方向。

4.通过每一距离门上的频域匹配滤波实现方位压缩。

5.最后通过方位IFFT将数据变换回时域,得到压缩后复图像。

如果需要,还进行幅度检测及多视叠加。

以下各节将依次讨论包括两种不同二次距离压缩(SRC)实现在内的所有步骤。

讨论基于机载C波段仿真数据,参数如表1所示。

表1距离信号和方位信号采样的差别图1 RDA 的三种实现框图3. 低斜视角下的RDA首先考察无需SRC 的简单低斜视角情况,处理步骤与图1中的基本RDA 相同。

SAR图像——百度解答

SAR图像——百度解答

SAR(Synthetic:[sin'θetik] Aperture:['æpətjuə] Radar;:['reidɑ:] SAR,合成孔径雷达)SAR是一种可成像的雷达,它所用的雷达波段大约是300MHz到30GHz。

比如一般用的波段是1~10GHz的合成孔径雷达,大气对这种波段的影响不大。

也就是说如果天上有一个合成孔径雷达卫星,白天黑夜、大气的云雾雨雪等天气变化对雷达看到的结果影响甚微,可忽略不计。

所以合成孔径雷达是一种全天时、全天候的雷达,它所成的图像就是SAR图像了。

SAR图像的场景和照相机拍出来的场景类似,只不过波段不同看到的事物也不一样。

SAR都是斜视的,而光学的可以垂直照射。

SAR卫星方面,我记得最早发射的是加拿大的Radarsat,且有后续计划。

美国有航天飞机上载的SIR-C等合成孔径雷达。

日本现在有ALOS卫星上载的PALSAR合成孔径雷达(1.27GHz)。

德国的有TerraSAR系列。

据我所知,现在分辨率最高的是德国的X波段SAR系统,数据不好弄到;日本的PALSAR的SAR图像可以到官方网站下载到示例数据。

加拿大的Radarsat和美国的SIR-C数据也是可以到网上下载到的。

机载SAR方面,几乎数的上的雷达强国都有自己的系统。

机载SAR图像有日本的,法国的,德国的,美国的,但是在网络上找这种图像要费点功夫,不是很容易!中国虽然也有,但公开的资料较少,公开的图像资料就更少了。

SAR图像处理软件推荐欧空局的一个免费开源关键PolSARpro(我用过的),可以到欧空局网站上下载,里面的pdf有更详细的介绍SAR及其图像处理等内容。

inSAR技术基于Photoshop插件架构的合成孔径雷达(SAR)图像处理与评估系统主要功能.以图像评估插件的开发为例对关键技术进行了分析.结果表明,采用Photoshop插件方式,可以避免复杂的内存管理编程和用户界面设计,充分利用Photoshop的图形处理功能,减少了工作量,并提高系统稳定性和可用性.所以sar是基于photoshop插件的合成孔径雷达SAR(Synthetic Aperture Radar,合成孔径雷达)问:机载合成孔径雷达sar 多久能生一幅图像就是说采图周期怎么算?最佳答案我们按照最简单的条带式来说,每次生成的是一块图像,这块图像在距离向是全部的范围,在方位向则需要根据你系统的运算能力选择合适的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合成孔径长度
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用微波射线成像的技术,通过利用目标反射回来的电磁波信号,从而获取反射体的距离、速度和方向等信息。

合成孔径雷达技术主要应用在军事、航天、地球科学、地球资源等领域。

其中,合成孔径
雷达的重要参数是合成孔径长度,本文就合成孔径长度进行详尽论述。

1. 合成孔径雷达成像原理
合成孔径雷达的分辨率一般由以下三个因素所影响:
(1)发射频率。

由于发射频率越高,其波长越短,因此对于距离相同的目标,发射频率越高,其分辨率也越高。

(2)接收天线的大小。

天线大小越大,则接收信号的能力也会越强,因此其分辨率也会越高。

(3)合成孔径长度。

合成孔径长度是用于表示SAR图像分辨率的一个重要参数。

当合成孔径长度越大时,其所形成的图像分辨率越高。

合成孔径雷达的合成孔径长度(Synthetic Aperture Length)是合成孔径雷达成像分辨率的重要参数之一。

合成孔径长度是指从雷达发射天线到雷达接收天线所经过的距离。

合成孔径长度越大,则所形成的SAR图像的分辨率也越高。

合成孔径雷达的合成孔径长度一般有两种不同的定义方式,分别是实际合成孔径长度(Actual Synthetic Aperture Length)和等效合成孔径长度(Equivalent Synthetic Aperture Length)。

等效合成孔径长度是指将距离不同的反射体所接受到的信号利用计算的方法,将其处
理成一条等价于以某一距离为合成孔径长度时所接受到的信号。

等效合成孔径长度多应用
在机载雷达上,使得机载雷达系统可以在有限的距离条件下,获得更高分辨率的SAR图
像。

综上,合成孔径长度是合成孔径雷达成像分辨率的重要参数之一。

实际合成孔径长度
和等效合成孔径长度是两种不同的定义方式。

合成孔径雷达技术在军事、航天、地球科学、地球资源等领域有广泛的应用,未来随着技术的不断提高,合成孔径雷达技术的应用将会
越来越广泛。

相关文档
最新文档