标准贯入试验
岩土工程勘察 4.5 标准贯入试验

砂土或粉土
作为标准贯入试验的土样,应具 有代表性。
钻孔
用于放置试验锤和钻杆,需根据 土层深度和试验要求进行钻取。
设备维护与保养
定期检查试验设备
确保设备正常运转,及时发现并 处理故障。
清洁保养
保持设备清洁,防止锈蚀和磨损。
定期校准
确保设备测量准确,提高试验结果 的可靠性。
03 标准贯入试验操作流程
岩土工程勘察 4.5 标准贯入试验
目 录
• 标准贯入试验概述 • 标准贯入试验设备与材料 • 标准贯入试验操作流程 • 标准贯入试验数据处理与分析 • 标准贯入试验注意事项与安全措施 • 标准贯入试验案例分析
01 标准贯入试验概述
定义与目的
定义
标准贯入试验是一种通过锤击一定质 量和一定规格的实心金属贯入器,测 量土层或岩层中贯入器的贯入深度, 从而获取土层或岩层的物理性质和力 学参数的试验方法。
注意数据记录和处理
试验人员应及时记录和处理试验数据,避 免数据丢失或误差,为后续的岩土工程勘 察提供准确的数据支持。
安全风险评估
评估试验场地的安全状况
在试验前应对试验场地进行全面的安全风险评估,包括地质、地 形、气象等方面的评估,确保试验过程的安全。
识别潜在的安全风险
通过安全风险评估,识别出潜在的安全风险,如设备故障、操作失 误、自然灾害等,并制定相应的应对措施。
根据勘察要求,选择具有代表性 的地层进行试验,确保试验数据 的准确性和可靠性。
安装与调试设备
按照标准贯入试验的规范要求, 安装试验设备并确保其正常运行, 对设备进行必要的调试。
采集原始数据
记录标准贯入试验的原始数据, 包括贯入深度、锤击数、落锤高 度等参数,确保数据的完整性和 准确性。
标准贯入试验

匀速扭转
Jackson(1969) 提出修正公式:
2M Cu 3 H D D 2
与圆柱顶底面剪应力分 布相关的系数
(3)试验设备
十字板剪切试验系统组成: ① 十字板头; ② 传力系统; ③ 加力装置; ④ 测量装置。(机械式和电测试)
室内十字板剪切仪
十字板头规格表
由于十字板剪切试验得到的不排水抗剪强度一 般偏高,因此要经过修正才能用于工程设计,其修 正方法如下:
(C u ) f C u
修正系数取值
影响测试结果因素: 板头尺寸 剪应力分布 排水条件 土的各向异性 剪切速率 触变效应
1. 其他软土土 2. IL>1的土 Daccal
(3)试验设备
标准贯入试验系统组成: ① 贯入器; ② 穿心落锤; ③ 穿心导向触探杆。
穿心落锤 锤垫 穿心导向触探杆 贯入器
标准贯入试验设备规格及适用土类表
圆锥动力触探类型及设备规格
(4)标准贯入试验技术要求 1. 采用回转钻进,钻进过程中要防止孔底涌土。当孔 壁不稳定时,可采用泥浆或套管护壁,钻至试验标高 15cm 以上时应停止钻进,清除孔底残土后再进行贯入 试验。 2. 应采用自动脱钩的自由落锤装置并保证落锤平稳下 落,减小导向杆与锤间的摩阻力,避免锤击偏心和侧 向晃动,保持贯入器、探杆、导向杆连接后的垂直 度,锤击速率应小于每分钟30击。
n
[1-Ni/Ncri]diWi…………(4.3.5)
式中:IlE——液化指数; n——在判别深度范围内每一个钻孔标准贯人试验点的总数; Ni、Ncri——分别为 i 点标准贯人锤击数的实测值和临界值,当实测值大 于临界值时应取临界值;当只需要判别 15m 范围以内的液化时,15m 以下的实测 值可按临界值采用; di——i 点所代表的土层厚度(m),可采用与该标准贯入试验点相邻的上、 下两标准贯人试验点深度差的一半,但上界不高于地下水位深度,下界不深于液 化深度; -1 Wi——i 土层单位土层厚度的层位影响权函数值 (单位为 m ) 。 当该层中点 深度不大于 5m 时应采用 10,等于 20m 时应采用零值,5~20m 时应按线性内插法 取值。
标准贯入度试验

标准贯入度试验标准贯入度试验是土工测试中常用的一种试验方法,用于测定土壤的密实度和抗渗能力。
该试验通常用于道路、桥梁、堤坝等工程中,以评估土壤的工程性质和稳定性。
本文将介绍标准贯入度试验的原理、操作步骤和数据分析方法,希望能为相关工程技术人员提供参考。
一、试验原理。
标准贯入度试验是通过将标准贯入锤自定高度自由落下,使锥头在土壤中产生冲击作用,从而测定土壤的抗压强度和密实度。
试验中,贯入锤的重量和自由落下的高度是固定的,通过测定贯入锥头在土壤中的贯入深度,可以计算出土壤的贯入度指标。
二、操作步骤。
1. 准备工作,将试验仪器和设备按照要求进行校准和调试,确保试验的准确性和可靠性。
2. 取样,从待测土壤中取样,并按照相关标准进行样品制备和处理,以保证试验的代表性和可比性。
3. 贯入试验,将贯入锤安装在试验设备上,调整贯入锥头的高度和试验参数,进行贯入试验。
记录贯入锥头在土壤中的贯入深度和相关数据。
4. 数据分析,根据试验数据,计算土壤的贯入度指标,并进行数据分析和结果评定。
三、数据分析方法。
1. 贯入深度计算,根据试验数据和相关公式,计算贯入锥头在土壤中的贯入深度。
2. 贯入度指标计算,根据试验数据和相关标准,计算土壤的贯入度指标,如贯入度值、贯入度指数等。
3. 结果评定,根据贯入度指标和相关标准,评定土壤的密实度和抗渗能力,为工程设计和施工提供参考依据。
四、注意事项。
1. 试验操作,在进行标准贯入度试验时,需严格按照相关标准和操作规程进行,确保试验的准确性和可靠性。
2. 数据处理,在进行数据分析和结果评定时,需注意对试验数据的合理处理和计算,避免误差和不确定性。
3. 结果应用,试验结果应结合工程实际,合理应用于工程设计和施工中,为工程质量和安全提供保障。
五、总结。
标准贯入度试验是土工测试中常用的一种试验方法,通过测定土壤的贯入度指标,评定土壤的密实度和抗渗能力。
在工程实践中,合理应用标准贯入度试验结果,可以提高工程设计和施工的质量和安全性。
标准贯入试验(图文)

通过试验数据,分析该地区砂土的承载力 、变形特性、压缩性等力学性能,为工程 设计和施工提供依据。
实例二:某地区粘性土的标准贯入试验
试验目的
了解某地区粘性土的物理性质和力学性能,为工程设计和施工提供依 据。
试验设备
标准贯入试验锤、标准贯入试验杆、测力计、触探杆等。
试验过程
将标准贯入试验锤从一定高度自由下落,打入粘性土中,记录贯入深 度和锤击数,同时测量土层压力和侧压力。
确定粘性土的状态和软硬程度
状态确定
通过标准贯入试验,可以了解粘性土的状态,如坚硬、硬塑、可 塑、软塑或流塑等。
软硬程度评估
标准贯入试验的击数可以反映粘性土的硬度和强度。一般来说,击 数越高,粘性土的硬度和强度越大,反之则越小。
影响因素
粘性土的含水量、有机质含量、矿物成分等因素会影响其状态和软 硬程度,进而影响标准贯入试验的结果。
确定砂土的密实度和液化可能性
密实度确定
标准贯入试验可以反映砂土的密实程度,通过分析贯入击 数与密实度的关系,可以评估砂土的密实度等级。
液化可能性评估
对于砂土层,标准贯入试验的击数可以用来评估其液化可 能性。根据液化判别标准,当砂土的实测击数小于临界击 数时,可能发生液化现象。
影响因素
砂土的颗粒组成、级配、地下水压力等都会影响标准贯入 试验的结果,进而影响密实度和液化可能性的评估。
随着科技的不断进步和应用需求的增加,准贯入试验 技术将不断发展和完善,提高测试精度和可靠性。
输标02入题
未来可以研究开发新型的准贯入试验仪器和设备,提 高测试效率、减小对土层的扰动,并实现自动化和智 能化。
01
03
同时,应加强与其他原位测试方法的比较和联合应用, 综合分析各种测试方法的优缺点和适用范围,以提高
标准贯入试验

标准贯入试验标准贯入试验是土木工程中常用的一种试验方法,用于测定土壤的承载力和变形特性。
该试验通过在土壤中插入标准贯入锤,来模拟土壤承受外力时的变形和承载情况,从而为工程设计提供必要的参数和依据。
本文将介绍标准贯入试验的基本原理、操作步骤和数据分析方法,希望能对相关人员有所帮助。
首先,标准贯入试验的基本原理是利用贯入锤的自由下落,通过测量贯入锤在土壤中的贯入阻力来确定土壤的承载力和变形特性。
在试验中,贯入锤从一定高度自由下落,击打在试验土壤中,产生的阻力被传递到试验仪器上,通过测量锤体下落的高度和试验土壤的贯入阻力,可以得出土壤的承载力和变形特性参数。
其次,进行标准贯入试验时,需要进行一系列的操作步骤。
首先是选择试验点和确定试验深度,根据工程需要和土壤条件选择试验点,并确定贯入锤的贯入深度。
然后是安装试验仪器,包括贯入锤、测量仪器和数据记录设备。
接着是进行试验操作,将贯入锤从一定高度自由下落,测量锤体下落的高度和试验土壤的贯入阻力。
最后是对试验数据进行分析,计算土壤的承载力和变形特性参数。
最后,对标准贯入试验数据进行分析时,需要综合考虑试验土壤的物理性质、含水量和孔隙结构等因素。
通过试验数据的分析,可以得出土壤的承载力、变形模量、剪切强度等参数,为工程设计和施工提供依据。
同时,还可以对不同深度和不同试验点的数据进行比较,分析土壤的变化规律和空间分布特性,为工程的合理布局和施工方案提供参考。
综上所述,标准贯入试验是土木工程中常用的一种试验方法,通过测定土壤的承载力和变形特性,为工程设计提供必要的参数和依据。
在进行试验时,需要严格按照操作步骤进行,对试验数据进行准确分析,以确保试验结果的可靠性和准确性。
希望本文的介绍能对相关人员有所帮助,谢谢阅读!。
标准贯入试验(图文)

精选
25
§8.4标准贯入试验资料整理
8.4.2整理资料
一.标贯击数修正
按照《勘规》中第10.5.5条,对于标贯试验成果 的作长度修正。
当探杆长度大于3m时,标贯击数应做修正:
N=αN’ 式中 N——标准贯入试验锤击数,单位为击;
5)为防止涌砂或塌孔,可采用泥浆护壁;
精选
13
§8.3标准贯入试验要点
8.3.1《勘规》要求
3.由于手拉绳牵引贯入试验时,绳索与滑轮的摩 擦阻力及运转中绳索所引起的张力,消耗了一部分能 量,减少了落锤的冲击能,使锤击数增加;而自动落 锤完全克服了上述缺点,能比较真实地反映土的性状。 据有关单位的试验,N值自动落锤为手拉落锤的0.8倍, 为SR-30型钻机直接吊打时的0.6倍;据此,本规范规 定采用自动落锤法;
测定贯入器所在深度,要求残土厚度不大于0.1m。
精选
16
§8.3标准贯入试验要点
8.3.2试验方法
3.贯入时,穿心锤落距为0.76m,应采用自动落 锤装置,使穿心锤自由下落。
将贯入器以每分钟击打15~30次的频率,先打入 土中0.15m,不计锤击数;然后开始记录每打入0.10m 的锤击数,累计打入0.30m的锤击数为标准贯入击数N, 并记录贯入深度与试验情况。
试验锤击数N。当锤击数已达50击,而贯入深度未达
30cm时,可记录50击的实际贯入深度,按下式换算
成相当于30cm的标准贯入试验锤击数N,并终止试
验。
N 30 50
S
式中 △S——50击时的贯入度(cm)。
精选
12
§8.3标准贯入试验要点
标准贯入试验(图文)

N≤10
10<N≤15 15<N≤30 N>30
松散
稍密 中密 密实
注:当用静力触探探头阻力判定砂土的密实度时,可根据 当地经验确定。
§8.5标准贯入试验资料应用
8.5.2确定粘性土、砂土的抗剪强度和变形参数 用标准贯入试验锤击数确定粘性土、砂土抗剪强 度和变形参数,见下表。
§8.3标准贯入试验要点
8.3.1《勘规》要求 3.由于手拉绳牵引贯入试验时,绳索与滑轮的摩 擦阻力及运转中绳索所引起的张力,消耗了一部分能 量,减少了落锤的冲击能,使锤击数增加;而自动落 锤完全克服了上述缺点,能比较真实地反映土的性状。 据有关单位的试验,N值自动落锤为手拉落锤的0.8倍, 为SR-30型钻机直接吊打时的0.6倍;据此,本规范规 定采用自动落锤法;
§8.5标准贯入试验资料应用
8.4.2整理资料 二.绘制N~h关系曲线 按照每贯入10cm的击数绘制标贯N-h曲线。
§8.5标准贯入试验资料应用
8.5.1确定砂土密度 《建筑地基基础设计规范》(GB-50007-2011)第 4.1.8条:砂土的密实度,可按表4.1.8分为松散、稍密、 中密、密实。
§8.5标准贯入试验资料应用
8.5.6判别砂土、粉土的液化 在地面下20m深度范围内,液化判别标准贯入锤 击数临界值可按下式计算:
N cr N 0 ln0.6d s 1.5 0.1d w 3 / c
式中 Ncr——液化判别标准贯入锤击数临界值; N0——液化判别标准贯入锤击数基准值,可按表 4.3.4采用;
§8.3标准贯入试验要点
8.3.1《勘规》要求 4.通过标贯实测,发现真正传输给杆件系统的 锤击能量有很大差异,它受机具设备、钻杆接头的 松紧、落锤方式、导向杆的摩擦、操作水平及其他 偶然因素等支配;美国ASTM-D4633—86制定了实测 锤击的力—时间曲线,用应力波能量法分析,即计 算第一压缩波应力波曲线积分可得传输杆件的能量; 通过现场实测锤击应力波能量,可以对不同锤击能 量的N值进行合理的修正。
标准贯入试验

标准贯入试验标准贯入试验是土壤力学试验中的一项重要内容,用于测定土壤的抗压强度和承载力。
试验过程中,通过将一根标准贯入钻头以标准速度贯入土壤,测定贯入钻头在贯入过程中所受到的阻力,从而推断土壤的力学性质。
本文将介绍标准贯入试验的基本原理、试验方法和数据分析。
首先,标准贯入试验的基本原理是利用贯入钻头在贯入土壤时所受到的阻力来推断土壤的力学性质。
当贯入钻头贯入土壤时,土壤对钻头的阻力包括静阻力和动阻力两部分。
静阻力是指土壤颗粒之间的摩擦阻力和土壤颗粒的抗压强度所产生的阻力,而动阻力则是指土壤颗粒在贯入过程中所产生的惯性阻力。
通过测定贯入钻头在贯入过程中所受到的总阻力,可以计算出土壤的抗压强度和承载力。
其次,标准贯入试验的试验方法包括了试验前的准备工作、试验过程中的操作步骤和试验后的数据处理。
在试验前的准备工作中,需要检查贯入钻头和试验设备是否完好,选择试验点并清理试验场地。
在试验过程中的操作步骤中,首先需要将贯入钻头安装到贯入设备上,并按照标准速度贯入土壤。
在贯入过程中,需要实时记录贯入钻头所受到的阻力,并在贯入到一定深度后停止贯入。
试验后的数据处理包括了对试验数据的整理和分析,计算土壤的抗压强度和承载力,并绘制贯入曲线和荷载曲线。
最后,标准贯入试验的数据分析是根据试验数据计算土壤的抗压强度和承载力,并绘制贯入曲线和荷载曲线。
通过贯入曲线和荷载曲线的分析,可以判断土壤的力学性质,包括土壤的松密状态、抗压强度和承载力等。
同时,还可以根据试验数据对土壤的力学性质进行定量分析,为工程设计和施工提供参考依据。
综上所述,标准贯入试验是土壤力学试验中的一项重要内容,通过测定贯入钻头在贯入过程中所受到的阻力,可以推断土壤的力学性质。
试验方法包括了试验前的准备工作、试验过程中的操作步骤和试验后的数据处理,数据分析可以计算土壤的抗压强度和承载力,并判断土壤的力学性质。
标准贯入试验在工程领域具有重要的应用价值,对于土壤的力学性质进行准确的测定和分析,有助于工程设计和施工的安全和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准贯入试验
14.1 适用范围
14.1.1标准贯入试验可用于以下地基检测:
1用测得的标准贯入锤击数判断砂土的密实程度或黏性土的稠度,以确定地基土的承载力,评定砂土的振动液化势;
2基处理效果和复合地基加固土增强体的施工质量;
14.1.1[条文说明]标准贯入试验(简称标贯)起源于美国,在国际上广泛应用,原来是为深基础设计提供数据的,后来在美国普遍采用。
1948年太沙基(Terzaghi)和皮克(Peck)把试验数据制成图表,也用于浅基设计。
14.1.2本方法适用于砂土、粉土、一般黏性土和花岗岩残积土,以及处理土地基(非碎石土换土垫层、强夯处理、预压处理、不加料振冲加密处理、注浆处理)。
14.1.2[条文说明]标准贯入试验不适用于软塑~流塑
软土和碎石土处理地基。
14.2 仪器设备
14.2.1标准贯入试验设备由标准贯入器、钻杆、落锤(穿心锤)和锤垫组成。
14.2.2标准贯入器的规格见表14.2.1
标准贯人试验设备规格表14.2.1
落锤
锤的质量
(kg)
63.5 落距(cm) 76
贯入器对开管长度
(mm)
>500 外径
(mm)
51 内径
(mm)
35
管靴
长度
(mm)
50~76 刃口角度(°)18~20 刃口单刀厚
度(mm)
1.6
钻杆直径
(mm)
42
相对弯曲<1/1000
14.2.2[条文说明]本规程标准贯入器的规格与现行国家标准《岩土工程勘察规范》是一致,其中将贯入器长度定为>500mm(可取700 mm)。
至于刃口的磨损、变形等均可参考相关的规定。
14.2.3锤垫:承受锤击钢垫,附导向杆,两者总质量不超过30kg为宜。
14.3 现场检测
14.3.1现场检测环境条件应满足各类检测设备进退场要
求和检测要求。
14.3.1[条文说明]标准贯入试验的设备较大,检测场地至少应满足设备进退场运输和检测过程中设备场地内移位要求。
14.3.2贯入前先用钻具钻至试验土层标高以上15cm处,清除残土。
清孔时应避免试验土层受到扰动。
当在地下水位以下的土层进行试验时,应使孔内水位高于地下水位,以免出现涌砂和坍孔。
必要时应下套管或用泥浆护壁。
14.3.2[条文说明]贯入器放入孔内,测定其深度,要求残土厚度不大于10cm。
关于钻孔,关键因素是成孔方法,钻孔方法因机具及习惯而不同,难以具体罗列。
实际操作建议采用回转钻进方法,以尽可能减少对孔底土的扰动。
钻孔时采用泥浆护壁,可以有效防止涌砂和塌孔。
钻孔孔径在规程中未作具体规定,国内通用的有108、127、156 mm,国外也不统一。
关于孔径对N值的影响,试验结果表明:大孔径孔底由于应力分布的影响,N值减小。
14.3.3贯入前应拧紧钻杆接头,将贯入器放人孔内,避免冲击孔底,注意保持贯入器、钻杆、导向杆联接后的垂直度。
孔口宜加导向器,以保证穿心锤中心施力。
14.3.4采用自动落锤法,将贯入器以每分钟15~30击打人土中15cm后,开始记录每贯入10cm的锤击数,累计30cm 的锤击数为标准贯入击数N,并记录贯入深度与试验情况。
若遇密实土层,贯入30cm锤击数超过50击时,不应强行贯入,记录50击的贯入深度。
14.3.4[条文说明]因钻孔孔底会有虚土,需预打15cm。
如锤击已达50击,而贯入深度尚未达30cm,则记录实际贯入深度,可通过换算求得贯入深度达30cm的N值。
14.3.5旋转钻杆,然后提出贯入器,取贯入器中的土样
进行鉴别、描述、记录,并量测其长度。
将需要保存的土样仔细包装、编号,以备试验之用。
14.3.6按本规程14.3.1至14.3.4的规定,进行下一深度的贯入试验,直到所需深度。
14.3.7各检测孔检测前应测量孔口标高,检测后应测量孔内地下水位。
14.3.7[条文说明]测量孔口标高可采用一般水准仪,是为了便于统一分析和划分土层。
测量孔内地下水位可采用水位计等,在单孔检测完成24h后进行,一般用于天然地基土和换填法、砂石桩处理地基等。
加固土增强体内一般无地下水。
14.3.8 标准贯入试验对应各类地基处理方法的开始时间和检测频率见下表。
地基处理方法检测开始时间检测频率
采用粉质粘
土、灰土、粉
煤灰、砂石的
垫层
垫层完成施工后 3~5天之间 每16m 2设一分层检测点, 且不少于6点 不加填料振冲
处理砂土地基
振冲完成后 2~3天之间 不少于施工振冲点数的2%, 且不少于6点 高压喷射注浆
地基 注浆完毕后 25~30天之间
不少于施工总孔数的2%, 且不少于6根 石灰桩
成桩后7~10天之
间
不少于施工总桩数的2%, 且不少于6根
14.4 检测数据分析与评价
14.4.1用式(14.4.1)换算相应于贯入30cm 的锤击数N :
S N ∆⨯=50
30
(14.4.1)
式中 △S —50击时的贯入深度(cm )。
注:根据用途及相应规范确定是否需要对N值进行修正。
14.4.1[条文说明]关于标准贯入击数N的修正问题。
对贯入击数N的影响因素很多,目前国内外常有对钻杆长度、土层深度、地下水位及落锤的装置等因素的影响进行校正,但迄今尚没有一致公认的意见,故本规程对击数的修正不作统一规定,建议按不同用途,采用不同的修正方法。
14.4.2对于天然土地基和处理土地基,标准贯入试验结果应提供每各检测孔的锤击数(N)及土层分类与贯入深度(H)关系曲线,如图14.4.2。
对于复合地基增强体应提供每各检测孔的锤击数(N)与贯入深度(H)关系曲线。
14.4.3各检测孔的标准贯入锤击数代表值,应根据不同深度的标准贯入锤击数采用平均值法计算得到。
14.4.4单位工程同一土层的标准贯入锤击数,可用各检测孔的同一土层的标准贯入锤击数,用厚度加权平均法计算
得出该层贯入指标平均值和变异系数。
统计时,应剔除异常值。
14.4.5砂土、粉土、一般黏性土和花岗岩残积土的工程特性可根据标准贯入试验各层锤击数的平均值,结合当地经验综合评价。
14.4.5[条文说明]砂土的密实程度、振动液化势和黏性土的稠度,以及地基承载力与标准贯入试验锤击数的经验关系有其地区局限性,采用全省统一的经验关系不是方向,各地区宜根据实际情况建立当地经验关系。
14.4.6处理土地基的地基处理效果可根据检测孔的标准贯入锤击数代表值、同一土层的标准贯入锤击数平均值做出相应评价:
1非碎石土换土垫层(粉质粘土、灰土、粉煤灰和砂垫层)的施工质量(密实度、均匀性)。
2强夯处理、预压处理、不加料振冲加密处理、注浆处理等处理地基的均匀性;有条件时,可结合处理前的相关
数据评价地基处理有效深度。
14.4.7复合地基增强体的施工质量可根据单桩检测孔的标准贯入锤击数代表值作出相应评价,评价内容可包括桩身强度和均匀性。
14.5 检测报告
14.5.1检测报告除应包括本规程第3.9节内容外,还应包括:
1使用检测设备情况;
2工作量统计(标准贯入孔数,每孔贯入深度,贯入总进尺);
3绘制每个标准贯入孔的标准贯入锤击数与试验深度关系曲线关系图。
提供孔位平面图,地质剖面图或单孔柱状图;
4 每各检测孔的标准贯入锤击数代表值;
5 同一土层的标准贯入锤击数平均值;
6检测结论和建议。
根据委托要求,提供地基土的相关性质指标或复合地基增强体处理效果。
图14.4. 2 N-H关系曲线。