随机变量的均值与方差、正态分布(专题复

随机变量的均值与方差、正态分布(专题复
随机变量的均值与方差、正态分布(专题复

教学过程

一、课堂导入

“离散型随机变量的分步列,均值和方差”在“排列与组合”知识的延伸,在本讲的学习中,同学们将通过具体实例理解随机变量及其分布列、均值和方差的概念,认识随机变量及其分布对于刻画随机现象的重要性.要求同学们会用随机变量表达简单的随机事件,会用分布列来计算这类事件的概率,计算简单离散型随机变量的均值、方差,并能解决一些实际问题.在高考中,这部分知识通常有一道解答题,占12─14分左右,主要考查学生的逻辑推理能力和运算能力,凸显数学的应用价值.

二、 复习预习

1.判断下面结论是否正确(请在括号中打“√”或“×”)

(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.

( )

(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.

( )

(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.

( ) (4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.

( )

2.设随机变量ξ的分布列为P (ξ=k )=1

5(k =2,4,6,8,10),则D (ξ)等于

( )

A .5

B .8

C .10

D .16

3.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 等于 ( )

A .3 B.5

3

C .5

D.73

4.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X 表示取到次品的件数,则D (X )=________.

5.在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是________.

附:1. √√√√ 2. B 3. D 4. 9

16

5. 0.7

三、知识讲解

考点1离散型随机变量的均值与方差

若离散型随机变量X的分布列为

X x1x2…x i…x n

P p1p2…p i…p n

(1)均值

称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.

(2)方差

(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根称D(X)=∑n

i=1

D X为随机变量X的标准差.

考点2均值与方差的性质

(1)E(aX+b)=aE(X)+b.

(2)D(aX+b)=a2D(X).(a,b为常数)

考点3两点分布与二项分布的均值、方差

(1)若X服从两点分布,则E(X)=__p__,D(X)=p(1-p).

(2)若X~B(n,p),则E(X)=__np__,D(X)=np(1-p).

考点4正态分布

(1)正态曲线:函数φμ,σ(x)=1

2πσ

e2

2

ó

2

)

(u

x-

-,x∈(-∞,+∞),其中μ和σ为参数(σ>0,μ∈R).我们称函数φμ

、σ(x)

的图象为正态分布密度曲线,简称正态曲线.

(2)正态曲线的性质:

①曲线位于x轴上方,与x轴不相交;

②曲线是单峰的,它关于直线x=μ对称;

③曲线在x=μ处达到峰值

1

σ2π

④曲线与x轴之间的面积为__1__;

⑤当σ一定时,曲线的位置由μ确定,曲线随着__μ__的变化而沿x轴平移,如图甲所示;

⑥当μ一定时,曲线的形状由σ确定,σ__越小__,曲线越“瘦高”,表示总体的分布越集中;σ__越大__,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.

(3)正态分布的定义及表示

如果对于任何实数a,b (a

正态总体在三个特殊区间内取值的概率值

①P(μ-σ

②P(μ-2σ

③P(μ-3σ

四、例题精析

考点一离散型随机变量的均值、方差

例1(2013·浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.

(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;

(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=5

3

,D(η)=

5

9

,求a∶b∶c.

离散型随机变量与正态分布

离散型随机变量的均值与方差、正态分布 一、选择题、填空题 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.84,则P (ξ≤-2)=( ) A .0.16 B .0.32 C .0.68 D .0.84 2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为 c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1, 则ab 的最大值为 ( ) A.148 B.124 C.1 12 D.16 3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 4.设X 是一个离散型随机变量,其分布列为: 则q 等于( ) A .1 B .1±22 C .1-2 2 D .1+ 2 2 5.随机变量X 的概率分布规律为P (X =k )=c k (k +1),k =1,2,3,4,其中c 是常数,则P (12

均值、方差、正态分布__学生用

§12.6 离散型随机变量的均值与方差、正态分布 1.离散型随机变量的均值与方差 若离散型随机变量X (1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D X 为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b . (2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=__p __,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=__np __,D (X )=np (1-p ). 4.正态分布 (1)正态曲线:函数φμ,σ(x )=1 2πσ e -x -μ2 2σ2 ,x ∈(-∞,+∞),其中μ和σ为参数(σ>0, μ∈R ).我们称函数φμ、σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质: ①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1 σ2π; ④曲线与x 轴之间的面积为__1__; ⑤当σ一定时,曲线的位置由μ确定,曲线随着__μ__的变化而沿x 轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ__越小__,曲线越“瘦高”,表示总体的分布越集中;σ__越大__,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.

随机变量的均值与方差、正态分布(专题复

教学过程 一、课堂导入 “离散型随机变量的分步列,均值和方差”在“排列与组合”知识的延伸,在本讲的学习中,同学们将通过具体实例理解随机变量及其分布列、均值和方差的概念,认识随机变量及其分布对于刻画随机现象的重要性.要求同学们会用随机变量表达简单的随机事件,会用分布列来计算这类事件的概率,计算简单离散型随机变量的均值、方差,并能解决一些实际问题.在高考中,这部分知识通常有一道解答题,占12─14分左右,主要考查学生的逻辑推理能力和运算能力,凸显数学的应用价值.

二、 复习预习 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)随机变量的均值是常数,样本的平均值是随机变量,它不确定. ( ) (2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小. ( ) (3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差. ( ) (4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布. ( ) 2.设随机变量ξ的分布列为P (ξ=k )=1 5(k =2,4,6,8,10),则D (ξ)等于 ( ) A .5 B .8 C .10 D .16 3.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 等于 ( ) A .3 B.5 3 C .5 D.73 4.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X 表示取到次品的件数,则D (X )=________.

知识讲解离散型随机变量的均值与方差

知识讲解离散型随机变量的均值与方差(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有 =1p =2p …n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有 b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

简单随机变量之和与正态分布

简单随机变量之和与正态分布 本文将笼统,随意的讲解,为什么多随机变量之和可以认为服从正态分布。 首先我们建立一个简单的随机变量之和的模型。假设我们手里有一枚硬币,我们认定硬币的正面为1,反面为0,那么抛一次硬币的情况就是0或1且他们的概率都是50%。如果我不写概率也是写概率的比例,那么这个比例可以写为1:1。现在我们抛两次硬币,那么这个结果有四种,00,01,10,11。相信你知道我在说什么。那么正同我们提到的,我们要的是随机变量之和,所以我们有0,1,2。且他们的比例可以很容易的得到,是1:2:1。那么如果抛三次硬币呢?可能的结果就是0,1,2,3,而他们的比例是1:3:3:1。也许你已经发现这个规律了,也许你没有,但我会告诉你的。假如你抛2N次硬币,并且求和,那么其结果就是0,1,2……2N,共2N+1种可能。这2N+1种可能的比例服从组合数C2N i。你可以代入刚才抛三次的情况,C30:C31:C32:C33就是我们得到的1:3:3:1。至于为什么这个比例符合组合数,抛两次硬币那里举了个例子,就不重复了。这里简单的定义以下,每个随机变量称作X i他们的和称作Y,也就是: 2N Y=∑X i 1 (为什么突然变成了抛2N次而不是抛N次,因为我想保证我抛的是偶数次,这样Y的均值就是N了,你会发现抛两次的时候,Y的均值就是1,但是如果你抛三次,Y的均值就会是1.5,我想避免这个小数。) 所以接下来我们就要说明,组合数的分布规律为什么就成了正态分布。那么首先,你相信这个结论吗?让我们从抛多次到抛少次,来看一下正态分布和这个组合数分布到底有多像。 从Y的取值范围你也能猜出,这里分别是N取5,10,15,20的情况,实际上除了N 取5,也就是抛10次的时候,你还能看得清楚红线和蓝线,当N取10也就是抛20次以后,两线其实非常吻合了。你还可以看一下他们之间的误差,其峰值也是逐渐减小的。

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.360docs.net/doc/132548994.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

高中数学--离散型随机变量的均值与方差、正态分布

高中数学--离散型随机变量的均值与方差、正态分布 1.已知随机变量X 服从二项分布,且E (X )=2.4,D (X )=1.44,则二项分布的参数n ,p 的值为( ) A .n =4,p =0.6 B .n =6,p =0.4 C .n =8,p =0.3 D .n =24,p =0.1 【解析】 由题意得??? ?? np =2.4, np 1-p =1.44, 解得??? ?? n =6, p =0.4. 【答案】 B 2.设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ2 2)(σ2>0)的密度函数图象 如图所示,则有( ) A .μ1<μ2,σ1<σ2 B .μ1<μ2,σ1>σ2 C .μ1>μ2,σ1<σ2 D .μ1>μ2,σ1>σ2 【解析】 根据正态分布N (μ,σ2)函数的性质:正态分布曲线是一条关于直线x =μ对称,在x =μ处取得最大值的连续钟形曲线;σ越大,曲线的最高点越低且较平缓;反过来,σ越小,曲线的最高点越高且较陡峭,故选A. 【答案】 A 3.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、c ∈(0,1)),已知他投篮一次得分的均值为

2,则2a +1 3b 的最小值为( ) A.323 B.283 C.143 D.163 【解析】 由已知得,3a +2b +0×c =2, 即3a +2b =2,其中0

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

2.5 随机变量的均值和方差

2.5随机变量的均值和方差 扬州市新华中学查宝才 教学目标: 1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; 2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点: 取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学方法: 问题链导学. 教学过程: 一、问题情境 1.情景. 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下. 2.问题. 如何比较甲、乙两个工人的技术? 二、学生活动 1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,

似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”? 3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三、建构数学 1.定义. 在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值. 类似地,若离散型随机变量X的分布列或概率分布如下: X x1x2…x n P p1p2…p n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ. 2.性质. (1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数) 四、数学应用 1.例题. 例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望. 分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30). 例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X). 说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np. 例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场, 那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1 2 ,试求需要比赛 场数的期望.

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

均值、方差、正态分布--学生用

! § 离散型随机变量的均值与方差、正态分布 1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为 X x 1 x 2 。 … x i … x n P p 1 p 2 … - p i … p n (1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D X 为随机变量X 的标准差. 2.均值与方差的性质 , (1)E (aX +b )=aE (X )+b . (2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=__p __,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=__np __,D (X )=np (1-p ). 4.正态分布 (1)正态曲线:函数φμ,σ(x )=1 2πσ e -x -μ2 2σ2 ,x ∈(-∞,+∞),其中μ和σ为参数(σ>0, μ∈R ).我们称函数φμ、σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质: 、 ①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1 σ2π; ④曲线与x 轴之间的面积为__1__;

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use

在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。 1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 21 3100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞ =1 k k k p x

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

均值与方差、正态分布

均值与方差、正态分布 时间:45分钟 分值:100分 一、选择题(每小题6分,共48分) 1.已知随机变量X 服从正态分布N (2,σ2),P (X ≤4)=0.84,则P (X <0)等于( ) A .0.16 B .0.32 C .0.68 D .0.84 【答案】 A 【解析】 P (X <0)=P (X >4)=1-P (X ≤4)=1-0.84=0.16. 2.一个袋子里装有大小相同的3个红球和2个黄球,从中随机取出2个,其中含有红球个数的数学期望是( ) A.3 2 B.5 3 C.6 5 D.35 【答案】 C 【解析】 根据超几何分布期望公式,E (X )=2×32+3=6 5. 3.(2012·黄冈期末)某市进行一次高三数学质量抽样检测,考试后统计所有考生的数学成绩服从正态分布,已知数学成绩平均分为90分,60分以下的人数占5%,则数学成绩在90分至120分之间的考生人数所占百分比约为( ) A .10% B .15% C .30% D .45% 【答案】 D 【解析】 ∵正态曲线对称轴为μ=90,P (x <60)=0.05,

∴P (90

随机变量的均值与方差的计算公式的证明

随机变量的均值与方差的计算公式的证明 姜堰市励才实验学校 姜近芳 组合数有很多奇妙的性质,笔者试用这些性质证明了随机变量的均值与方差的两组计算公式。 预备知识: 1. ()()()()11!!1!1! !!--=-?--?=-??=k n k n nC k n k n n k n k n k kC 2. k k n C 2=()1111111-------+=k n k n k n C k n nC nkC =()22111-----+k n k n C n n nC 3.N 个球中有M 个红色的,其余均为白色的,从中取出n 个球,不同的取法有: n N l n M N l M n M N M n M N M n M N M C C C C C C C C C =++++------- 22110 ()()M n l ,m i n =. 公式证明: 1.X ~()p n B , ()()X E 1.np =()()X V 2().1p np -= 证明:()n n p x p x p x p x X E ++++= 332211 ()()()n n n n n n n n n p nC p p C p p C p p C ++-+-+-?=-- 222110012110 ()()[] n n n n n n n p C p p C p p C n 11221110111------++-+-= ()[] 11-+-=n p p np .np = ()()()()n n p x p x p x X V 2 222121μμμ-++-+-= n n p x p x p x p x 2323222121++++= ()n n p x p x p x p x ++++- 3322112μ ()n p p p p +++++ 3212μ ()() 2222222112121μμ+-++-+-=--n n n n n n n p C n p p C p p C ()()[]11121110111-------++-+-=n n n n n n n p C p p C p C np ()()()[] 22223122022111μ-++-+--+-------n n n n n n n p C p p C p C p n n

相关文档
最新文档