大学物理各章练习题:第十四章 电磁场理论的基本概念
大学电磁场考试题及答案

大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是:A. 300,000 km/sB. 299,792,458 m/sC. 1,000,000 km/sD. 299,792,458 km/s答案:B2. 麦克斯韦方程组中描述电磁场与电荷和电流关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦-安培定律D. 所有上述方程答案:D3. 以下哪项不是电磁场的基本概念?A. 电场B. 磁场C. 引力场D. 电磁波答案:C4. 根据洛伦兹力定律,一个带电粒子在磁场中的运动受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D5. 电磁波的波长和频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B6. 以下哪项是电磁波的主要特性?A. 需要介质传播B. 具有粒子性C. 具有波动性D. 以上都是答案:C7. 电磁波在介质中的传播速度比在真空中:A. 快B. 慢C. 相同D. 无法确定答案:B8. 根据电磁波的偏振特性,以下说法正确的是:A. 只有横波可以偏振B. 纵波也可以偏振C. 所有波都可以偏振D. 只有电磁波可以偏振答案:A9. 电磁波的反射和折射遵循的定律是:A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第电磁感应定律答案:A10. 电磁波的干涉现象说明了:A. 电磁波具有粒子性B. 电磁波具有波动性C. 电磁波具有量子性D. 电磁波具有热效应答案:B二、填空题(每空1分,共10分)1. 电磁波的传播不需要________,可以在真空中传播。
答案:介质2. 麦克斯韦方程组由四个基本方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和________。
答案:麦克斯韦-安培定律3. 根据洛伦兹力定律,一个带电粒子在磁场中受到的力的大小与粒子的电荷量、速度以及磁场强度的乘积成正比,并且与粒子速度和磁场方向的________垂直。
电磁场理论习题

电磁场理论习题一1、求函数ϕ=xy+z-xyz 在点(1,1,2)处沿方向角πα=3,4πβ=,3πγ=的方向的方向导数.解:由于 M ϕ∂∂x =y -M yz = -1M y ϕ∂∂=2x y -(1,1,2)xz =0 Mzϕ∂∂=2z(1,1,2)xy -=31cos 2α=,cos 2β=,1cos 2γ=所以1cos cos cos =∂∂+∂∂+∂∂=∂∂γϕβϕαϕϕz y x lM2、 求函数ϕ=xyz 在点(5, 1, 2)处沿着点(5, 1, 2)到点(9, 4, 19)的方向的方向导数。
解:指定方向l 的方向矢量为l =(9-5) e x +(4-1)e y +(19-2)e z =4e x +3e y +17e z其单位矢量zy x z y x e e e e e e l 314731433144cos cos cos ++=++=γβα5,10,2)2,1,5(==∂∂==∂∂==∂∂MMMMMxyzxzyyzxϕϕϕ所求方向导数314123cos cos cos =•∇=∂∂+∂∂+∂∂=∂∂ l z y x lMϕγϕβϕαϕϕ3、 已知ϕ=x 2+2y 2+3z 2+xy+3x-2y-6z ,求在点(0,0,0)和点(1,1,1)处的梯度。
解:由于ϕ∇=(2x+y+3) e x +(4y+x-2)e y +(6z-6)e z所以,(0,0,0)ϕ∇=3e x -2e y -6e z(1,1,1)ϕ∇=6e x +3e y4、运用散度定理计算下列积分:2232[()(2)]x y z sxz e x y z e xy y z e ds+-++⎰⎰I=S 是z=0 和 z=(a 2-x 2-y 2)1/2所围成的半球区域的外表面。
解:设:A=xz 2e x +(x 2y-z 3)e y +(2xy+y 2z)e z 则由散度定理Ω∇⎰⎰⎰⎰⎰sA ds=Adv可得2I r dvΩΩΩ=∇==⎰⎰⎰⎰⎰⎰⎰⎰⎰222Adv (z +x +y )dv2244220sin sin aar drd d d d r dr ππππθθϕϕθθ==⎰⎰⎰⎰⎰⎰525a π=5、试求▽·A 和▽×A:(1) A=xy 2z 3e x +x 3ze y +x 2y 2e z(2)22(,,)cos sin z A z e e ρρφρφρφ=+ (3 ) 211(,,)sin sin cos r A r r e e e r r θφθφθθθ=++解:(1)▽·A=y 2z 3+0+0= y 2z 3▽×A=23232(2)(23)x yx y x e xy xy z e ∂∂∂=---∂∂∂x y z23322e e e x y z xy z x z x y(2) ▽·A=()[()]z A A A z φρρρρρφ∂∂∂++∂∂∂1 =33[(cos )(sin )]ρφρφρρφ∂∂+∂∂1=3cos ρφ▽×A=ρφρφρρρφρ∂∂∂∂∂∂z ze e e 1z A A A =221cos 0ρφρρρφρφρφ∂∂∂∂∂∂z e e e z sin=cos 2sin sin ze e e ρφρφρφρφ-+(3) ▽·A=22(sin )()1[sin ]sin r A A r A r r r r φθθθθθφ∂∂∂++∂∂∂ =2322sin cos ()()1(sin )[sin ]sin r r r r r r r θθθθθθφ∂∂∂++∂∂∂ =222212[3sin 2sin cos ]3sin cos sin r r r θθθθθθ+=+▽×A=21sin rr r r rr θφθφθθθφθ∂∂∂∂∂∂e e rsin e A A rsin A =21sin 1sin sin cos rr r r r θφθθθφθθθθ∂∂∂∂∂∂e e rsin e rsin=33cos 2cos cos sin r e e e r r θφθθθθ+-习题二1、总量为q 的电荷均匀分布于球体中,分别求球内,外的电场强度。
大学物理电磁学部分练习题讲解

大学物理电磁学部分练习题讲解(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--大学物理电磁学部分练习题1.在静电场中,下列说法中哪一个是正确的(D ) (A )带正电荷的导体,其电势一定是正值. (B )等势面上各点的场强一定相等. (C )场强为零处,电势也一定为零.(D )场强相等处,电势梯度矢量一定相等.2.当一个带电导体达到静电平衡时:D (A )表面上电荷密度较大处电势较高. (B )表面曲率较大处电势较高.(C )导体内部的电势比导体表面的电势高.(D )导体内任一点与其表面上任一点的电势差等于零.3. 一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r 表示从球心引出的矢径): ( 0 r rR 302εσ)=)(r E)(R r <, =)(r E)(R r >. 4.电量分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U =)22(813210q q q R++πε5.两个点电荷,电量分别为+q 和-3q ,相距为d ,试求:(l )在它们的连线上电场强度0=E的点与电荷量为+q 的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势U = 0的点与电荷量为+q 的点电荷相距多远?q +q 3-x?Od E ?.解:设点电荷q 所在处为坐标原点O ,X 轴沿两点电荷的连线.(l )设0=E的点的坐标为x ′,则0)'(43'42020=--=i d x qi x q Eπεπε可得 0'2'222=-+d dx x解出 d x )31(21'1+-=和 d x )13(21'2-=其中'1x 符合题意,'2x 不符合题意,舍去. (2)设坐标x 处 U = 0,则)(43400x d qx q U --=πεπε0])(4[40=--=x d x xd q πε得 4/04d x x d ==-6.一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.解答:将半球面分成由一系列不同半径的带电圆环组成,带电半球面在圆心O点处的电场就是所有这些带电圆环在O 点的电场的叠加。
【免费下载】物理学基本教程课后答案 第十四章 电磁场理论的基本概念

第十四章 电磁场理论的基本概念14-1 平板电容器由半径为R 的两块圆形极板构成,用长直电流给其充电, 使极板间电场强度增加率为d E/d t ,L 为两极板间以r 为半径,圆心在电容器对称轴上,圆平面与极板平行的圆.以L 为边界,作曲面S 使圆平面与S形成闭合曲面以包围电容器的一个极板,如图14-1所示,求通过曲面S 的全电流,(1) r <R 时;(2)r >R 时.分析 全电流定理指出,磁场强度沿闭合回路L 的线积分等于通过以L 为边界的曲面S 的全电流,当回路L 一定时,积分值是一定的,与所取曲面形状无关.因此以r 为半径的圆作为回路,通过圆平面的全电流应等于通过曲面S的全电流.由于本题中通过S 的传导电流是未知的,可以计算通过圆平面的全电流获得所需结果.解(1) r <R 时,穿过以L 为边界圆平面的传导电流为零,圆面积为,电位移通量为,位移电流为2r S π=E r SD D 02επψ==tEr t I D d d d d 02D επψ==所以穿过S 面的全电流等于穿过圆平面的全电流,为t Er I I d d 02D επ=+(2) r>R 时, 因为忽略边缘效应,平板电容器的电场局限在极板内,极板面积为,穿过以L 为边界的圆平面的传导电流为零,电位移通量为2R S π=,位移电流为E R SD D 02επψ==tER t I D D d d d d 02επψ==所以穿过S 面的全电流等于穿过圆平面的全电流,为tE R I I D d d 02επ=+14-2 平板电容器的圆形极板半径为R =0.04m ,放在真空中.今将电容器充电,使两极板间的电场变化率为2.5×1012V/(m .s).求:(1)两极板间位移电流的大小;(2)r =0.02m 处及r=0.06m 处的磁感强度.分析 通常假定平板电容器极板间距很小,可以忽略边缘效应,认为电场局限在两极板间.解(1) 电容器的极板面积为,2R S π=穿过以L 为边界的圆平面的电位移通量为,位移电流为E R SD D 02επψ==tE R t I D D d d d d 02επψ==A111.0A 105.21085.804.014.312122=⨯⨯⨯⨯⨯=--(2)在两极板间取半径为r 的磁场线为安培回路L ,当r =0.02m<R 时,电位移通量为,位移电流为E r SD D 02επψ==tEr t I D d d d d 02D επψ==由于磁场的对称性,H 的方向在圆周回路L 的切线方向,大小处处相等,根据全电流定理,得DII r H +=⋅=⋅⎰π2d Ll H 则T 1078.2d d 2270000-⨯====tEr I r H B D μεπμμ当r =0.06m>R 时,因为电场局限在两极板间,求电位移通量时,只应计入极板的面积,,位移电流为2R πE R SD D 02επψ==tER t I D D d d d d 02επψ==得T1071.3d d 22720000-⨯====tEr R I r H B D μεπμμ14-3 给极板面积S =3cm 2的平板电容器充电,分别就下面两种情形求极板间的电场变化率d E/d t :(1) 充电电流I =0.01A ;(2)充电电流I =0.5A .分析极板内的位移电流与极板外的传导电流在大小和方向上相同,给出传导电流的大小相当于给出位移电流的大小,再根据位移电流的定义便可求出d E/d t .解 极板间位移电流为 I tES DS t t I D D ====d d d d d d 0εψ(1)当充电电流I =0.01A 时,得s)V/(m 1077.3d d 120⋅⨯==SI t E ε(2)当充电电流I =0.5A 时,得s)V/(m 1088.1d d 140⋅⨯==SIt E ε14-4 平板电容器的正方形极板边长为0.3m ,当放电电流为1.0A 时,忽略边缘效应,求(1)两极板上电荷面密度随时间的变化率;(2)通过极板中如图14-4所示的正方形回路abcd(3)环绕此正方形回路的的大小.⎰⋅Ld l B 分析 若极板上电荷面密度,则对于平板电σ容器有D=.σ解 (1) 极板上电荷,根据传导电流的S q σ=定义,有,得tS t q I d d d d σ==s)C/(m 1.11s)C/(m 3.00.1d d 2222⋅=⋅===d I S I t σ(2)正方形回路abcd 间的位移电流为A 0.111A 1.111.0d d d d d d 2D =⨯====tS DS t t I abcda abcda D σψ(3)正方形回路abcd 的磁感强度环流为1.39×10-7 Wb/m==⋅⎰DabcdaI 0d μl B 14-5 证明对任意形状电容器,当电容量C 不变化时,位移电流为, 其中C 为电容器电容, V 为两极板电势差.tVCI D d d =证 对任意形状的电容器, t 时刻极板带电量 q =CV ,当C 不变时I ==tVC t q d d d d tVCI I D d d ==14-6 极板面积为S 的一平板电容器与一电动势为E 的电源相连接, 若电容器两极板间的距离d 随时间变化, 且两极板相互离开的速度的大小为v . 在不考虑电源内阻及线路内阻的情况下, 忽略边缘效应, 求两极板间的位移电流.分析 两极板以速度v 相互离开时, 电容器始终与电源相连, 不考虑电源内阻, 也不考虑线路内阻, 两极板的电势差正好为电源电动势.于是可以计算出极板间场强和电位移矢量.解 板间电位移矢量大小为D =dE E00εε=vS 200)(d d d d dd t S S t D I D E Eεε===14-7 如图14-7所示,匀速直线运动的点电荷+q ,以速度v 向O 点运动,在O 点处画一半径为R 的圆,圆面与v 垂直(v<<c ),试计算通过此圆面的位移电流.应用全电流定理计算圆边缘某一点的磁感强度.设运动电荷与该点的距离为r , 把计算结果与运动电荷的磁感强度计算式作比较.304r q rB ⨯=v πμ分析由运动电荷的磁感强度表示式可以看出,该磁场具有轴对称性,即以电荷运动方向为轴线,与轴线距离相等并与电荷距离相等处磁感强度大小相等、方向在垂直于轴线并以轴线为中心的圆的切线方向.解 半径为R 的圆中心到电荷的距离为x ,其边缘到电荷的距离,如图14-722x R r +=所示,当 v<<c 时, 运动点电荷周围电场具有球对称性,以电荷为中心、r 为半径的球的电位移通量为q ,通过给定圆的电位移通量等于以r为半径以该圆为边界的球冠的通量.球冠面积为,则通过给定圆的)(2x r r -π电位移通量为⎪⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛-=-=21222)(114)(2x R x q r x q r x r r qD ππψ因=- v ,则通过圆平面的位移电流为txd d (1)2/32222/3222)(2)(d d 2d d x R qR x R t xR q t I D D +=+-==v ψ分析表明,运动电荷的磁场具有轴对称性,磁场线是垂直于轴线圆心在轴上的一系列同心圆.设圆边缘某点P 的磁感强度为B ,磁场强度为H ,以给定圆为积分回路L ,应用全电流定理和(1)式,得23222L )(22d x R qR I I R H D +=+=⋅=⋅⎰v πl H 2/322)(4x R qR H +=πv由于,,则2/122)(sin x R R +=ϕ22x R r +=2004sin r q H B πϕμμv ==因磁感强度方向在垂直于轴线的圆的切线方向,并利用矢量积的定义,可r ⨯v 以将上式写成矢量式,为304r q r B ⨯=v πμ与运动电荷磁感强度计算公式相同.。
电磁场理论知识点总结

电磁场理论知识点总结一、电磁场的基本概念电磁场是物理学中的一个重要概念,它是由电场和磁场相互作用而形成的统一体。
电场是由电荷产生的,它对处在其中的电荷有力的作用。
电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。
电场强度是描述电场强弱和方向的物理量,用 E 表示。
电场强度的定义是单位正电荷在电场中所受到的力。
磁场是由电流或者运动电荷产生的,它对处在其中的运动电荷或者电流有力的作用。
磁场强度用 H 表示,磁感应强度用 B 表示。
磁感应强度是描述磁场强弱和方向的物理量,它等于垂直通过单位面积的磁力线的数量。
二、库仑定律与高斯定理库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们的电荷量以及距离之间的关系。
其表达式为:F = k q1 q2 / r²,其中 k 是库仑常量,q1 和 q2 是两个点电荷的电荷量,r 是它们之间的距离。
高斯定理是电场中的一个重要定理,它表明通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷的代数和除以真空中的介电常数。
简单来说,如果一个闭合曲面内没有电荷,那么通过这个曲面的电通量为零;如果有电荷,电通量就与电荷量成正比。
三、安培定律与毕奥萨伐尔定律安培定律描述了电流元在磁场中所受到的安培力。
安培力的大小与电流元的大小、电流元所在位置的磁感应强度、电流元与磁感应强度之间的夹角有关。
毕奥萨伐尔定律用于计算电流元在空间某点产生的磁感应强度。
它表明电流元在空间某点产生的磁感应强度与电流元的大小、电流元到该点的距离以及电流元与该点连线和电流方向之间的夹角有关。
四、法拉第电磁感应定律法拉第电磁感应定律指出,当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势。
感应电动势的大小与磁通量的变化率成正比。
这一定律揭示了电磁感应现象的本质,是发电机等电磁设备的工作原理基础。
五、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,它由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培麦克斯韦定律。
物理学中的电磁场理论知识点

物理学中的电磁场理论知识点电磁场理论是物理学中重要的一部分,它描述了电荷体系所产生的电磁场以及电磁场与电荷之间的相互作用。
本文将介绍电磁场的概念、电场和磁场的性质以及麦克斯韦方程组等电磁场的基本知识点。
一、电磁场的概念电磁场是指由电荷或电流体系所产生的电场和磁场的总和。
电场是由电荷引起的一种力场,可使带电粒子受力;磁场则是由电流引起的一种力场,可对磁性物质施加力。
二、电场的性质1. 电场的强度:电场强度定义为单位正电荷所受的电场力,通常用E 表示,其大小与电荷量和距离有关。
2. 电场线:电场线是用来表示电场分布的曲线,其方向与电场强度方向相同。
电场线的密度反映了电场强度的大小。
3. 高斯定律:高斯定律描述了电场与电荷之间的关系,它指出电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。
三、磁场的性质1. 磁感应强度:磁感应强度是磁场的基本物理量,用 B 表示,其大小与电荷量和距离无关。
它描述了磁场对磁性物质产生的作用力。
2. 磁场线:磁场线是用来表示磁场分布的曲线,其方向与磁感应强度的方向相同。
磁场线呈环状,从北极经南极形成闭合曲线。
3. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电动势的现象。
它说明了磁场变化对电荷运动的影响。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,它由麦克斯韦总结了电场和磁场的性质而得出。
麦克斯韦方程组包括四个方程,分别是:1. 麦克斯韦第一方程(高斯定律):它描述了电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。
2. 麦克斯韦第二方程(法拉第电磁感应定律):它描述了磁场变化引起感应电动势的现象,即电场沿闭合回路的环路积分与磁场变化的速率成正比。
3. 麦克斯韦第三方程(安培环路定律):它描述了环绕闭合回路的磁场强度与通过闭合回路的总电流之间的关系。
4. 麦克斯韦第四方程(法拉第电磁感应定律的推广):它说明了变化的电场可以产生磁场,反之亦然。
电场和磁场之间存在着相互转化的关系。
大学物理电磁场的基本理论

大学物理电磁场的基本理论电磁场是物质世界中最基本的物理现象之一,也是大学物理课程的重要内容之一。
电磁场理论的研究,对于揭示物质世界的运动规律和电磁波的传播机制具有重要意义。
本文将介绍大学物理中关于电磁场的基本理论,包括电场、磁场的概念与本质、电磁场的相互作用以及电磁波的特性。
一、电场的概念与本质电场是由电荷所产生的一种物理量,它描述了在电荷存在的空间中,其他电荷所受到的力的情况。
电场的概念最早由法拉第提出,通过他的实验肯定了电场的存在。
根据库伦定律,电场强度 E 的大小与电荷 q 之间成正比,与距离 r的平方成反比。
即 E ∝ q/r^2。
这意味着电场是一种场量,它在空间中的分布由电荷的性质和位置确定。
在电场中,电荷会受到力的作用,力的大小与电场的强度有关,方向则与电荷的性质有关。
电场的本质是电荷之间的相互作用。
二、磁场的概念与本质磁场是由磁荷或运动电荷所产生的一种物理量,它描述了在磁荷存在的空间中,其他运动电荷所受到的力的情况。
磁场的概念最早由奥斯特瓦德提出,通过他的实验证实了磁场的存在。
磁场的表现形式有磁感应强度 B 和磁场强度 H。
磁感应强度 B 描述了磁场对运动电荷的作用,磁场强度 H 描述了磁场对磁荷的作用。
根据洛伦兹力定律,运动电荷在磁场中会受到洛伦兹力的作用。
磁场的本质是磁荷之间的相互作用和运动电荷在磁场中受到的洛伦兹力。
三、电磁场的相互作用电场和磁场之间存在着紧密的联系,它们是相互依存的物理量。
当电流通过导线时,周围会形成磁场,这种现象被称为安培环路定律。
根据安培环路定律,通过一条闭合回路的磁场强度与这条回路内通过的电流成正比。
根据法拉第电磁感应定律,变化的磁场可以感应出电场。
即当磁场通过一个闭合回路时,会在回路上产生感应电动势和电流。
这种现象被称为法拉第电磁感应。
电磁感应的经典实验是法拉第的环路实验,通过改变磁场的强度或方向,可以观察到感应电流的变化。
四、电磁波的特性电磁波是由电场和磁场相互耦合形成的一种能量传播的方式。
大学电磁场考试题及答案

大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。
答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 电磁场理论的基本概念
14-1 平板电容器由半径为R 的两块圆形极板构成,用长直电流给其充电, 使极板间电场强度增加率为d E/d t ,L 为两极板间以r 为半径,圆心在电容器对称轴上,圆平面与极板平行的圆.以L 为边界,作曲面S 使圆平面与S 形成闭合曲面以包围电容器的一个极板,如图14-1所示,求通过曲面S 的全电流,(1) r <R 时;(2)r >R 时.
边界的曲面S 的全电流,当回路L 一定时,积分值是一定的,与所取曲面形状无关.因此以r 为半径的圆作为回路,通过圆平面的全电流应等于通过曲面S 的全电流.由于本题中通过S 的传导电流是未知的,可以计算通过圆平面的全电流获得所需结果.
解 (1) r <R 时,穿过以L 为边界圆平面的传导电流为零,圆面积为2r S π=,电位移通量为E r SD D 02επψ==,位移电流为
t
E r t I D d d d d 02D επψ== 所以穿过S 面的全电流等于穿过圆平面的全电流,为
t
E r I I d d 02D επ=+ (2) r>R 时, 因为忽略边缘效应,平板电容器的电场局限在极板内,极板面积为2R S π=,穿过以L 为边界的圆平面的传导电流为零,电位移通量为E R SD D 02επψ==,位移电流为
t
E R t I D D d d d d 02επψ== 所以穿过S 面的全电流等于穿过圆平面的全电流,为
t
E R I I D d d 02επ=+ 14-2 平板电容器的圆形极板半径为R =0.04m ,放在真空中.今将电容器充电,使两极板间的电场变化率为2.5×1012V/(m .s).求:(1)两极板间位移电流的
大小;(2)r =0.02m 处及r=0.06m 处的磁感强度.
分析 通常假定平板电容器极板间距很小,可以忽略边缘效应,认为电场局限在两极板间.
解 (1) 电容器的极板面积为2R S π=,穿
过以L 为边界的圆平面的电位移通量为E R SD D 02επψ==,位移电流为 t E R t I D D d d d d 02επψ== A
111.0A 105.21085.804.014.312122=⨯⨯⨯⨯⨯=-- (2)在两极板间取半径为r 的磁场线为安培回路L ,当r =0.02m<R 时,电位移通量为E r SD D 02επψ==,位移电流为
t
E r t I D d d d d 02D επψ== 由于磁场的对称性,H 的方向在圆周回路L 的切线方向,大小处处相等,根据全电流定理,得
D I I r H +=⋅=⋅⎰π2d L l H
则
T 1078.2d d 2270000-⨯====t
E r I r H B D μεπμμ 当r =0.06m>R 时,因为电场局限在两极板间,求电位移通量时,只应计入极板的面积2R π,E R SD D 02επψ==,位移电流为
t
E R t I D D d d d d 02επψ== 得
T 1071.3d d 22720000-⨯====t
E r R I r H B D μεπμμ 14-3 给极板面积S =3cm 2的平板电容器充电,分别就下面两种情形求极板间的电场变化率d E/d t :(1) 充电电流I =0.01A ;(2)充电电流I =0.5A .
分析 极板内的位移电流与极板外的传导电流在大小和方向上相同,给出传导电流的大小相当于给出位移电流的大小,再根据位移电流的定义便可求出d E/d t .
解 极板间位移电流为 I t
E S DS t t I D D ====d d d d d d 0εψ (1) 当充电电流I =0.01A 时,得
s)V /(m 1077.3d d 120⋅⨯==S
I t E ε (2)当充电电流I =0.5A 时,得
s)V /(m 1088.1d d 140⋅⨯==S
I t E ε 14-4 平板电容器的正方形极板边长为0.3m ,当放电电流为1.0A 时,忽略边缘效应,求(1)两极板上电荷面密度随时间的变化率;(2)通过极板中如图14-4所示的正方形回路abcd 间的位移电流的大小;(3)环绕此正方形回路的⎰⋅L d l B 的大小.
分析 若极板上电荷面密度σ,则对于平板电容
器有D=σ.
解 (1) 极板上电荷S q σ=,根据传导电流的定义,有t S t q I d d d d σ==,得 s)C/(m 1.11s)C/(m 3.00.1d d 2222⋅=⋅===d I S I t σ (2)正方形回路abcd 间的位移电流为
A 0.111A 1.111.0d d d d d d 2D =⨯====t
S DS t t I abcda abcda D σψ (3)正方形回路abcd 的磁感强度环流为
==⋅⎰D abcda
I 0d μl B 1.39×10-7 Wb/m 14-5 证明对任意形状电容器, 当电容量C 不变化时, 位移电流为t
V C I D d d =, 其中C 为电容器电容, V 为两极板电势差. 证 对任意形状的电容器, t 时刻极板带电量 q =CV ,当C 不变时
==t
V C t q d d d d I t
V C I I D d d == 14-6 极板面积为S 的一平板电容器与一电动势为E 的电源相连接, 若电容器两极板间的距离d 随时间变化, 且两极板相互离开的速度的大小为v . 在不考虑电源内阻及线路内阻的情况下, 忽略边缘效应, 求两极板间的位移电流.
分析 两极板以速度v 相互离开时, 电容器始终与电源相连, 不考虑电源内
阻, 也不考虑线路内阻, 两极板的电势差正好为电源电动势.于是可以计算出极板间场强和电位移矢量.
解 板间电位移矢量大小为
D =d
E E
00εε=
20
0)(d d d d d
d t S S t D I D E E εε===v S 14-7 如图14-7所示,匀速直线运动的点电荷+q ,以速度v 向O 点运动,在O 点处画一半径为R 的圆,圆面与v 垂直(v<<c ),试计算通过此圆面的位移电流.
应用全电流定理计算圆边缘某一点的磁感强度.设运动电荷与该点的距离为r , 把计算结果与运动电荷的磁感强度计算式3
04r q r B ⨯=v πμ作比较. 分析 由运动电荷的磁感强度表示式可以看出,该磁场具有轴对称性,即以电荷运动方向为轴线,与轴线距离相等并与电荷距离相等处磁感强度大小相等、方向在垂直于轴线并以轴线为中心的圆的切线方向.
解 半径为R 的圆中心到电荷的距离为x ,其边缘到电荷的距离
22x R r +=,
如图14-7所示,当 v<<c 时, 运动点电荷周围电场具有球对称性,以电荷为中心、r 为半径的球的电位移通量为q ,通过给定圆的电位移通量等于以r 为半径以该圆为边界的球冠的通量.球冠面积为)(2x r r -π,则通过给定圆
的电位移通量为
⎪⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛-=-=21222)(114)(2x R x q r x q r x r r q D ππψ 因t x d d =- v ,则通过圆平面的位移电流为 2/32222/3222)(2)(d d 2d d x R qR x R t x R q t I D D +=+-==v ψ (1)
分析表明,运动电荷的磁场具有轴对称性,磁场线是垂直于轴线圆心在轴上的一系列同心圆.设圆边缘某点P 的磁感强度为B ,磁场强度为H ,以给定圆为积分回路L ,应用全电流定理和(1)式,得
23222L )(22d x R qR I I R H D +=+=⋅=⋅⎰v πl H
2
/322)(4x R qR H +=πv
由于2/122)
(sin x R R +=ϕ,22x R r +=,则 2
004sin r q H B πϕμμv == 因磁感强度方向在垂直于轴线的圆的切线方向,并利用矢量积r ⨯v 的定义,可以将上式写成矢量式,为
3
04r q r B ⨯=v πμ 与运动电荷磁感强度计算公式相同.。