2019-2020学年浙江省宁波市北仑区七年级(上)期末数学试卷 (含解析)

合集下载

浙江省宁波市北仑区七年级(上)期末数学试卷

浙江省宁波市北仑区七年级(上)期末数学试卷

七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.2019的相反数是()A. B. C. D. 20192.据报道,北仑滨海万人沙滩规划面积约32万平方米,数字32万用科学记数法表示为()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.在,0.2,,π,1.010010001……(每两个1之间依次增加一个0)中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个5.已知2x5y2和-x m+2y2是同类项,则m的值为()A. 3B. 4C. 5D. 66.关于x的方程kx=2x+6与2x-1=3的解相同,则k的值为()A. 3B. 4C. 5D. 67.《九章算术》中记载一问题如下:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,依题意列方程得()A. B. C. D.8.如图,OA方向是北偏西40°方向,OB平分∠AOC,则∠BOC的度数为()A. B. C. D.9.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.10.如图,在线段AB上有C、D两点,CD长度为1cm,AB长为整数,则以A、B、C、D为端点的所有线段长度和不可能为()A. 21cmB. 22cmC. 25cmD. 31cm二、填空题(本大题共8小题,共24.0分)11.如果把向东走2米记为+2米,则向西走3米表示为______米.12.单项式的系数为______.13.36的平方根是______.14.若a-2b=3,则3a-6b-2=______.15.如图,线段AB=16cm,C是AB上一点,且AC=10cm,O是AB中点,则线段OC的长度为______cm.16.如图,在长方形ABCD中,∠2比∠1大41°,则∠AEB的度数为______(用度分秒形式表示)17.数轴上从左到右依次有A、B、C三点表示的数分别为a、b、,其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a=______.18.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”,如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397,图2用“格子乘法”表示两个两位数相乘,则a的值为______.三、计算题(本大题共3小题,共19.0分)19.计算:(1)()×12;(2)-32+.20.解下列方程:(1)5(x-2)=2x-4;(2).21.如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠l=100°,∠2=40°,|∠1-∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直接三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是______,与∠BOC互为友好角的是______,②当t=______时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC与∠DOF互为友好角(自行画图分析).四、解答题(本大题共5小题,共27.0分)22.(1)化简:3x2-5x2+6x2.(2)先化简,后求值:2(a2-ab-3.5)-(a2-4ab-9),其中a=-5,b=.23.如图,平面上有四个点A、B、C、D,按要求作图并回答问题.(1)作直线AC,射线AD;(2)作∠DAC的角平分线;(3)在直线AC上找一点P,使P点到B、D两点的距离和最小,并说明理由.24.如图,直线AB和CD相交于点O,CD⊥OE,OF平分∠AOE,∠COF=26°,求∠EOF,∠BOD的度数.25.观察以下图案和算式,解答问题:(1)1+3+5+7+9=______;(2)1+3+5+7+9+…+19=______;(3)请猜想1+3+5+7+……+(2n-1)=______;(4)求和号是数学中常用的符号,用表示,例如,其中n=2是下标,5是上标,3n+1是代数式,表示n取2到5的连续整数,然后分别代入代数式求和,即:=3×2+1+3×3+1+3×4+1+3×5+1=46请求出的值,要求写出计算过程,可利用第(2)(3)题结论.26.为倡导绿色出行推广节能减排,国家越来越重视新能源汽车的发展,到2020年宁波市将建成不少于5万个新能源汽车充电桩,现有一充电桩具体收费标准如下:充电时长0~4小时(含4小时)每小时收费3元,充电时长超过4小时,超过部分每小时收费2元.(1)若小明妈妈在该充电桩充电3小时,则需支付费用______元;若小明妈妈在该充电桩充电6小时,则需支付费用______元.(2)若小明妈妈在该充电桩充电x小时(x>4),则需要支付费用______(用含x 的代数式表示).(3)若某星期小明妈妈周二和周五在该充电桩连续充电共10小时(周五充电时长超过周二充电时长),共支付费用27元,则小明妈妈周二和周五各充电多少小时?答案和解析1.【答案】B【解析】解:2019的相反数是-2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】C【解析】解:数字32万用科学记数法表示为3.2×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:A、-3+2=-1,错误;B、=3,错误;C、-|-1|=-1,错误;D、(-2)3=-8,正确;故选:D.根据有理数的加法、算术平方根、绝对值、有理数乘方计算判断即可.此题考查有理数的加法、算术平方根、绝对值、有理数乘方,关键是根据有理数的加法、算术平方根、绝对值、有理数乘方解答.4.【答案】C【解析】解:在所列实数中,无理数有,π,1.010010001……(每两个1之间依次增加一个0)这3个,故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.【答案】A【解析】解:由题意可知:m+2=5,∴m=3,故选:A.根据同类项的定义即可求出答案.本题考查同类项,解题的关键是熟练运用同类项的定义,本题属于基础题型.6.【答案】C【解析】解:方程2x-1=3,解得:x=2,把x=2代入kx=2x+6得:2k=10,解得:k=5,故选:C.求出第二个方程的解,代入第一个方程计算即可求出k的值.此题考查了同解方程,同解方程即为能使方程左右两边相等的未知数的值.7.【答案】B【解析】解:设有x人,根据题意得:8x-3=7x+4.故选:B.设有x人,根据该物品价格不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.【答案】D【解析】解:∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°,∵OB平分∠AOC,∴∠BOC=∠AOC=65°,故选:D.根据方向角的定义和角平分线的定义即可得到结论.本题考查方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.9.【答案】B【解析】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.本题主要考查图形的变化类,解题的关键是根据题意弄清题干规定的运算规则,并将图形的变化问题转化为数字问题.10.【答案】A【解析】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∴以A、B、C、D为端点的所有线段长度和为长度为3的倍数多1,∴以A、B、C、D为端点的所有线段长度和不可能为21.故选:A.根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=1,线段AB的长度是一个正整数,可以解答本题.本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.11.【答案】-3【解析】解:∵向东走2米记为+2米,∴向西走3米可记为-3米,故答案为:-3.根据正数和负数表示相反意义的量,向东记正负,可得向西的表示方法.本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.12.【答案】【解析】解:单项式的系数为,故答案为:.根据单项式系数的定义即可求解.本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数.13.【答案】±6【解析】解:36的平方根是±6,故答案为:±6.根据平方根的定义求解即可.本题考查了平方根的定义,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.14.【答案】7【解析】解:当a-2b=3时,原式=3(a-2b)-2=3×3-2=9-2=7,故答案为:7.将a-2b的值代入原式=3(a-2b)-2,计算可得.此题考查了代数式求值,利用了整体代入的思想,将所求式子适当的变形是解本题的关键.15.【答案】2或18【解析】解:本题有两种情形:(1)当点C在线段AB上时,如图,OC=AC-AO=AC-AB,又∵AC=10cm,AB=16cm,∴OC=2cm;(2)当点C在线段BA的延长线上时,如图,OC=AC+AO=AC+AB,又∵AC=10cm,AB=16cm,∴OC=18cm.故线段OC的长度是2cm或18cm.故答案为:2或18本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意正确画出图形进行解答.此题主要考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.【答案】65°30′【解析】解:∵四边形ABCD是矩形,∴∠DAB=90°,AD∥BC∴∠2+∠1=90°,且∠2-∠1=41°,∴∠2=65°30′∵AD∥BC∴∠AEB=∠2=65°30′故答案为:65°30′由题意可得∠2+∠1=90°,且∠2-∠1=41°,可求∠AEB=∠2=65°30′.本题考查了矩形的性质,利用方程的思想求∠2的度数是本题的关键.17.【答案】5或6【解析】解:因为|a+3|+|b-2|≥0,所以b-2≥0,即b≥2.∵|a+3|+|b-2|=b-2,∴|a+3|+b-2=b-2,即|a+3|=0,∴a=-3由于2≤b<,且b是整数,所以b=2或3.当b=2时,b-a=2-(-3)=5,当b=3时,b-a=3-(-3)=6.故答案为:5或6根据绝对值的和是非负数,先确定b的值,再化简|a+3|+|b-2|=b-2,求出a的值,计算b-a.本题考查了绝对值的化简、实数和数轴、绝对值的和等知识点.确定b的取值范围和a、b的值是解决本题的关键.18.【答案】3【解析】解:设4a的十位数字是m,个位数字是n,∴∴∴a=1,故答案为1;设4a的十位数字是m,个位数字是n,列出符合条件的方程组即可求解;本题考查新定义,三元一次方程组;能够理解新定义,4a的结果用各位数字正确表示出来是解题的关键.19.【答案】解:(1)原式=8+9-6=11;(2)原式=-9+4+1+3=-1.【解析】(1)根据实数的运算法则即可求出答案.(2)根据实数的运算法则即可求出答案.本题考查实数的运算,解题的关键是熟练运用实数的运算法则,本题属于基础题型.20.【答案】解:(1)5x-10=2x-4,5x-2x=10-4,3x=6,x=2;(2)4(2x-1)=3(x+2)-12,8x-4=3x+6-12,8x-3x=6-12+4,5x=-2,x=-.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.21.【答案】∠AOE∠BOD或∠AOC15s【解析】解:(1)由题意知①∵当AO在直线CO左侧时,∠BOE<60°,∴互为友好角应该是∠BOE+60°=∠AOE,而与∠BOC互为友好角的可以是∠BOC+60°=∠BOD,也可以是∠BOC-60°=∠AOC②当∠BOE与∠AOD互为友好角时,即∠AOD-∠BOE=60°得方程:(120°-2t)-2t=60°∴t=15故答案为∠AOE,∠BOD或∠AOC,15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120-5t|∠BOC-∠DOF|=60°,表示为|120-5t-3t|=60即|120-8t|=60去绝对值得120-8t=60(如图1)或8t-120=60(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t-120|∠BOC-∠DOF|=60°,表示为|5t-120-3t|=60即|2t-120|=60去绝对值得2t-120=60或120-2t=60(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.(1)当AO在直线CO左侧时,∠BOE<60°,所以互为友好角应该是∠BOE+60°=∠AOE,与∠BOC互为友好角的可以是∠BOC+60°也可以是∠BOC-60°,即可求解;当∠BOE与∠AOD互为友好角时,满足∠AOD-∠BOE=60°即可;(2)当∠BOC与∠DOF互为友好角时,要分OB在OC左侧与OB在OC右侧两种情况讨论;用含t的代数式分别表示出∠BOC与∠DOF,根据友好角的定义列式求解即可.本题考查的是在新定义的条件下,用方程的思想解决角的变化问题,重点要抓住角的变化过程中出现的每一种情况.22.【答案】解:(1)3x2-5x2+6x2=(3-5+6)x2=4x2;(2)2(a2-ab-3.5)-(a2-4ab-9)=2a2-2ab-7-a2+4ab+9=a2+2ab+2,当a=-5,b=时,原式=25-15+2=12.【解析】(1)合并同类项即可得到结论;(2)原式利用去括号法则去括号后,合并得到最简结果,将a与b的值代入计算,即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)如图所示,直线AC和射线AD即为所求;(2)如图所示,射线AE即为所求;(3)如图所示,点P即为所求,∵两点直线的所有连线中,线段最短,且点P在AC上,∴P点到B、D两点的距离和最小.【解析】(1)利用直线、射线的概念求解可得;(2)利用作一个角等于已知角的尺规作图可得;(3)利用“两点直线的所有连线中,线段最短”作图可得.本题主要考查作图-复杂作图,解题的关键是掌握直线、射线的概念及作一个角等于已知角的尺规作图和两点直线的所有连线中线段最短.24.【答案】解:∵CD⊥OE,∴∠COE=90°,∵∠COF=26°,∴∠EOF=∠COE-∠COF=90°-26°=64°,∵OF平分∠AOE,∴∠AOF=∠EOF=64°,∴∠AOC=∠AOF-∠COF=38°∵∠BOD=∠AOC=38°.【解析】根据垂直的定义得到∠COE=90°,根据余角的定义得到∠COF=26°,由角的和差求出∠EOF的度数,利用角平分线的性质得出∠AOF的度数,进而得出∠BOD的度数,即可得出答案.此题主要考查了垂线,角平分线的性质以及邻补角的定义,正确利用角平分线的性质分析是解题关键.25.【答案】25 100 n2【解析】解:(1)1+3+5+7+9=52=25,故答案为:25;(2)1+3+5+7+9+…+19=102=100,故答案为:100;(3)1+3+5+7+……+(2n-1)=n2,故答案为:n2;(4)=21+23+25+……+47+49=(1+3+5+......+47+49)-(1+3+5+ (19)=252-102=525.(1)根据连续n个奇数的和等于n2即可得;(2)利用所得规律计算可得;(3)利用(1)中所得规律计算可得;(4)由=21+23+25+……+47+49=(1+3+5+……+47+49)-(1+3+5+……+19),利用所得规律计算可得.本题主要考查数字的变化类,解题的关键是掌握连续n个奇数的和等于n2的规律.26.【答案】9 16 (2x+4)元【解析】解:(1)3×3=9(元),3×4+2×(6-4)=16(元).故答案为:9;16.(2)依题意,得:需要支付费用为3×4+2(x-4)=2x+4(元).故答案为:(2x+4)元.(3)设周二充电m小时,则周五充电(10-m)小时,∵周二和周五共充电10小时,周五充电时长超过周二充电时长,∴周五充电时长超过4小时.当0<m≤4时,有3m+2(10-m)+4=27,解得:m=3,∴10-m=7;当m>4时,有2m+4+2(10-m)+4=27,即28=27(舍).答:周二充电3小时,周五充电7小时.(1)根据充电桩的收费标准,可求出当使用时间为3小时及6小时时需支付的费用;(2)根据需支付费用=3×4+2×超出4小时的时间,即可得出结论;(3)设周二充电m小时,则周五充电(10-m)小时,分0<m≤4及m>4两种情况找出关于m的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、有理数的混合运算以及列代数式,解题的关键是:(1)根据收费标准,列式计算;(2)根据数量关系,列出代数式;(3)分0<m≤4及m>4两种情况列出关于m的一元一次方程.。

2020-2021学年宁波市北仑区七年级上学期期末数学试卷(含解析)

2020-2021学年宁波市北仑区七年级上学期期末数学试卷(含解析)

2020-2021学年宁波市北仑区七年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.在−1,−3,0,5这四个数中,最小的数是()3B. −3C. 0D. 5A. −132.下列语句:(1)是二次单项式;(2)是按字母的降幂排列;(3)的系数是−5,次数是4;(4)是一次单项式,其中正确的有【】A. 1个B. 2个C. 3个D. 4个3. 据统计,截止2019年12月2日,“学习强国”河南学习平台注册用户已达到906.3万人,日活跃用户达到586.6万人,将数据“906.3万”用科学记数法表示为9.063×10n,则n为()A. 7B. 4C. 8D. 64. 下列各数中,既不是正数也不是负数的是()A. 0B. −1C. √3D. 25. 如图,a1//a2,∠1=56°,则∠2的度数是()A. 56°B. 124°C. 34°D. 112°6. 若长方形的周长为,它的长为,则它的宽为()A. B. C. D.7. 如图,在平面直角坐标系中,已知点A(1,1),B(−1,1),C(−1,−2),D(1,−2),动点P从点A出发,以每秒2个单位的速度按逆时针方向沿四边形ABCD的边做环绕运动;另一动点Q从点C出发,以每秒3个单位的速度按顺时针方向沿四边形CBAD的边做环绕运动,则第2016次相遇点的坐标是()A. (−1,−1)B. (−1,1)C. (−2,2)D. (1,2)8. 如图,∠AOB的大小可由量角器测得,则∠AOB的补角的大小为()A. 140°B. 130°C. 50°D. 40°9. 足球每个m元,篮球每个n元,桐桐为学校买了4个足球,7个篮球共需要()A. (7m+4n)元B. 28mn元C. (4m+7n)元D. 11mn元10. 甲、乙两地相距48千米,一艘轮船从甲地顺流航行至乙地,又立即从乙地逆流返回甲地,共用时9小时,已知水流的速度为4千米/小时,若设该轮船在静水中的速度为千米/小时,则根据题意列出的方程为()A. B.C. D.11. 有理数a,b在数轴上的位置如图所示,则a+b的值()A. 大于0B. 小于0C. 小于aD. 大于b12. 如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用2017根火柴棍,并且正三角形的个数比正六边形的个数多10个,那么能连续搭建正三角形的个数是()A. 285B. 286C. 292D. 295二、填空题(本大题共6小题,共24.0分)13. 长方形的一边长为3a−b,另一边比它小a−2b,那么长方形的周长为______ .14. −(−5)的相反数是;−21的倒数是;绝对值等于3的数是.215. 据你估计,170的算术平方根应该比______ 大,但比______ 小的无理数(填写两个连续整数).16. 小慧在一张日历的一横排上圈了连续的四个数,它们的和为22,这四个数中最小的为______ .17. 过平面上一点O作三条射线OA、OB和OC,已知OA⊥OB,∠AOC:∠AOB=1:2,则∠BOC=______°.18. 已知线段AB=16cm,直线AB上有一点C,并且BC=6cm,点D是线段AC的中点,则线段DB=______.三、解答题(本大题共8小题,共66.0分)19. 计算:|−2|−20180+(12)−120. 先化简,再求值:−(x2+8x)+2(4x+x2),其中|x|=2.21. 解方程①2(2x−3)=6x−5;②2x+65−1=10−2x6;③x+113−2−x4=2.22. 观察下列图形,并阅读图形下面的相关文字:猜想:(1)5条直线相交最多有几个交点?(2)6条直线相交最多有几个交点?(3)n条直线相交最多有几个交点?23. 如果两个角的差的绝对值等于90°,就称这两个角互为垂角,其中一个角叫另一个角的垂角.(1)如图1,O为直线AB上一点,∠AOC=90°,∠EOD=90°,直接写出图中∠BOE的垂角为______;(2)如果一个角的垂角等于这个角的补角的2,求这个角的度数;3(3)如图2,O为直线AB上一点,∠AOC=75°,将整个图形绕点O逆时针旋转n°(0<n<180),直线∠BOB′,试直接写出当n=______时,AB旋转到A1B1,OC旋转到OC1,作射线OP,使∠BOP=12∠POA1与∠AOC1互为垂角.24. 如图,在四边形ABCD中,AB//DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=13,BD=10,求OE的长.25. 已知船在静水中航行的速度为30千米/时,从甲地到乙地顺流而行需3小时,从乙地到甲地逆流而行需5小时(1)求水流速度;(2)求甲地到乙地的路程.26. 如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案及解析1.答案:B解析:解:∵|−13|=13,|−3|=3,而13<3,∴−3<−13<0<5,∴在−13,−3,0,5这四个数中,最小的数是−3.故选:B.根据正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小,即可得出答案.本题考查了有理数的大小比较.解题的关键是明确有理数的大小比较法则是:正数都大于0,负数都小于0,负数都小于正数,两个负数比较大小,其绝对值大的反而小.2.答案:B解析:3.答案:D解析:解:将906.3万用科学记数法表示为:906.3万=9063000=9.063×106,故n=6.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:A解析:解:0既不是正数也不是负数,故选:A.根据实数的分类,可得答案.本题考查了实数,大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.5.答案:B解析:解:∵a1//a2,∠1=56°,∴∠3=∠1=56°.∴∠2=180°−56°=124°,故选:B.根据两直线平行,同位角相等解答即可.本题考查了平行线的性质,熟记性质是解题的关键.6.答案:B解析:根据长方形的周长等于(长+宽)×2,得到表示(长+宽)的代数式,再结合长为a+b,即可解答.(4a−4)÷2−(a+b)=2a−2−a−b=a−b−2.即长方形的宽为a−b−2.故选B.7.答案:B解析:解:设x秒后两点第2016次相遇,根据题意得:(2+3)x=(2016−1)×2×(2+3)+(2+3),解得:x=4031,2x=8032.∵8032=2×(2+3)×803+2,∴第2016次相遇点为点B,即(−1,1).故选:B.设x秒后两点第2016次相遇,根据路程=二者速度之和×时间结合第2016次相遇两点跑过的总路程=四边形的周长×2015+(2+3),即可得出关于x的一元一次方程,解之即可得出x的值,利用点P的路程=点P的速度×时间可求出第2016次相遇时点P的路程,再结合8032=2×(2+3)×803+2可得出第2016次相遇点距点A2个单位长度,此题得解.本题考查了规律型中点的坐标以及一元一次方程,找准等量关系,通过列方程求出第2016次相遇所需时间时解题的关键.8.答案:B解析:解:由量角器可知∠AOB=50°,∴∠AOB的补角的大小为130°,故选:B.由量角器可得出∠AOB的度数,从而可求出∠AOB的度数.本题考查余角与补角,解题的关键是正确理解余角与补角的定义,本题属于基础题型.9.答案:C解析:解:4个足球,7个篮球共需要价钱为:(4m+7n)元,故选C.共需钱数=足球总价钱+篮球总价钱,把相关数值代入即可.得到共需钱数的等量关系是解决问题的关键;用到的知识点为:总价=单价×数量.10.答案:B解析:轮船顺流速度=轮船静水速度+水流速度,轮船逆流速度=轮船静水速度−水流速度,根据题意可知轮船顺流速度为千米/小时,轮船逆流速度为千米/小时,又有等量关系:轮船顺流时间+轮船逆流时间=9,可列得方程:.故选:B.11.答案:A解析:解:根据图可得:a<0,b>0,|b|>|a|,则a+b>0;故选A.根据数轴判断出a,b的符号和绝对值的大小,从而判断出|b|>|a|,再根据有理数的加法法则即可得出a+b的值.此题考查了有理数的加法、数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的思想.12.答案:D解析:解:设连续搭建了n 个正三角形,则连线搭建了(n −10)个正六边形,依题意,得:2n +1+5(n −10)+1=2017,解得:n =295.故选:D .设连续搭建了n 个正三角形,则连线搭建了(n −10)个正六边形,观察图形可知连续搭建了n 个正三角形需要(2n +1)根火柴棍、连线搭建了(n −10)个正六边形需要[5(n −10)+1]根火柴棍,根据搭建正三角形和正六边形共用2017根火柴棍,即可得出关于x 的一元一次方程,解之即可得出结论. 本题考查了一元一次方程的应用以及规律型:图形的变化类,找准等量关系,正确列出一元一次方程是解题的关键是解题的关键.13.答案:10a解析:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.根据一边长表示出另一边长,利用长方形的周长=2(长+宽)列出关系式,去括号合并即可得到结果. 解:根据题意得:2(3a −b +3a −b −a +2b)=2×5a =10a ,则长方形的周长为10a .故答案为:10a .14.答案:−5;−25;3或−3解析:试题分析:根据相反数的定义,只有符号不同的两个数是互为相反数即可求出根据倒数的定义,互为倒数的两数乘积为1,即可求出得数根据绝对值的定义即可求出绝对值等于3的数.根据相反数和倒数的定义得:∵−(−5)=5,∴−(−5)的相反数为−5;∵−212=−52,∴−212的倒数为−25,根据绝对值的定义得:绝对值等于3的数是:3或−3.15.答案:13;14解析:解:∵169<170<196,∴√169<√170<√196,∴13<√170<14,故答案为:13,14.根据13=√169<√170<√196=14,可以得出结果.本题考查了估算无理数大小及算术平方根的知识,注意夹逼法的运用是解答此题的关键.16.答案:4解析:解:设圈住的最小的数为x,其余数为(x+1),(x+2),(x+3),x+(x+1)+(x+2)+(x+3)=22,解得x=4,则x+1=5,x+2=6,x+3=7.故答案为:4.可设最小的数为未知数,表示出其余3个数,让4个数的和相加等于22列式求值即可.本题考查一元一次方程的应用,得到4个数的代数式是解决本题的突破点;用到的知识点为:日历上横行中相邻的数相隔1.17.答案:135或45解析:解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC:∠AOB=1:2,∴∠AOC=45°,如图1:∠BOC=90°+45°=135°,如图2:∠BOC=90°−45°=45°,故答案为:135或45.根据题意画出图形,再结合垂直定义进行计算即可.此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直.18.答案:11cm或5cm解析:解:当点C在线段AB上,如图,∵点D是线段AC的中点,AB=16cm,BC=6cm,∴DC=12AC=12×(AB−BC)=12×(16−6)=5(cm),∴DB=DC+BC=5cm+6cm=11cm;当点C在线段AB的延长上,如图,∵点D是线段AC的中点,AB=16cm,BC=6cm,∴DC=12AC=12×(AB+BC)=12×(16+6)=11(cm),∴DB=DC−BC=11cm−6cm=5cm;综上所述,DB的长为11cm或5cm.故答案为:11cm或5cm.分类讨论:当点C在线段AB上,如图,先根据线段中点定义得到DC=12AC=5cm,然后利用DB=DC+BC求解;当点C在线段AB的延长上,如图,同样得到DC=12AC=11cm,然后利用DB=DC−BC进行计算.本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.注意分类讨论的运用.19.答案:解:原式=2−1+2=3.解析:此题主要考查了实数运算,正确化简各数是解题关键.直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.20.答案:原式=−x 2−8x+8x+2x 2=x 2,当|x|=2,即x=±2时,原式=4.解析:原式去括号合并得到最简结果,求出x的值代入计算即可求出值.21.答案:解:①去括号,得4x−6=6x−5.移项,得4x−6x=−5+6.合并同类项,得−2x=1.系数化为1,得x=−1;2②去分母,得6(2x+6)−30=5(10−2x).去括号,得12x+36−30=50−10x移项,得12x+10x=50−36+30.合并同类项,得22x=44.化系数为1,得x=2;③去分母,得4(x+11)−3(2−x)=24去括号,得4x+44−6+3x=24.移项,得4x+3x=24−44+6化系数为1,得x=−2.解析:①去括号,最后移项,化系数为1,从而得到方程的解;②去分母,去括号,最后移项,化系数为1,从而得到方程的解;③去分母,去括号,最后移项,化系数为1,从而得到方程的解.本题考查了解一元一次方程,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体.22.答案:解:(1)5条直线相交最多有5×(5−1)=10个交点;2=15个交点;(2)6条直线相交最多有6×(6−1)2(3)n条直线相交最多有n(n−1)个交点.2解析:先观察图形,找出交点的个数与直线的条数之间的关系,然后进行计算即可.此题考查了相交线,关键是观察图形,找出规律,用到的知识点是同一平面内n条直线相交最多有n(n−1)个交点.223.答案:(1)∠DOB,∠EOC(2)设这个角的度数为x度,则①当0<x<90时,它的垂角是90+x度,依题意有90+x=2(180−x),3解得x=18;②当90<x<180时,它的垂角是x−90度,依题意有x−90=23(180−x),解得x=126;故这个角的度数为18或126度;(3)30解析:解:(1)∠EOB与∠DOB,∠EOB与∠EOC互为垂角的角,∴图中∠BOE的垂角为∠DOB,∠EOC,故答案为:∠DOB,∠EOC;(2)见答案(3)当n=75时OC′和OA重合,分两种情况:①当0<n<75时,∠COC′=n°,∠AOC′=75°−n°,∠POB=12∠BOB′=12n°,∠A′OP=180°−(∠POB+∠BOB′)=180°−32n°,∵∠A′OP−∠AOC′=90°,∴|(180−32n)−(75−n)|=90,∵0<n<75,∴n=30;②当75<n<90时,∠AOC′=n°−75°,∠POB=12∠BOB′=12n°,∠A′OP=180°−(∠POB+∠BOB′)=180°−32n°,∵∠A′OP−∠AOC′=90°,∴|(180−32n)−(n−75)|=90,解得n=66或138,∵75<n<90,∴n=66或138舍去.综上所述;n=30时,∠POA′与∠AOC′互为垂角,故答案为:30.(1)根据互为垂角的定义即可求解;(2)利用题中的“一个角的垂角等于这个角的补角的2”作为相等关系列方程求解;3(3)分0<n<75,75<n<90两种情况讨论可得n的值.主要考查了互为垂角和补角的概念以及运用.互为垂角的两个角的差的绝对值等于90°,互为补角的两角之和为180°.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.24.答案:(1)证明:∵AB//CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB//CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,AC=OA=OC,∴OE=12∵BD=10,∴OB=1BD=5,2在Rt△AOB中,AB=13,OB=5,∴OA=√AB2−OB2=√132−52=12,∴OE=OA=12.解析:(1)先证CD=AD=AB,则四边形ABCD是平行四边形,再由AD=AB,即可得出结论;(2)由菱形的性质得OA=OC,OB=OD,BD⊥AC,再由直角三角形斜边上的中线性质得OE=OA= OC,然后由勾股定理得OA=12,即可求解.本题考查了菱形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、平行线的性质、直角三角形斜边上的中线性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.25.答案:解:(1)设水流的速度为xkm/ℎ,由题意,得3(x+30)=5(30−x),解得:x=7.5.答:水流的速度是7.5km/ℎ.(2)3(7.5+30)=112.5(千米),答:甲地到乙地的路程为112.5千米.解析:(1)设水流的速度为xkm/ℎ,由题意得等量关系:顺流速度×顺流时间=逆流速度×逆流时间,根据等量关系列出方程,再解即可;(2)利用顺流速度×顺流时间可得甲地到乙地的路程.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系.26.答案:解:(1)∠DOE的补角为:∠COE,∠AOD,∠BOC;(2)∵OD是∠BOE的平分线,∴∠BOD=12∠BOE=31°,∴∠AOD=180°−∠BOD=149°;∵∠AOE=180°−∠BOE=118°,又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.即∠AOD=149°,∠EOF=59°;(3)射线OD与OF互相垂直.理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.即射线OD、OF的位置关系是垂直.解析:(1)根据互补的定义确定∠DOE的补角;(2)先根据角平分线的定义得出∠BOD的度数,再由邻补角定义可得∠AOD=180°−∠BOD;先根据邻补角定义可得∠AOE=180°−∠BOE,再由角平分线的定义得出∠EOF的度数;(3)运用平角的定义和角平分线的定义,证明∠DOF是90°,得直线OD、OF的位置关系.本题考查了角平分线、补角、垂线的定义以及角的计算,属于基础题型,比较简单.。

浙教版2019-2020学年七年级(上)期末数学综合复习试题(解析版)

浙教版2019-2020学年七年级(上)期末数学综合复习试题(解析版)

浙教版2019-2020学年七年级(上)期末数学综合复习试题一、选择题(本大题共10小题,每小题3分,共30分)1.下面几何图形中,是棱柱的是()A.B.C.D.2.某同学集合在假期每天做6道数学题,超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:﹣3,5,﹣4,2,﹣1,1,0,﹣3,8,7,那么他十天共做了数学题()A.70道B.71道C.72道D.73题3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×10104.如图,共有线段()A.3条B.4条C.5条D.6条5.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6 6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80°C.120°D.150°7.已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是()A.2B.C.3D.8.下列生活或生产现象中,可用公理“两点之间,线段最短”来解释的现象有()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线D.以上说法都不能用此公理解释9.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc+5D.a=10.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣2018二、填空题(本大题共6小题,每小题4分,共24分)11.计算:﹣3÷×2=.12.已知2a﹣3b=7,则8+6b﹣4a=.13.如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠1=26°48′,则∠2=.14.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB 的中点,则PQ的长为.15.当x=1时,多项式ax2+bx+1=3,则多项式3(2a﹣b)﹣(5a﹣4b)的值为.16.商店为了促销某种商品,将定价为3元的商品以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小华买了n件该商品共付了27元,则n的值是.三、解答题(本大题共8小题,满分66分)17.(8分)计算:(1)(﹣7)÷×(﹣)×;(2)1﹣2x+(﹣x)﹣(1﹣)18.(8分)解下列方程:(1)x﹣3=x+1 (2)2x﹣(x+3)=﹣x+319.(8分)先化简,再求值:﹣5ab+2[3ab﹣(4ab2+ab)]﹣5ab2,其中a=﹣2,b=.20.(8分)甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?21.(8分)一个检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离A地多远?在A地的什么方向?(2)若每千米耗油0.1升,请问这天共耗油多少升?22.(9分)小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.23.(10分)如图,直线AB与CD相交于点O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试求∠DOF的度数.24.(10分)先观察下列各式的规律,然后解答后面的问题:第1个式子:=1﹣;第2个式子:=﹣;第3个式子:=﹣;……(1)由上面的规律可得出结论:=﹣.(2)已知|ab﹣2|+|a﹣1|=0,求:++…+的值.浙教版2019-2020学年七年级(上)期末数学综合复习试题参考答案及试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下面几何图形中,是棱柱的是()A.B.C.D.【解答】解:棱柱的侧面应是四边形,符合这个条件的只有选项B.故选:B.2.某同学集合在假期每天做6道数学题,超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:﹣3,5,﹣4,2,﹣1,1,0,﹣3,8,7,那么他十天共做了数学题()A.70道B.71道C.72道D.73题【解答】解:10×6+(﹣3+5﹣4+2﹣1+1+0﹣3+8+7)=60+12=72.故选:C.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×1010【解答】解:将4400000000用科学记数法表示为:4.4×109.故选:C.4.如图,共有线段()A.3条B.4条C.5条D.6条【解答】解:线段AB、AC、AD、BC、BD、CD共六条,也可以根据公式计算,=6,故选D.5.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80°C.120°D.150°【解答】解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选:C.7.已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是()A.2B.C.3D.【解答】解:把x=3代入方程得12﹣a=3+3a,移项,得﹣a﹣3a=3﹣12,合并同类项得﹣4a=﹣9,系数化成1得a=.故选:B.8.下列生活或生产现象中,可用公理“两点之间,线段最短”来解释的现象有()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线D.以上说法都不能用此公理解释【解答】解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故本选项正确;C、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误;D、因为B选项可以解释,故本选项错误.故选:B.9.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc+5D.a=【解答】解:A、根据等式的性质1可知:等式的两边同时减去5,得3a﹣5=2b;B、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;D、根据等式的性质2:等式的两边同时除以3,得a=;C、当c=0时,3ac=2bc+5不成立,故C错.故选:C.10.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣2018【解答】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.计算:﹣3÷×2=﹣12.【解答】解:﹣3÷×2=﹣3×2×2=﹣12.故答案为:﹣12.12.已知2a﹣3b=7,则8+6b﹣4a=﹣6.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.13.如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠1=26°48′,则∠2=73°12′.【解答】解:∵∠AOB=100°,∠1=26°48′,∴∠2=100°﹣26°48′=73°12′.故答案为:73°12′14.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB 的中点,则PQ的长为6cm.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm;故答案为:6cm.15.当x=1时,多项式ax2+bx+1=3,则多项式3(2a﹣b)﹣(5a﹣4b)的值为2.【解答】解:∵当x=1时,多项式ax2+bx+1=a+b+1=3,∴a+b=2,3(2a﹣b)﹣(5a﹣4b)=6a﹣3b﹣5a+4b=a+b=2.故答案为:2.16.商店为了促销某种商品,将定价为3元的商品以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小华买了n件该商品共付了27元,则n的值是10.【解答】解:∵27>5×3,∴27元可购买的商品一定超过了5件,设买了n件.5×3+(n﹣5)×3×0.8=27,2.4n=24,n=10,故答案是:10.三、解答题(本大题共8小题,满分66分)17.(8分)计算:(1)(﹣7)÷×(﹣)×;(2)1﹣2x+(﹣x)﹣(1﹣)【解答】解:(1)(﹣7)÷×(﹣)×;=(﹣7)×3×(﹣)×=10;(2)1﹣2x+(﹣x)﹣(1﹣)=1﹣2x﹣x﹣1+=﹣x.18.(8分)解下列方程:(1)x﹣3=x+1(2)2x﹣(x+3)=﹣x+3【解答】解:(1)去分母得:2x﹣6=3x+2,移项合并得:﹣x=8,解得:x=﹣8;(2)去分母得:6x﹣2x﹣6=﹣3x+9,移项合并得:7x=15,解得:x=.19.(8分)先化简,再求值:﹣5ab+2[3ab﹣(4ab2+ab)]﹣5ab2,其中a=﹣2,b=.【解答】解:﹣5ab+2[3ab﹣(4ab2+ab)]﹣5ab2=﹣5ab+6ab﹣8ab2+ab﹣5ab2=﹣13ab2,当a=﹣2,b=时,原式=.20.(9分)甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?【解答】解:设x小时后快车追上慢车,由题意得:140x﹣90x=480,解得:x=9.6,答:9.6小时后快车追上慢车.21.(9分)一个检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离A地多远?在A地的什么方向?(2)若每千米耗油0.1升,请问这天共耗油多少升?【解答】解:(1)根据正负数的运算法则,把一天行驶记录相加即可得到收工时检修小组离A地的距离,在A地的哪个方向,即﹣4+7﹣9+8+6﹣5﹣2=1,故收工时检修小组离A地1千米,在A地的东方.(2)每次记录的绝对值的和×0.2就是这天中的耗油量,即|﹣4|+|7|+|﹣9|+|8|+|6|+|﹣5|+|﹣2|=41千米,41×0.1=4.1升.故这辆汽车共耗油4.1升.22.(9分)小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.【解答】解:∵去分母时,只有方程左边的1没有乘以10,∴2(2x﹣1)+1=5(x+a),把x=4代入上式,解得a=﹣1.原方程可化为:,去分母,得2(2x﹣1)+10=5(x﹣1)去括号,得4x﹣2+10=5x﹣5移项、合并同类项,得﹣x=﹣13系数化为1,得x=13故a=﹣1,x=13.23.(9分)如图,直线AB与CD相交于点O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试求∠DOF的度数.【解答】解:(1)∠DOE的补角为∠COE,∠AOD,∠BOC;(2)因为OD是∠BOE平分线,且∠BOE=62°,所以=31°,所以∠AOD=180°﹣∠BOD=149°.因为∠AOE=180°﹣∠BOE=118°,OF是∠AOE的平分线,所以=59°;(3)因为OF,OD分别是∠AOE,∠BOE的平分线,所以∠DOF=∠DOE+∠EOF===×180°=90°.24.(9分)先观察下列各式的规律,然后解答后面的问题:第1个式子:=1﹣;第2个式子:=﹣;第3个式子:=﹣;……(1)由上面的规律可得出结论:=﹣.(2)已知|ab﹣2|+|a﹣1|=0,求:++…+的值.【解答】解:(1)由上面的规律可得:=﹣故答案为:﹣;(2)∵|ab﹣2|+|a﹣1|=0∴ab﹣2=0,a﹣1=0∴a=1,b=2∴++…+=++…+=1﹣+﹣+…+﹣=1﹣=。

2019-2020学年浙江省宁波市数学七年级(上)期末质量检测模拟试题

2019-2020学年浙江省宁波市数学七年级(上)期末质量检测模拟试题

2019-2020学年浙江省宁波市数学七年级(上)期末质量检测模拟试题一、选择题1.如图,OC 为AOB ∠内一条直线,下列条件中不能确定OC 平分AOB ∠的是( )A.AOC BOC ∠∠=B.AOB 2AOC ∠∠=C.AOC COB AOB ∠∠∠+=D.1BOC AOB 2∠∠= 2.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民3.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )A .B .C .D .4.在如图所示的2019年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是( )A.27B.51C.65D.725.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( ) A.87a B.87|a| C.127|a| D.127a6.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A.3 B.6 C.8 D.97.下列说法正确的是( ) A.3xy 5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式 D.2x x 1--的常数项是1 8.一个多项式A 与多项式2223B x xy y =--的差是多项式22C x xy y =++,则A 等于( ) A .2242x xy y --B .2242x xy y -++ C .22322x xy y -- D .232x xy - 9.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( ) A.32824x x =- B.+32824x x = C.2232626x x +-=+ D.2232626x x +-=- 10.下列各式中无论m 为何值,一定是正数的是( )A .|m|B .|m+1|C .|m|+1D .﹣(﹣m )11.若等式(﹣5)□5=0成立,则□内的运算符号为( )A .+B .﹣C .× D.÷12.如果||a a =-,下列成立的是( ).A.0a <B.0a >C.0a ≤D.0a ≥二、填空题13.如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,AC=8,NB=5,则线段MN=______.14.如图,在Rt ABC ∆中,90︒∠=C ,30A ︒∠=,9BC =,若点P 是边AB 上的一个动点,以每秒3个单位的速度按照从A B A →→运动,同时点Q 从B C →以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。

浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)

浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)

浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人3.(3分)的平方根是()A.B.C.D.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.16.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣27.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=13.(4分)单项式的系数为.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=.15.(4分)如图,以图中的A、B、C、D为端点的线段共有条.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过秒两人相距100米.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×18.(6分)计算:19.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点米?(3)球员在这一组练习过程中,共跑了多少米?22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.浙教版2019-2020学年度七年级上册期末考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数解:A、0的绝对值是0,故选项错误;B、绝对值为3的数是3或﹣3,故选项错误;C、﹣2的绝对值是2,故选项正确;D、正数的绝对值是它本身,故选项错误.故选:C.2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人解:12000用科学记数法表示为1.2×104.故选:B.3.(3分)的平方根是()A.B.C.D.解:∵(±)2=,∴的平方根是±,故选:C.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元解:由题意可得,这一商品的价格为:m(1+50%)×0.6=0.9m(元),故选:B.5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.1解:根据题意得:a+3=0,b﹣4=0,解得:a=﹣3,b=4,则a+b=﹣3+4=1.故选:D.6.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣2解:∵2x2+3x+7=8,∴2x2+3x=1,∴2x2+3x﹣9=1﹣9=﹣8.故选:B.7.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°解:∵∠AOD=∠AOC+∠COD,∠COB=∠COD+∠DOB,∴∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB,=∠AOC+∠COD+∠DOB+∠COD=∠AOB+∠COD∵∠AOB=120°,∠COD=60°,∴∠AOD+∠COB=120°+60°=180°.故选:B.8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,故A选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、根据等式的性质2得出,c=0,不成立,故C选项符合题意;D、根据等式的性质2可得出,若=,则3x=2y,故D选项不符合题意;故选:C.9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为9或1.解:由题意得:5+4=9或5﹣4=1,则距离A点4个单位长度的点表示的数为9或1;故答案为:9或1.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=7解:∵,∴3<<4,∴a=3,b=4,∴a+b=7.故答案为:713.(4分)单项式的系数为﹣.解:单项式的系数为:﹣.故答案为:﹣.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=10.解:2x+4=x+1,2x﹣x=1﹣4,x=﹣3,把x=﹣3代入2x+a=x﹣1中得:﹣6+a=﹣3﹣1,解得:a=10,故答案为:10.15.(4分)如图,以图中的A、B、C、D为端点的线段共有6条.解:图中的线段有:线段AB,线段AC,线段AD,线段BC,线段BD,线段CD,共6条.故答案为:6.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过90或110秒两人相距100米.解:设经过x秒两人相距100米,当两人未相遇前,7x+3x+100=1000,解得:x=90;当两人相遇后,7x+3x﹣100=1000,解得:x=110.故答案为:90或110.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×解:原式=2﹣××(﹣3)=2+=2.18.(6分)计算:解:=﹣1+4﹣3+2=219.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.解:原式=6x2y﹣12xy2+3xy2﹣x2y=5x2y﹣9xy2,当x=﹣,y=1时,原式=+=.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.解:如图1,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,∴∠AOC+∠BOC=2α﹣10°+α=80°,∴α=30°,∴∠BOC=30°;如图2,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点60米?(3)球员在这一组练习过程中,共跑了多少米?解:(1)+40﹣30+50﹣25+25﹣30+15﹣28+16﹣18=15(米)∴球员最后到达的地方在出发点的东方,距出发点15米远;(2)+40﹣30+50=60(米)故答案为:60;(3)|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=40+30+50+25+25+30+15+28+16+18=277(米)∴球员在这一组练习过程中,共跑了277米.22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.解:(1)由题意,得∠P AB=65°,∵表示同一方向的射线是平行的,即AP∥BQ,∴∠P AB+∠QBA=180°,∴∠QBA=180°﹣∠P AB=180°﹣65°=115°,∵∠ABC=100°,∴∠CBQ=∠QBA﹣∠ABC=115°﹣100°=15°,∴C村在B村的北偏西15°方向上;(2)设每个施工队每天铺设x米,由题意,得9x﹣6x=600,解得x=200,∴9x+6x=9×200+6×200=3000,答:两段公路的总长3000米.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?解:(1)由于3000×0.9=2700>2600所以,应该是按照活动①付款.即按照标价2600元付款.答:第一次购买了标价2600元的家具;(2)因为5000×0.8=4000,3906<4000所以,不可能打八折.设付款39602元的家具的标价是x元,由题意,得0.9x=3906解得x=4340则(4340+2600)×0.8=5552(元)答:如果小华爸爸一次性购买这些家具,应付5552元;(3)2600+3906=6506(元),则能比原来节约:=.24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。

(宁波)2019-2020学年第一学期七年级期末测试-数学试题卷参考答案及评分建议

(宁波)2019-2020学年第一学期七年级期末测试-数学试题卷参考答案及评分建议

2019-2020学年第一学期七年级期末测试-数学试题卷参考答案及评分建议一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)二、填空题(每小题3分,共18分)13.150°14.1 2 -15.3 16.3 cm或7 cm17.1-2π18.12 x=-三、解答题(第19-20题每题6分,第21-24题每题8分,第25题10分,第26题12分,共66分)19.解:(1)原式=2133()()5445+-+-+ ·································································1分=2313 ()[()()] 5544++-+-=1+(-1) ··················································································1分=0. ·······················································································1分(2)原式=143433-+++⨯ ······································································2分=4. ·······················································································1分20.解:(1)移项,得3x+x=7+5, ·······································································1分合并同类项,得4x=12, ···································································1分方程两边同除以4,得x=3.······························································1分(2)去分母,得12-2(2x+1)=3(x+1),························································1分去括号,得12-4x-2=3x+3, ···························································1分移项,合并同类项,得-7x=-7,方程两边同除以-7,得x=1. ···························································1分21.解:(1)①如图所示.②如图所示.·····························································4分(2)PH OH> ····················································································3分连结直线外一点与直线上各点的所有线段中,垂线段最短.(回答“垂线段最短”或“直角三角形的斜边最长”也得分) ················································1分22.解:原式=x2-6xy+2y2-2x2+2xy-2y2=x2-2x2-6xy+2xy+2y2-2y2=-x2-4xy, ··················································································4分∵x,y满足|x+2|+(y-1)2=0,∴x=-2,y=1, ····················································································2分当x=-2,y=1时,原式=-x2-4xy=-(-2)2-4×(-2)×1=4.···················································2分23.解:(1)∵OC是∠AOB的平分线,∴可设∠AOC=∠BOC=x°,∵∠COD=10°,∴∠BOD=∠BOC+∠COD=(x+10)°,∠AOD=∠AOC-∠COD=(x-10)°,∴∠BOD-∠AOD=(x+10)°-(x-10)°=20°.··········································4分(2)解法一:(整体思想)∵OC是∠AOB的平分线,∴∠AOB=2∠BOC,∵OD是∠BOE的平分线,∴∠BOE=2∠BOD,∴∠AOE=∠BOE-∠AOB=2∠BOD-2∠BOC=2(∠BOD-∠BOC)=2∠COD,∵∠COD=10°,∴∠AOE=20°,···············································································2分∵∠AOE+∠BOC=90°,∴∠AOC=∠BOC=90°-∠AOE=90°-20°=70°.·····································2分解法二:(方程思想,与(1)联系紧密)∵OC是∠AOB的平分线,∴∠AOC=∠BOC,∵∠AOE+∠BOC=90°,∴∠AOE+∠AOC=90°,即∠EOC=90°,···············································2分设∠AOC=∠BOC=x°,则∠BOD=∠BOC+∠COD=(x+10)°,∠BOE=∠EOC+∠BOC=(90+x)°,∵OD 是∠BOE 的平分线,∴∠BOE =2∠BOD ,即90+x =2(x +10),解得x =70,∴∠AOC =70°. ·············································································· 2分 解法三:(借助角平分线进行角的转化)∵OC 是∠AOB 的平分线,∴∠AOC =∠BOC ,∵∠AOE +∠BOC =90°,∴∠AOE +∠AOC =90°,即∠EOC =90°, ··············································· 2分 ∵∠COD =10°,∴∠EOD =90°-∠COD =80°,∵OD 是∠BOE 的平分线,∴∠BOD =∠EOD =80°,∴∠AOC =∠BOC =∠BOD -∠COD =80°-10°=70°. ······························· 2分24.解:(1)20×4%=0.8(万元)=8000(元),3000+8000=11 000(元),答:他该月的工资为11 000元. ························································· 2分(2)(15-10)×10%=0.5(万元)=5000(元),3000+5000=8000(元),∵3000<6500<8000,∴他的业绩在第二档. ····································································· 2分 设他的业绩为x 万元,则由题意得,3000+(x -10)×10%×10 000=6500,解得x =13.5,答:他的业绩为13.5万元. ······························································· 4分25.解:(1)①15 000. ····················································································· 1分②3000n . ······················································································ 2分 (2)802500=666603⨯(转), 266666=40003p =⨯+⨯. ································································ 3分 注:(2)考查过程,在答案正确的情况下,若直接用(1)中的结论,仅得2分. (3)有可能.由(2)知(1)中的结论可以修改为30005060m m ⨯=, 故50m =2050,解得m =41. ······························································· 4分26.解:(1)(-1)*(-2)=|(-1)+(-2)|+|(-1)-(-2)|=3+1=4. ···································· 2分(2)根据数轴可知:a +b >0,a -b <0, ······················································· 2分所以a *b =|a +b |+|a -b |=a +b +b -a =2b . ·················································· 2分(3)因为a*2=|a+2|+|a-2|=5,故需对a进行分类讨论:①当a≥2时,|a+2|=a+2,|a-2|=a-2,a*2=a+2+a-2=5,解得a=2.5.②当-2≤a<2时,|a+2|=a+2,|a-2|=2-a,a*2=a+2+2-a=4≠5,此时a不存在.③当a<-2时,|a+2|=-a-2,|a-2|=2-a,a*2=-a-2+2-a=5,解得a=-2.5.综上所述,a的值为2.5或-2.5. ·······················································6分注:若利用绝对值的几何意义解题,同样酌情给分.。

浙江省宁波市北仑区七年级(上)期末数学试卷

浙江省宁波市北仑区七年级(上)期末数学试卷

浙江省宁波市北仑区七年级(上)期末数学试卷七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.2019的相反数是()A. B. C. D. 20192.据报道,北仑滨海万人沙滩规划面积约32万平方米,数字32万用科学记数法表示为()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.在,0.2,,π,1.010010001……(每两个1之间依次增加一个0)中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个5.已知2x5y2和-x m+2y2是同类项,则m的值为()A. 3B. 4C. 5D. 66.关于x的方程kx=2x+6与2x-1=3的解相同,则k的值为()A. 3B. 4C. 5D. 67.《九章算术》中记载一问题如下:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,依题意列方程得()A. B. C. D.8.如图,OA方向是北偏西40°方向,OB平分∠AOC,则∠BOC的度数为()A. B. C. D.9.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.10.如图,在线段AB上有C、D两点,CD长度为1cm,AB长为整数,则以A、B、C、D为端点的所有线段长度和不可能为()A. 21cmB. 22cmC. 25cmD. 31cm二、填空题(本大题共8小题,共24.0分)11.如果把向东走2米记为+2米,则向西走3米表示为______米.12.单项式的系数为______.13.36的平方根是______.14.若a-2b=3,则3a-6b-2=______.15.如图,线段AB=16cm,C是AB上一点,且AC=10cm,O是AB中点,则线段OC的长度为______cm.16.如图,在长方形ABCD中,∠2比∠1大41°,则∠AEB的度数为______(用度分秒形式表示)17.数轴上从左到右依次有A、B、C三点表示的数分别为a、b、,其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a=______.18.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”,如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397,图2用“格子乘法”表示两个两位数相乘,则a的值为______.三、计算题(本大题共3小题,共19.0分)19.计算:(1)()×12;(2)-32+.20.解下列方程:(1)5(x-2)=2x-4;(2).21.如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠l=100°,∠2=40°,|∠1-∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直接三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是______,与∠BOC互为友好角的是______,②当t=______时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC与∠DOF互为友好角(自行画图分析).四、解答题(本大题共5小题,共27.0分)22.(1)化简:3x2-5x2+6x2.(2)先化简,后求值:2(a2-ab-3.5)-(a2-4ab-9),其中a=-5,b=.23.如图,平面上有四个点A、B、C、D,按要求作图并回答问题.(1)作直线AC,射线AD;(2)作∠DAC的角平分线;(3)在直线AC上找一点P,使P点到B、D两点的距离和最小,并说明理由.24.如图,直线AB和CD相交于点O,CD⊥OE,OF平分∠AOE,∠COF=26°,求∠EOF,∠BOD的度数.25.观察以下图案和算式,解答问题:(1)1+3+5+7+9=______;(2)1+3+5+7+9+…+19=______;(3)请猜想1+3+5+7+……+(2n-1)=______;(4)求和号是数学中常用的符号,用表示,例如,其中n=2是下标,5是上标,3n+1是代数式,表示n取2到5的连续整数,然后分别代入代数式求和,即:=3×2+1+3×3+1+3×4+1+3×5+1=46请求出的值,要求写出计算过程,可利用第(2)(3)题结论.26.为倡导绿色出行推广节能减排,国家越来越重视新能源汽车的发展,到2020年宁波市将建成不少于5万个新能源汽车充电桩,现有一充电桩具体收费标准如下:充电时长0~4小时(含4小时)每小时收费3元,充电时长超过4小时,超过部分每小时收费2元.(1)若小明妈妈在该充电桩充电3小时,则需支付费用______元;若小明妈妈在该充电桩充电6小时,则需支付费用______元.(2)若小明妈妈在该充电桩充电x小时(x>4),则需要支付费用______(用含x 的代数式表示).(3)若某星期小明妈妈周二和周五在该充电桩连续充电共10小时(周五充电时长超过周二充电时长),共支付费用27元,则小明妈妈周二和周五各充电多少小时?答案和解析1.【答案】B【解析】解:2019的相反数是-2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】C【解析】解:数字32万用科学记数法表示为3.2×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:A、-3+2=-1,错误;B、=3,错误;C、-|-1|=-1,错误;D、(-2)3=-8,正确;故选:D.根据有理数的加法、算术平方根、绝对值、有理数乘方计算判断即可.此题考查有理数的加法、算术平方根、绝对值、有理数乘方,关键是根据有理数的加法、算术平方根、绝对值、有理数乘方解答.4.【答案】C【解析】解:在所列实数中,无理数有,π,1.010010001……(每两个1之间依次增加一个0)这3个,故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.【答案】A【解析】解:由题意可知:m+2=5,∴m=3,故选:A.根据同类项的定义即可求出答案.本题考查同类项,解题的关键是熟练运用同类项的定义,本题属于基础题型.6.【答案】C【解析】解:方程2x-1=3,解得:x=2,把x=2代入kx=2x+6得:2k=10,解得:k=5,故选:C.求出第二个方程的解,代入第一个方程计算即可求出k的值.此题考查了同解方程,同解方程即为能使方程左右两边相等的未知数的值.7.【答案】B【解析】解:设有x人,根据题意得:8x-3=7x+4.故选:B.设有x人,根据该物品价格不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.【答案】D【解析】解:∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°,∵OB平分∠AOC,∴∠BOC=∠AOC=65°,故选:D.根据方向角的定义和角平分线的定义即可得到结论.本题考查方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.9.【答案】B【解析】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.本题主要考查图形的变化类,解题的关键是根据题意弄清题干规定的运算规则,并将图形的变化问题转化为数字问题.10.【答案】A【解析】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∴以A、B、C、D为端点的所有线段长度和为长度为3的倍数多1,∴以A、B、C、D为端点的所有线段长度和不可能为21.故选:A.根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=1,线段AB的长度是一个正整数,可以解答本题.本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.11.【答案】-3【解析】解:∵向东走2米记为+2米,∴向西走3米可记为-3米,故答案为:-3.根据正数和负数表示相反意义的量,向东记正负,可得向西的表示方法.本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.12.【答案】【解析】解:单项式的系数为,故答案为:.根据单项式系数的定义即可求解.本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数.13.【答案】±6【解析】解:36的平方根是±6,故答案为:±6.根据平方根的定义求解即可.本题考查了平方根的定义,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.14.【答案】7【解析】解:当a-2b=3时,原式=3(a-2b)-2=3×3-2=9-2=7,故答案为:7.将a-2b的值代入原式=3(a-2b)-2,计算可得.此题考查了代数式求值,利用了整体代入的思想,将所求式子适当的变形是解本题的关键.15.【答案】2或18【解析】解:本题有两种情形:(1)当点C在线段AB上时,如图,OC=AC-AO=AC-AB,又∵AC=10cm,AB=16cm,∴OC=2cm;(2)当点C在线段BA的延长线上时,如图,OC=AC+AO=AC+AB,又∵AC=10cm,AB=16cm,∴OC=18cm.故线段OC的长度是2cm或18cm.故答案为:2或18本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意正确画出图形进行解答.此题主要考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.【答案】65°30′【解析】解:∵四边形ABCD是矩形,∴∠DAB=90°,AD∥BC∴∠2+∠1=90°,且∠2-∠1=41°,∴∠2=65°30′∵AD∥BC∴∠AEB=∠2=65°30′故答案为:65°30′由题意可得∠2+∠1=90°,且∠2-∠1=41°,可求∠AEB=∠2=65°30′.本题考查了矩形的性质,利用方程的思想求∠2的度数是本题的关键.17.【答案】5或6【解析】解:因为|a+3|+|b-2|≥0,所以b-2≥0,即b≥2.∵|a+3|+|b-2|=b-2,∴|a+3|+b-2=b-2,即|a+3|=0,∴a=-3由于2≤b<,且b是整数,所以b=2或3.当b=2时,b-a=2-(-3)=5,当b=3时,b-a=3-(-3)=6.故答案为:5或6根据绝对值的和是非负数,先确定b的值,再化简|a+3|+|b-2|=b-2,求出a的值,计算b-a.本题考查了绝对值的化简、实数和数轴、绝对值的和等知识点.确定b的取值范围和a、b的值是解决本题的关键.18.【答案】3【解析】解:设4a的十位数字是m,个位数字是n,∴∴∴a=1,故答案为1;设4a的十位数字是m,个位数字是n,列出符合条件的方程组即可求解;本题考查新定义,三元一次方程组;能够理解新定义,4a的结果用各位数字正确表示出来是解题的关键.19.【答案】解:(1)原式=8+9-6=11;(2)原式=-9+4+1+3=-1.【解析】(1)根据实数的运算法则即可求出答案.(2)根据实数的运算法则即可求出答案.本题考查实数的运算,解题的关键是熟练运用实数的运算法则,本题属于基础题型.20.【答案】解:(1)5x-10=2x-4,5x-2x=10-4,3x=6,x=2;(2)4(2x-1)=3(x+2)-12,8x-4=3x+6-12,8x-3x=6-12+4,5x=-2,x=-.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.21.【答案】∠AOE∠BOD或∠AOC15s【解析】解:(1)由题意知①∵当AO在直线CO左侧时,∠BOE<60°,∴互为友好角应该是∠BOE+60°=∠AOE,而与∠BOC互为友好角的可以是∠BOC+60°=∠BOD,也可以是∠BOC-60°=∠AOC②当∠BOE与∠AOD互为友好角时,即∠AOD-∠BOE=60°得方程:(120°-2t)-2t=60°∴t=15故答案为∠AOE,∠BOD或∠AOC,15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120-5t|∠BOC-∠DOF|=60°,表示为|120-5t-3t|=60即|120-8t|=60去绝对值得120-8t=60(如图1)或8t-120=60(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t-120|∠BOC-∠DOF|=60°,表示为|5t-120-3t|=60即|2t-120|=60去绝对值得2t-120=60或120-2t=60(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.(1)当AO在直线CO左侧时,∠BOE<60°,所以互为友好角应该是∠BOE+60°=∠AOE,与∠BOC互为友好角的可以是∠BOC+60°也可以是∠BOC-60°,即可求解;当∠BOE与∠AOD互为友好角时,满足∠AOD-∠BOE=60°即可;(2)当∠BOC与∠DOF互为友好角时,要分OB在OC左侧与OB 在OC右侧两种情况讨论;用含t的代数式分别表示出∠BOC与∠DOF,根据友好角的定义列式求解即可.本题考查的是在新定义的条件下,用方程的思想解决角的变化问题,重点要抓住角的变化过程中出现的每一种情况.22.【答案】解:(1)3x2-5x2+6x2=(3-5+6)x2=4x2;(2)2(a2-ab-3.5)-(a2-4ab-9)=2a2-2ab-7-a2+4ab+9=a2+2ab+2,当a=-5,b=时,原式=25-15+2=12.【解析】(1)合并同类项即可得到结论;(2)原式利用去括号法则去括号后,合并得到最简结果,将a与b的值代入计算,即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)如图所示,直线AC和射线AD即为所求;(2)如图所示,射线AE即为所求;(3)如图所示,点P即为所求,∵两点直线的所有连线中,线段最短,且点P在AC上,∴P点到B、D两点的距离和最小.【解析】(1)利用直线、射线的概念求解可得;(2)利用作一个角等于已知角的尺规作图可得;(3)利用“两点直线的所有连线中,线段最短”作图可得.本题主要考查作图-复杂作图,解题的关键是掌握直线、射线的概念及作一个角等于已知角的尺规作图和两点直线的所有连线中线段最短.24.【答案】解:∵CD⊥OE,∴∠COE=90°,∵∠COF=26°,∴∠EOF=∠COE-∠COF=90°-26°=64°,∵OF平分∠AOE,∴∠AOF=∠EOF=64°,∴∠AOC=∠AOF-∠COF=38°∵∠BOD=∠AOC=38°.【解析】根据垂直的定义得到∠COE=90°,根据余角的定义得到∠COF=26°,由角的和差求出∠EOF的度数,利用角平分线的性质得出∠AOF的度数,进而得出∠BOD的度数,即可得出答案.此题主要考查了垂线,角平分线的性质以及邻补角的定义,正确利用角平分线的性质分析是解题关键.25.【答案】25 100 n2【解析】解:(1)1+3+5+7+9=52=25,故答案为:25;(2)1+3+5+7+9+…+19=102=100,故答案为:100;(3)1+3+5+7+……+(2n-1)=n2,故答案为:n2;(4)=21+23+25+……+47+49=(1+3+5+......+47+49)-(1+3+5+ (19)=252-102=525.(1)根据连续n个奇数的和等于n2即可得;(2)利用所得规律计算可得;(3)利用(1)中所得规律计算可得;(4)由=21+23+25+……+47+49=(1+3+5+……+47+49)- (1+3+5+……+19),利用所得规律计算可得.本题主要考查数字的变化类,解题的关键是掌握连续n个奇数的和等于n2的规律.26.【答案】9 16 (2x+4)元【解析】解:(1)3×3=9(元),3×4+2×(6-4)=16(元).故答案为:9;16.(2)依题意,得:需要支付费用为3×4+2(x-4)=2x+4(元).故答案为:(2x+4)元.(3)设周二充电m小时,则周五充电(10-m)小时,∵周二和周五共充电10小时,周五充电时长超过周二充电时长,∴周五充电时长超过4小时.当0<m≤4时,有3m+2(10-m)+4=27,解得:m=3,∴10-m=7;当m>4时,有2m+4+2(10-m)+4=27,即28=27(舍).答:周二充电3小时,周五充电7小时.(1)根据充电桩的收费标准,可求出当使用时间为3小时及6小时时需支付的费用;(2)根据需支付费用=3×4+2×超出4小时的时间,即可得出结论;(3)设周二充电m小时,则周五充电(10-m)小时,分0<m≤4及m>4两种情况找出关于m的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、有理数的混合运算以及列代数式,解题的关键是:(1)根据收费标准,列式计算;(2)根据数量关系,列出代数式;(3)分0<m≤4及m>4两种情况列出关于m 的一元一次方程.。

19-20学年浙江省宁波市北仑区七年级上学期期末数学试卷 及答案解析

19-20学年浙江省宁波市北仑区七年级上学期期末数学试卷 及答案解析

19-20学年浙江省宁波市北仑区七年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1. 四个数−2,−1,0,0.2中,最小的数是( )A. −2B. −1C. 0D. 0.22. 下列叙述正确的是( )A. √16=±4B. 5的平方根是√5C. −√5是5的一个平方根D. √22是分数 3. 11日凌晨,阿里巴巴公布了2015双十一购物狂欢节的相关数据:33分53秒时,成交额破200亿.200亿用科学记数法表示为( )A. 0.2×1010B. 2×1010C. 2×109D. 20×109 4. 在实数√83,π3,√12,43中有理数有( )A. 1个B. 2个C. 3个D. 4个5. 下列各图中,∠1与∠2是对顶角的是( ) A. B. C. D.6. a 的5倍与b 的和的平方用代数式表示为( )A. (5a +b )2B. 5a +b 2C. 5a 2+b 2D. 5(a +b )27. 图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A. 12.8元B. 18元C. 20元D. 24元8. 一副三角板按如图所示的方式摆放,且∠1的度数是∠2的3倍,则∠2的度数为( )A. 20∘B. 22.5∘C. 25∘D. 67.5∘9.一种商品每件进价为a元,按进价增加20%定为售价,后因库存积压降价,按售价的八折出售,每件亏损()A. 0.01a元B. 0.15a元C. 0.25a元D. 0.04a元10.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A. 27B. 51C. 69D. 7211.已知a、b、c在数轴上位置如图,则|a+b|+|a+c|−|b−c|=()A. 0B. 2a+2bC. 2b−2cD. 2a+2c12.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A. 16张B. 18张C. 20张D. 21张二、填空题(本大题共6小题,共24.0分)13.多项式______ 与−3x+1的和是x2−3.14.如果向西走6米记作−6米,那么10米表示______.15.有一个数值转换器,原理如图:当输入x为49时,输出的y的值是______ .16.一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?设如果还要租x辆客车,可列方程为_________________________.17.如图,一副直角三角板中,∠A=60°,∠D=45°,在同一平面内,将∠A和∠D的顶点重合、边AC和边DF重合,可以得到∠BAE,∠BAE的度数为________.18. 如图,CD 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 中点,则AC 的长等于______.三、解答题(本大题共8小题,共66.0分)19. 计算题(1)−5−(−19)(2)−14×(−7)+6÷(−2)(3)(−36)×(112+59−718) (4)√1.44+√−83−√(−65)220. 先化简,再求值:3x 2−[6xy +2(x 2−y 2)]−3(y 2−2xy),其中x =−2,y =3.21.解方程:(1)2x−3(2x−3)=x+4;(2)x−x−12=23−x+23.22.如图,已知直线l和直线外三点A,B,C,按下列要求画图:(1)画射线CB交直线l于点F;(2)连接BA;(3)在直线l上确定点E,使得AE+CE最小.23.下表为深圳市居民每月用水收费标准(单位:元/m3)用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?24.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.25.A、B两地相距240千米,一辆公交车从A地出发,以每小时48千米的速度驶向B地;一辆小轿从B地出发,以每小时72千米的速度沿同条道路驶向A地.若小轿车从B地出发1小时后,公交车从A地出发,两车相向而行,求公交车出发后几小时两车相遇?26.已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=80°.(1)如图,当OD平分∠AOC时,求∠EOB的度数;(2)点F在射线OB上①若射线OF绕点O逆时针旋转n°(0<n<180且n≠60),∠FOA=3∠AOD,请判断∠FOE和∠EOC的数量关系并说明理由②若射线OF绕点O顺时针旋转n°(0<n<180),∠FOA=2∠AOD,OH平分∠EOC.当∠FOH=∠AOC时,求n的值.-------- 答案与解析 --------1.答案:A解析:解:根据有理数比较大小的方法,可得−2<−1<0<0.2,∴四个数−2,−1,0,0.2中,最小的数是−2.故选:A.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.答案:C解析:解:A、√16=4,故原命题错误;B、5的平方根是±√5,故原命题错误;C、−√5是5的一个平方根,正确;D、√2不是分数,故原命题错误.2故选:C.根据平方根和算术平方根,分数的定义解答即可.本题考查了实数,熟练掌握平方根和算术平方根的定义是解题的关键.3.答案:B解析:解:200亿用科学记数法表示为2×1010,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:解:在实数√83,π3,√12,43中√83=2,有理数有√83,43共2个. 故选:B .整数和分数统称为有理数,依此定义求解即可.此题考查了有理数和无理数的定义,注意需化简后再判断.5.答案:B解析:解:A 、∠1与∠2不是对顶角,故A 选项错误;B 、∠1与∠2是对顶角,故B 选项正确;C 、∠1与∠2不是对顶角,故C 选项错误;D 、∠1与∠2不是对顶角,故D 选项错误.故选:B .根据对顶角的定义对各选项分析判断后利用排除法求解.本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.6.答案:A解析:本题考查列代数式,解答本题的关键是明确题意及相关的运算关系,写出相应的代数式.根据题意,可以用代数式表示出a 的5倍与b 的和的平方,本题得以解决.解:由题意可得,a 的5倍与b 的和的平方用代数式表示为:(5a +b)2,故选A .7.答案:C解析:此题考查一元一次方程的运用,掌握销售问题中的基本数量关系是解决问题的关键.设原价为x元,利用原价×折扣=现价列出方程解答即可.解:设原价为x元,由题意得0.8x=16,解得:x=20.故选C.8.答案:B解析:本题考查了余角和补角,能根据图形求出∠1+∠2=90°是解此题的关键.求出∠1+∠2=90°,根据∠1的度数是∠2的3倍得出4∠2=90°,即可求出答案.解:根据图形得出:∠1+∠2=180°−90°=90°,∵∠1的度数是∠2的3倍,∴4∠2=90°,∴∠2=22.5°.故选B.9.答案:D解析:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.根据题意可以用代数式表示出每件亏损多少,本题得以解决.解:由题意可得,每件亏损为:a−a(1+20%)×0.8=a−0.96a=0.04a元,故选:D.10.答案:D解析:此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14,故三个数的和为x+x+7+x+14=3x+21,A.当3x+21=27时,解得x=2,合题意;B.当3x+21=51时,解得x=10,合题意;C.当3x+21=69时,解得x=16,合题意;D.当3x+21=72时,解得x=17,x+14=31,不合题意.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.11.答案:A解析:本题考查的是整式的加减,熟知数轴上右边的数总比左边的大是解答此题的关键.先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可.解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|−|b−c|=a+b−a−c−b+c=0.故选A.12.答案:D解析:解:①如果所有的画展示成一行,34÷(1+1)−1=16(张),∴34枚图钉最多可以展示16张画;②如果所有的画展示成两行,34÷(2+1)=11(枚)……1(枚),11−1=10(张),2×10=20(张),∴34枚图钉最多可以展示20张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8−1=7(张),3×7=21(张),∴34枚图钉最多可以展示21张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6−1=5(张),4×5=20(张),∴34枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5−1=4(张),5×4=20(张),∴34枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D.分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行时,最多可以展示的画的数量是解题的关键.13.答案:x2+3x−4解析:此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.根据和减去一个加数得到另一个加数列出关系式,去括号、合并同类项即可得到结果.解:根据题意得:(x2−3)−(−3x+1)=x2−3+3x−1=x2+3x−4,故答案为:x2+3x−4.14.答案:向东走10米解析:本题考查了正数和负数,相反意义的量用正数和负数表示.根据正数负数表示相反意义的量,向西走记为负,可得向东走的表示方法.解:如果向西走6米记作−6米,那么10米表示向东走10米,故答案为:向东走10米.15.答案:√7解析:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键,将x的值代入数值转化器计算即可得到结果.解:将x=49代入得:√49=7,将x=7代入得:√7,则输出y的值为√7.故答案为√7.16.答案:44x+64=328解析:由客车每辆可乘44人以及已有校车可乘64人,可得出等量关系,再由此列出方程.本题主要考查了一元一次方程的应用,要求学生根据题意及已经设好的未知数列出符合题意的方程,难度不大,是常规题型.解答的关键是找出两种车辆的载客人数与师生的总数相等的等量关系.解:设还要租x辆客车,则:已有校车可乘64人,所以还剩328−64人需要乘坐客车∵客车每辆可乘44人∴客车一共可以乘坐44x人∴可列方程:44x+64=328故答案为:44x+64=328.17.答案:15°或105°解析:本题考查的是角的和差.根据题意,由∠BAE=∠A−∠D或∠BAE=∠A+∠D,进行计算即可.解:根据题意,(1)当∠EDF在∠BAC内时,∠BAE=∠A−∠D=60°−45°=15°;(2)当∠EDF在∠BAC外时,∠BAE=∠A+∠D=60°+45°=105°.故答案为15°或105°.18.答案:6cm解析:解:由线段的和差,得DC=DB−CB=7−4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.19.答案:解:(1)原式=−5+19=14;(2)原式=7−3=4;(3)原式=−3−20+14=−9;=−2.(4)原式=1.2−2−65解析:(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式利用平方根、立方根定义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.答案:解:3x2−[6xy+2(x2−y2)]−3(y2−2xy)=3x2−(6xy+2x2−2y2)−3y2+6xy=3x2−6xy−2x2+2y2−3y2+6xy=x2−y2,当x=−2,y=3时,原式=(−2)2−32=4−9=−5.解析:此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.21.答案:解:(1)原方程去括号可化为:2x−6x+9=x+4,即2x−6x−x=4−9,则:−5x=−5,解得x=1;(2)原方程可化为:6x−3(x−1)=4−2(x+2),即:6x−3x+3=4−2x−4,则:6x−3x+2x=−3+4−4,所以:5x=−3,解得x=−3.5解析:此题考查一元一次方程的解法,关键是熟练掌握一元一次方程的解法、步骤.(1)利用一元一次方程的解法、步骤解方程,可得结果;(2)利用一元一次方程的解法、步骤解方程,可得结果.22.答案:解:(1)射线CB如图所示;(2)线段AB如图所示;(3)连接AC,与直线l的交点E即为所求.解析:本题考查作图−复杂作图、直线、射线、线段的定义、两点之间线段最短等知识,解题的关键是熟练掌握基本知识.(1)根据射线的定义画出即可;(2)直接连接AB即可;(3)连接AC与直线l的交点即为点E.23.答案:解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x−22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.解析:本题考查一元一次方程的应用,根据图表中水费等式关系列一元一次方程求解是解题关键.(1)直接利用10a=23进而求出即可;(2)首先判断得出x>22,进而依总水费列方程求解即可.24.答案:解:(1)三边分别为:3、4、5(如图1);(2)三边分别为:√2、2√2、√10(如图2);(3)画一个边长为√10的正方形(如图3).解析:本题考查了格点三角形的画法.(1)利用勾股定理,找长为有理数的线段,画三角形即可;(2)画一个边长√2,2√2,√10的三角形即可;(3)画一个边长为√10的正方形即可.25.答案:解:设公交车出发后x小时两车相遇,根据题意得48x+72(x+1)=240,解得x=1.4.答:公交车出发后1.4小时两车相遇.解析:设公交车出发后x小时两车相遇,根据相遇时,两车行驶路程和等于240千米路程方程,解方程即可.本题考查了一元一次方程的应用,解题的关键是理解题意,找到相等关系列出方程.26.答案:解:(1)∵OD平分∠AOC,∠AOC=60°,∴∠COD=12∵∠DOE=80°.∴∠COE=∠DOE−∠COD=20°,∴∠AOE=∠AOC+∠COE=120°+20°=140°,∴∠BOE=180°−∠AOE=40°;(2)①∠FOE=2∠EOC,当OE在OC的右侧,即:0°<n<60°如图,∵∠AOC=120°,∴∠COD=∠AOC−∠AOD=120°−∠AOD,∵∠DOE=80°,∴∠COE=∠DOE−∠COD=80°−(120°−∠AOD)=∠AOD−40°,∵∠FOA=3∠AOD,∴∠EOF=∠AOF−∠AOE=3∠AOD−(∠AOC+∠COE)=3∠AOD−(120°+∠AOD−40°)=3∠AOD−80°−∠AOD=2∠AOD−80°=2(∠AOD−40°)=2∠COE;当OE在OC左侧时,即:60°<n<180°,如图2,∵∠AOC=120°,∴∠COD=∠AOC−∠AOD=120°−∠AOD,∵∠DOE=80°,∴∠COE=∠COD−∠DOE=120°−∠AOB−80°=40°−∠AOD;∵∠FOA=3∠AOD,∴∠EOF=∠AOC−∠AOF−∠COE=120°−3∠AOD−(40°−∠AOD)=80°−2∠AOD=2(40°−∠AOD)=2∠COE,即:∠EOF=2∠COE;②当OE在OC的右侧,如图3,设∠COH=∠HOE=α,∴∠COD=∠DOE−∠COE=80°−2α,∵∠AOC=120°,∴∠AOD=∠AOC−∠COD=120°−(80°−2α)=40°+2α,∵∠FOA=2∠AOD=2(40°+2α)=80°+4α,∵∠BOF=180°−∠FOA=180°−∠FOA=180°−(80°+4α)=100°−4α,∴∠BOE=180°−∠AOC−∠COE=60°−2α,∴∠FOH=∠HOE+∠BOE+∠BOF=α+(60°−2α)+(100°−4α)=160°−5α,∵∠FOH=∠AOC=120°,∴160°−5α=120°,∴α=8°,∴n=∠BOF=100°−4α=68°,当OE与OC重合(OH,OE,OC为同一条射线),如图4,此时:∠FOH=160°≠∠AOC,舍去;当OE在OC的左侧时,如图5,设∠COH=∠HOE=α,∴∠COD=∠DOE+∠COE=80°+2α,∵∠AOC=120°,∴∠AOD=∠AOC−∠COD=40°−2α,∵∠FOA=2∠AOD=2(40°−2α)=80°−4α,∴∠FOH=∠AOC−∠COH+∠AOF=200°−5α,∵∠FOH=∠AOC,∴200°−5α=120°,∴α=16°,∵∠BOF=180°−∠FOA=180°−(80°−4α)=100°+4α,∴n=∠BOF=100°+4α=164°.∴n=68°或n=164°.解析:本题主要考查的是角的计算,角平分线的定义,旋转的性质等有关知识.运用了分类讨论思想和数形结合思想.(1)利用角平分线和图形寻找出角之间的关系即可得出结论;(2)①分两种情况,画出图形,找出角之间的关系即可求出结论;②分三种情况同①的方法即可得出结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省宁波市北仑区七年级(上)期末数学试卷一、选择题(共12小题).1.在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣12.下列说法正确的是()A.是分数B.互为相反数的数的立方根也互为相反数C.的系数是D.64的平方根是±43.2019年双十一天猫购物狂欢节全天成交额再创新纪录达到2684亿,其中数据2684亿用科学记数法表示为()A.2.684×1010B.26.84×1010C.2.684×1011D.2.684×1012 4.在数,,﹣,,3,14,0.808008,π中,有理数有()A.3个B.4个C.5个D.6个5.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.6.代数式的意义是()A.x除以x加8B.x加8除xC.x与8的和除以xD.x除以x与8的和所得的商7.右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元8.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.9.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b10.在如图所示的2020年1月份的月历表中,任意框出表中竖立上三个相邻的数,这三个数的和不可能是()日一二三四五六1234 5678910111213141516171819202122232425262728293031 A.27B.51C.69D.7511.有理数a,b,c在数轴上的位置如图所示,则化简|a+b|﹣2|c﹣b|+3|a+c|的结果为()A.2a+b+c B.﹣4a+b﹣5c C.4a+3b+c D.﹣4a﹣3b﹣c 12.某班在一块展示板上同时展示形状与大小均相同的长方形(图甲)的班徽设计作品,并将这些作品排成一个长方形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在展示板上,如图乙所示).若有38枚图钉可供选用,则最多可以展示设计作品件数()A.25B.24C.22D.18二、填空题(每小题4分,共24分)13.已知一个多项式与3x2+9x+2的和等于3x2+4x﹣3,则此多项式是.14.某检修小组乘检修车沿检修公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走的路程为(单位汗米):+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.若检修车每千米耗油0.2升,则从A地出发到收工时共耗油升.15.有一个数值转换器,原理如图.当输入x的值为25时,输出y的值是.16.某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有人.17.将两个正方形与直角三角板的一个直角顶点重合放置,如图所示,则∠1的度数为.18.如图,C为射线AB上一点,AB=30,AC比BC的多5,P、Q两点分别从A、B两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB上沿AB方向运动,当点P运动到点B时,两点同时停止运动,运动时间为t(s),M为BP的中点,N为MQ 的中点,以下结论:①BC=2AC;②AB=4NQ;③当BP=BQ时,t=12;④M,N 两点之间的距离是定值.其中正确的结论(填写序号)三、解答题(本大题有8小题,共78分)19.计算:(1);(2).20.先化简,再求值:(5x2y+5xy﹣7x)﹣(4x2+5xy﹣7x),其中2x﹣1的值是0,y2的值是4.21.解方程(1)8x﹣3(3x+2)=1;(2).22.如图,已知直线l和直线外三点A,B,C,按下列要求画图,填空:(1)画射线AB;(2)连接BC;(3)延长CB至D,使得BD=BC;(4)在直线上确定点E,使得AE+CE最小,请写出你作图的依据.23.下表为某市居民每月用水收费标准.用水量x(立方米)水费到户价单价(元/立方米)低于或等于17的部分a+0.8高于17低于或等于31的部分a+2.72(1)某户用水10立方米,共缴水费32元,求a的值;(2)在(1)的前提下,该用户5月份缴水费80元,请问该用户5月份用水多少立方米?24.利用如图4×4方格,每个小正方形的边长都为1.(1)请求出图1中阴影正方形的面积与边长;(2)请在图2中画出一个与图1中阴影部分面积不相等的正方形,要求它的边长为无理数,并求出它的边长;(3)把分别表示图1与图2中的正方形的边长的实数在数轴上表示出来.25.星期天天气晴好,小米骑自行车向宁波登山基地九峰山出发,由于太匆忙,出发半个小时后,他爸爸发现他把可以免费进入景区的证件落在家里,于是,他立即开摩托车去追,已知小米骑自行车的平均速度为12千米/时,摩托车的平均速度为48千米/时.(1)求出爸爸多长时间能追上小米?(2)若爸爸出发的同时手机通知小米掉头回来,那么爸爸多久与小米相遇?(3)若爸爸出发的同时手机通知小米掉头来取,结果爸爸出发十分钟还没有遇到小米,手机联系才发现他俩已经错开了一段距离了,这时他们又赶紧掉头,问爸爸从家里出发到送证件成功共花了多少时间?(4)小米继续骑自行车,他留意到每隔15分钟有一辆某路公交车从他身后驶向前面,假设小米的平均速度是12千米/时,公交车的的平均速度为60千米/时.小米就想:每隔几分钟从车站开出一辆该路公交车呢?请你帮小米求岀.26.我们学过角的平分线的概念.类比给出新概念:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线.显然,一个角的三分线有两条,例如:如图1,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)如图1,若∠BOC>∠AOC,若∠AOB=63°,求∠AOC的度数;(2)如图2,若∠AOB=90°,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n度(n<360)得到∠C'OD',当OA恰好是∠C'OD'的三分线时,则求n的值.(3)如图3,若∠AOB=180°,OC是∠AOB的一条三分线,OM,ON分别是∠AOC 与∠BOC的平分线,将∠MON绕点O以每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,若射线ON恰好是∠AOC的三分线,则此时∠MON绕点O旋转的时间是多少秒?(直接写出答案即可,不必说明理由)参考答案一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣1解:∵1>0>﹣>﹣1,∴在0,1,﹣,﹣1四个数中,最小的数是﹣1.故选:D.2.下列说法正确的是()A.是分数B.互为相反数的数的立方根也互为相反数C.的系数是D.64的平方根是±4解:A、﹣不是分数,故不符合题意;B、互为相反数的数的立方根也互为相反数,故符合题意;C、﹣的系数是﹣,故不符合题意;D、64的平方根是±8,故不符合题意;故选:B.3.2019年双十一天猫购物狂欢节全天成交额再创新纪录达到2684亿,其中数据2684亿用科学记数法表示为()A.2.684×1010B.26.84×1010C.2.684×1011D.2.684×1012解:2684亿=2684 0000 0000=2.684×1011.故选:C.4.在数,,﹣,,3,14,0.808008,π中,有理数有()A.3个B.4个C.5个D.6个解:在数,,﹣,,3,14,0.808008,π中,有理数有,﹣,3,14,0.808008,共5个.故选:C.5.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.解:A、∠1与∠2是对顶角,故A选项正确;B、∠1与∠2不是对顶角,故B选项错误;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:A.6.代数式的意义是()A.x除以x加8B.x加8除xC.x与8的和除以xD.x除以x与8的和所得的商解:代数式的意义是x除以x与8的和所得的商,故选:D.7.右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元解:设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.8.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.解:A、∵∠1+∠2=360°﹣90°×2=180°,∴∠1与∠2一定互补,故本选项不符合题意;B、∵∠1=180°﹣60°=120°,∴∠1+∠2=120°+60°=180°,∴∠1与∠2一定互补,故本选项不符合题意;C、∵∠1=30°+90°=120°,∴∠1+∠2=120°+60°=180°,∴∠1与∠2一定互补,故本选项不符合题意;D、∠1度数无法确定,∠2=60°,所以∠1与∠2不一定互补,故本选项符合题意.故选:D.9.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.10.在如图所示的2020年1月份的月历表中,任意框出表中竖立上三个相邻的数,这三个数的和不可能是()日一二三四五六1234 5678910111213141516171819202122232425262728293031 A.27B.51C.69D.75解:竖立三个相邻的数中,最中间的数为x,∴这个三数为x﹣7、x、x+7,∴这三个数的和为:x﹣7+x+x+7=3x,∴当3x=27时,此时x=9,当3x=51时,此时x=17,当3x=69时,此时x=23,当3x=75,此时x=25,由表格可知25下方没有数字,故选:D.11.有理数a,b,c在数轴上的位置如图所示,则化简|a+b|﹣2|c﹣b|+3|a+c|的结果为()A.2a+b+c B.﹣4a+b﹣5c C.4a+3b+c D.﹣4a﹣3b﹣c 解:∵由图可知,a<b<0<c,|a|>|b|>c,∴原式=﹣a﹣b﹣2(c﹣b)﹣3(a+c)=﹣a﹣b﹣2c+2b﹣3a﹣3c=﹣4a+b﹣5c.故选:B.12.某班在一块展示板上同时展示形状与大小均相同的长方形(图甲)的班徽设计作品,并将这些作品排成一个长方形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在展示板上,如图乙所示).若有38枚图钉可供选用,则最多可以展示设计作品件数()A.25B.24C.22D.18解:(1)展示成一行,38÷(1+1)﹣1=18(张)38枚图钉可以最多展示18张作品.(2)展示成两行,38÷(2+1)=12(张)余2枚12﹣1=11(张),2×11=22(张)38枚图钉可以最多展示22张作品•(3)展示成三行,38÷(3+1)=9(张)余2枚9﹣1=8(张),3×8=24(张)38枚图钉可以最多展示24张作品.(4)展示成四行,38÷(4+1)=7(张)余3枚7﹣1=6(张),4×6=24(张)38枚图钉可以最多展示24张作品.(5)展示成五行,38÷(5+1)=6(张)余2枚6﹣1=5(张),5×5=25(张)38枚图钉可以最多展示25张作品.(6)展示成六行,38÷(6+1)=5(张)余3枚5﹣1=4(张),6×4=24(张)综上38枚图钉可以最多展示25张作品.故选:A.二、填空题(每小题4分,共24分)13.已知一个多项式与3x2+9x+2的和等于3x2+4x﹣3,则此多项式是﹣5x﹣5.解:根据题意得:(3x2+4x﹣3)﹣(3x2+9x+2)=3x2+4x﹣3﹣3x2﹣9x﹣2=﹣5x﹣5.故答案为:﹣5x﹣5.14.某检修小组乘检修车沿检修公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走的路程为(单位汗米):+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.若检修车每千米耗油0.2升,则从A地出发到收工时共耗油13.4升.解:|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67,67×0.2=13.4(升).答:从A地出发到收工时共耗油13.4升,故答案为:13.4.15.有一个数值转换器,原理如图.当输入x的值为25时,输出y的值是.解:将x=25代入得:=5,将x=5代入得:,则输出y的值为.故答案为:16.某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有405人.解:设该校参加研学活动的有x人,依题意,得:=+2,解得:x=405.故答案为:405.17.将两个正方形与直角三角板的一个直角顶点重合放置,如图所示,则∠1的度数为16°.解:如图∵∠1+α+β=90°∠1+α=90°﹣46°∠1+β=90°﹣28°∴∠1=90°﹣46°+90°﹣28°﹣90°=16°.故答案为16°.18.如图,C为射线AB上一点,AB=30,AC比BC的多5,P、Q两点分别从A、B两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB上沿AB方向运动,当点P运动到点B时,两点同时停止运动,运动时间为t(s),M为BP的中点,N为MQ 的中点,以下结论:①BC=2AC;②AB=4NQ;③当BP=BQ时,t=12;④M,N 两点之间的距离是定值.其中正确的结论①②③(填写序号)解:∵AB=30,AC比BC的多5,∴BC=20,AC=10,∴BC=2AC;故①正确;∵P,Q两点分别从A,B两点同时出发,分别以2个单位/秒和1个单位/秒的速度,∴BP=30﹣2t,BQ=t,∵M为BP的中点,N为MQ的中点,∴PM=BP=15﹣t,NQ=MB+BQ=15,NQ=MQ=7.5,∴AB=4NQ;故②正确;∵,∴,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15+t,∴MN=MQ=+t,∴MN的值与t有关不是定值,故答案为:①②③.三、解答题(本大题有8小题,共78分)19.计算:(1);(2).解:(1)=﹣﹣24×﹣24×(﹣)﹣24×=﹣﹣2+20﹣9=8(2)=﹣2﹣1+4×(﹣)=﹣520.先化简,再求值:(5x2y+5xy﹣7x)﹣(4x2+5xy﹣7x),其中2x﹣1的值是0,y2的值是4.解:原式=5x2y+5xy﹣7x﹣4x2﹣5xy+7x=5x2y﹣4x2,由2x﹣1=0,得到x=,又∵y2=4,∴y=±2,当x=,y=2时,原式=﹣1=;当x=,y=﹣2时,原式=﹣﹣1=﹣.21.解方程(1)8x﹣3(3x+2)=1;(2).解:(1)∵8x﹣9x﹣6=1,∴﹣x=6+1,∴x=﹣7.(2)∵3x﹣(5x+11)=6+2(2x﹣4),∴3x﹣5x﹣11=6+4x﹣8,∴﹣6x=9,∴x=22.如图,已知直线l和直线外三点A,B,C,按下列要求画图,填空:(1)画射线AB;(2)连接BC;(3)延长CB至D,使得BD=BC;(4)在直线上确定点E,使得AE+CE最小,请写出你作图的依据两点之间线段最短.解:(1)射线AB如图所示.(2)线段BC如图所示.(3)线段BD如图所示.(4)连接AC交直线l于点E,此时AE+EC的值最小.理由:两点之间线段最短.故答案为两点之间线段最短.23.下表为某市居民每月用水收费标准.用水量x(立方米)水费到户价单价(元/立方米)低于或等于17的部分a+0.8高于17低于或等于31的部分a+2.72(1)某户用水10立方米,共缴水费32元,求a的值;(2)在(1)的前提下,该用户5月份缴水费80元,请问该用户5月份用水多少立方米?【解答】解(1)10(a+0.8)=32,解得a=2.4;(2)17×(2.4+0.8)=54.4<80,设该用户5月份用水x米3,依题意有17×(2.4+0.8)+(x﹣17)×(2.4+2.72)=80,解得x=22.答:该用户5月份用水22立方米.24.利用如图4×4方格,每个小正方形的边长都为1.(1)请求出图1中阴影正方形的面积与边长;(2)请在图2中画出一个与图1中阴影部分面积不相等的正方形,要求它的边长为无理数,并求出它的边长;(3)把分别表示图1与图2中的正方形的边长的实数在数轴上表示出来.【解答】解(1)面积为4×4﹣4××1×3=10,边长为;(2)如图所示,正方形的边长为均可.(答案不唯一,合理即可.)(3)表示或或的点如图所示.(答案不唯一,画出表示的点亦可)25.星期天天气晴好,小米骑自行车向宁波登山基地九峰山出发,由于太匆忙,出发半个小时后,他爸爸发现他把可以免费进入景区的证件落在家里,于是,他立即开摩托车去追,已知小米骑自行车的平均速度为12千米/时,摩托车的平均速度为48千米/时.(1)求出爸爸多长时间能追上小米?(2)若爸爸出发的同时手机通知小米掉头回来,那么爸爸多久与小米相遇?(3)若爸爸出发的同时手机通知小米掉头来取,结果爸爸出发十分钟还没有遇到小米,手机联系才发现他俩已经错开了一段距离了,这时他们又赶紧掉头,问爸爸从家里出发到送证件成功共花了多少时间?(4)小米继续骑自行车,他留意到每隔15分钟有一辆某路公交车从他身后驶向前面,假设小米的平均速度是12千米/时,公交车的的平均速度为60千米/时.小米就想:每隔几分钟从车站开出一辆该路公交车呢?请你帮小米求岀.解:(1)设爸爸经过x小时能追上小米,则小米出发了(x+0.5)小时,依题意,得:48x=12(0.5+x),解得:x=.答:爸爸经过小时能追上小米.(2)设爸爸经过y小时与小米相遇,依题意,得:(48+12)y=12×0.5,解得:y=.答:爸爸经过小时与小米相遇.(3)设爸爸从家里出发到送证件成功共花了z小时,依题意,得:(48+12)(z﹣)=(48+12)×﹣12×0.5,解得:z=.答:爸爸从家里出发到送证件成功共花了小时.(4)设每隔m分钟从车站开出一辆该路公交车,依题意,得:(60﹣12)×=60×,解得:m=12.答:每隔12分钟从车站开出一辆该路公交车.26.我们学过角的平分线的概念.类比给出新概念:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线.显然,一个角的三分线有两条,例如:如图1,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.(1)如图1,若∠BOC>∠AOC,若∠AOB=63°,求∠AOC的度数;(2)如图2,若∠AOB=90°,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n度(n<360)得到∠C'OD',当OA恰好是∠C'OD'的三分线时,则求n的值.(3)如图3,若∠AOB=180°,OC是∠AOB的一条三分线,OM,ON分别是∠AOC 与∠BOC的平分线,将∠MON绕点O以每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,若射线ON恰好是∠AOC的三分线,则此时∠MON绕点O旋转的时间是多少秒?(直接写出答案即可,不必说明理由)解:(1)∵OC是∠AOB的一条三分线,且∠BOC>∠AOC∴,∵∠AOB=63°,∴;(2)①解:∵∠AOB=90°,OC,OD是∠AOB的两条三分线,如图2①,∴,②现以O为中心,将∠COD顺时针旋转n度(n<360)得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,分两种情况:当OA是∠C′OD′的三分线,且∠AOD′>∠AOC'时,如图2②,∠AOC′=10°,∴∠DOC=30°﹣10°=20°,∴∠COC′=∠AOC﹣∠AOC′=60°﹣10°=50°,当OA是∠C′OD′的三分线,且∠AOD′<∠AOC'时,如图2③,∠AOC′=20°,∴∠COC′=∠AOC﹣∠AOC′=60°﹣20°=40°,∴n=40或50.(3)∵OC是∠AOB的一条三分线,∠AOB=180°OM,ON分别是∠AOC与∠BOC的平分线可得∠MON=90°,∴∠AOC=60°或120°,当∠AOC=60°时,∠MON绕点O旋转260°或280°时,ON是∠AOC的一条三分线,∴260÷10=26或280÷10=28(秒)当∠AOC=120°时,∠MON绕点O旋转250°或290°时,ON是∠AOC的一条三分线,∴250÷10=25或290÷10=29(秒)综上,∠MON绕点O旋转的时间是25,26,28或29秒.。

相关文档
最新文档